20.1 Conditions for Planarity

So far, we've come up with a few conditions to determine whether or not a graph G is planar. We've observed that K_{5} does not have a planar embedding. Similarly, neither does $K_{3,3}$. So obviously, any graph that has K_{5} or $K_{3,3}$ as a subgraph is not planar. Additionally, we've used Euler's formula to show how all planar graphs have $m \leq 3 n-6$, where $m=|E(G)|$ and $n=|V(G)|$. When G is triangle-free, then $m \leq 2 n-4$.

So for now, we know that a graph is not planar if:

1. It has K_{5} as a subgraph
2. It has $K_{3,3}$ as a subgraph
3. $m>3 n-6$
4. $m>2 n-4$ if G is triangle-free

Note that in terms of determining if G is planar, we've only shown that these conditions are necessary but not sufficient. E.g., a graph with $m \leq 3 n-6$ is not necessary planar think of $K_{5}+v$, where v is a single additional vertex attached by a single edge to some $u \in K_{5}\left(m=11, n=6 \rightarrow 11<12\right.$, but we know a graph with a K_{5} subgraph can't be planar).

Let's explore further conditions. Recall a subdivision, which is created by replacing a single edge with a path. Note that subdividing an edge does not affect planarity, since an embedding of a subdivided edge can be used to create an embedding of the original graph and vise-versa. Therefore, we can see that a planar graph cannot contain a subgraph that is a subdivision of K_{5} or $K_{3,3}$. These subgraphs, subdivisions of K_{5} and $K_{3,3}$, are called Kuratowski subgraphs.

20.2 Kuratowski's Theorem

Kuratowski's Theorem is the much stronger statement that a graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$. To prove Kuratowski's Theorem, we'll show the following:

1. For every face F_{i} of an embedding of G, it's possible to draw a new embedding of G with F_{i} as the outer face.
2. A minimal nonplanar graph is a nonplanar graph such that any subgraph is planar. Every minimal nonplanar graph is 2 -connected.
3. An S-lobe of G is an induced subgraph consisting of a vertex set S as well as the vertices of some component of $G-S$. If $S=\{x, y\}$ is a separating set of nonplanar graph G, then adding the edge $e=(x, y)$ to some S-lobe of G yields a nonplanar graph.
4. If nonplanar graph G has the fewest edges among all nonplanar graphs without Kuratowski subgraphs, then G is 3 -connected.
5. Every 3-connected graph G with at least five vertices has an edge e such that $G \cdot e$ is 3 -connected.
6. If $G \cdot e$ has a Kuratowski subgraph, then G has a Kuratowski subgraph.
7. A convex embedding of a graph is an embedding where each face is a convex polygon. If G is 3 -connected with no subdivision of K_{5} or $K_{3,3}$, then G has a convex embedding on the plane with no 3 vertices in a line.

If G has a convex embedding, then obviously it must be planar. Therefore, any graph that contains a Kuratowski subgraph is nonplanar.

