
22.1 Line Graphs

The line graph of G, written as L(G), is the simple graph whose vertices are the edges
of G. Edges v, u ∈ E(G), represented as vertices v, u ∈ V (L(G)), have an edge between
them in L(G) if they share a common endpoint w ∈ V (G) : {(v, w), (u,w)} ∈ E(G).
There is a relationship between problems involving edges in G and problems involving the
vertices in L(G):

1. An Eulerian Circuit in G is a spanning cycle in L(G).

2. A matching in G is an independent set in L(G).

3. A cut edge e = (u, v) in G is a cut vertex in L(G) if d(u), d(v) > 1.

4. Edge-coloring in G is equivalent to vertex coloring in L(G).

Consider some H such that L(H) = G, An interesting notion is that we can theoretically
exploit this relationship. Note that it’s possible to compute a maximum matching in
polynomial time in general on H while a maximum independent set requires exponential
time in general on G; however, we observe that there is effectively a 1-to-1 correspondence
between these two problems. Likewise, the same might be said of finding an optimal vertex
coloring in general takes exponential time while an optimal edge coloring only requires
polynomial time. We going to focus on the last problem today. Edge-coloring in G and
how it relates to vertex coloring in L(G).

22.2 Edge-coloring

Edge coloring is the problem of assigning labels, i.e. colors, to all e ∈ E(G) such
that no two edges have the same color if they share an endpoint v ∈ V (G). We use
similar terminology as with vertex coloring. A coloring is proper if it satisfies the above
criteria. We consider a k-edge-coloring to be a proper edge coloring of k colors. The
edge-chromatic-number or chromatic index, χ′(G) = k, is equal to the smallest k
for which G is properly k-edge-colorable. Let’s consider some bounds on χ′(G).

Since all edges incident on the largest degree vertex require separate colors, obviously
χ′(G) ≥ ∆(G).

If we consider a greedy scheme to color edges and note that no edge shares endpoints with
more than 2∆(G)− 1 edges, we have the bound χ′(G) ≤ 2∆(G)− 1.

As a greedy edge coloring scheme on G is equivalent to a greedy vertex coloring scheme
on L(G), we further have the bounds χ′(G) = χ(L(G)) ≤ ∆(L(G)) + 1 ≤ 2∆(G)− 1.

49

If G is bipartite, we can show that χ′(G) = ∆(G).

For any simple graph, we can further show that χ′(G) ≤ ∆(G) + 1. Or combined with
our lower bound, χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1.

22.3 Forbidden Subgraphs

Consider the problems discussed above with equivalent representations between G and
line graph L(G). Let’s say that we wish to identify a maximum independent set on a
general graph. As stated above, computing a maximum independent set is of exponential
complexity, while a maximum match can be done in polynomial time. So, we can poten-
tially simplify our problem if we’re able to identify some graph H such that G is the line
graph of H, or L(H) = G. If we can do that, then we can solve a maximum match on H
and easily translate the solution to G.

Obviously, such an H is not going to exist for all graphs, otherwise that would imply we
can solve a NP-hard problem in polynomial time. The question then becomes, for what
conditions does there exist such a H? Below, we’re going to characterize some conditions
we have of G such that a corresponding H is guaranteed to exists.

For a simple graph G, there is a solution to L(H) = G if and only if G decomposes into
complete subgraphs, with each vertex of G appearing in at most two of these complete
subgraphs.

A double triangle is an induced subgraph of graph G that consists of two triangles
sharing an edge and no edge existing between the vertices that comprise the third vertex
of each triangle. A triangle T is odd if ∃v ∈ V (G) : |N(v) ∩ V (T)| is odd. For a simple
graph G, there is a solution to L(H) = G if and only if G is claw-free and no double
triangle of G has two odd triangles.

50

The graphs below are a list of all forbidden subgraphs. For a simple graph G, there is
a solution to L(H) = G if and only if G does not contain any forbidden subgraph as an
induced subgraph. Being able to identify the graph H in L(H) = G can be done in linear
time. However, a discussion of such an algorithm is beyond the scope of the course.

51

