19.1 Planarity

A curve is the image of a continuous map from $[0,1]$ to \mathbb{R}^{2}. A polygonal curve is a curve composed of finitely many line segments. A polygonal u, v-curve starts at u and ends at v.

A drawing of a graph is a function f defined on defined on $V(G) \cup E(G)$ that assigns each $v \in V(G)$ to a distinct point $f(v)$ in the plane and assigns each $e=(u, v) \in E(G)$ a polygonal $f(u), f(v)$-curve. A point $x=f(e) \cap f\left(e^{\prime}\right)$ where $e \neq e^{\prime}$ and x isn't a common endpoint of e and e^{\prime} is called a crossing.

A graph is planar if it has a drawing without crossings. Such a drawing is a planar embedding of G. A plane graph is a particular planar embedding of a planar graph. The faces of a plane graph are the maximal regions of the plane that contain no point in the embedding. Every finite plane graph has one unbounded face, the outer face.

A graph is outerplanar if it has an embedding with every vertex on the boundary of the unbounded face. The boundary of the outer face of a 2 -connected outerplanar graph is a spanning cycle.

We can demonstrate that K_{4} and $K_{2,3}$ are planar but not outerplanar.
Next, let's demonstrate that K_{5} and $K_{3,3}$ are not planar; i.e., we can't draw them such that no crossing exists.

19.2 Dual Graphs

The dual graph G^{*} of a plane graph G is a plane graph whose vertices are the faces of G. An edge $e^{*}=(x, y) \in G^{*}$ connects vertices x, y representing the faces X, Y separated by an edge $e \in E(G)$. The number of edges incident to $x \in V\left(G^{*}\right)$ in the plane graph is the number of the edges bounding the face of X in G in a walk around its boundary.

A dual graph can be dependent on a particular embedding of a planar graph. I.e., two embeddings of a planar graph can have dual graphs that are not isomorphic. However, whenever G is connected, it is possible for us to draw the dual such that G is isomorphic to $\left(G^{*}\right)^{*}$.

The length of a face of a plane graph G is the total length of the closed walks in G bounding the face. If $l\left(F_{i}\right)$ is the length of face F_{i} in plane graph G, then $2|E(G)|=$ $\sum l\left(F_{i}\right)$.

The following are all equivalent statements:

1. Plane graph G is bipartite.
2. Every face of G has even length.
3. The dual graph G^{*} of G is Eulerian.

19.3 Euler's Formula

Euler's Formula, $(n-e+f=2)$, relates the number of vertices n with the number of edges e and faces f in a connected planar graph. We can easily prove that this relation holds with induction. This implies that all planar embeddings of a connected graph G have the same number of faces. We can also use this relation to show that if G is a simple plane graph with at least three vertices, then $e \leq 3 n-6$. If G is triangle-free, then $e \leq 2 n-4$. Additionally, we can see use the relation to more formally prove that K_{5} and $K_{3,3}$ are non-planar.

A maximal planar graph is a simple planar graph graph that is not a spanning subgraph of another planar graph (except one isomorphic to itself). A triangulation is a simple plane graph where every face boundary is a 3 -cycle. We can show that if G is a maximal planar graph, then G is a triangulation with $3 n-6$ edges.

