
24.1 Random Graphs

Random graphs are important theoretical tools. They are generally described in a
probabilistic manner or as the result of some generative process. The use and study of
random graphs serves two primary purposes.

The primary motivation for studying random graphs is that their analysis can provide
insight into real-world empirically-observed phenomena and properties of real graphs. An
analytic study can provide theoretic justification for observations like how real graphs
tend to have small diameters or a single massive component.

Secondly, they can be used as null models for hypothesis testing. E.g., if we are observing
or measuring some property of a real graph and we would like to better understand just
how notable our empirical observations actually are, one thing we can do is compare our
measurements to those obtained on a random graph with similar basic properties.

For example, motif finding is the study of a graph in order to identify subgraph structures
that appear more often than would otherwise be expected. How can we actually define
“more often than expected”? One way would be by comparing a random graph with
some similar properties, such as degree distribution, to our network of interest. This is
essentially a means to evaluate the null hypothesis, which is determining whether the
observation we are making is due to some underlying reason or is simply random chance.

24.1.1 Erdös-Rényi Graphs

Erdö-Rényi graphs come in two flavors - the G(n,m) model and the G(n, p) model. The
former model assumes a graph of n vertices and m edges, where these edges have (uni-
formly) randomly selected endpoints. The latter model assumes n vertices and the ex-
istence of an edge between any u, v vertex is determined via probability p, aka the at-
tachment probability. Note that the G(n,m) model can have multi-edges and self-loops
while the G(n, p) model will be simple. The generation of a G(n, p) model also can be
considered as a Bernoulli Process across all u, v vertex pairs.

We can use these models to understand why real graphs often have a single massive com-
ponent or why many real graphs exhibit small-world properties. This model assumes
homogeneous mixing, in that all vertices and their connections are statistically the same.
This assumption helps simplify theoretical analyses, but this assumption is not particu-
larly representative of almost any real naturally-arising graph.
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24.1.2 Configuration Model

The configuration model addresses the above limitation of Erdö-Rényi graphs by generat-
ing a random graph that exhibits an exact degree sequence. Generation of configuration
models is straightforward and somewhat similar to Havel-Hakimi graph generation. For
each degree k in a given degree sequence, we construct a vertex with k stubs, which are
“half-edges” that we wish to connect to each other. Randomly, two stubs among all ver-
tices are selected and connected to construct an edge. This is repeated until no stubs
remain. This process will result in loopy multi-graphs, as with the G(n,m) model.

We can also consider attachment probabilities within the context of the configuration
model. The probability of selecting a stub of some given vertex is proportional to the
number of stubs (or degree) of that vertex. Specifically, given 2m =

∑
v∈|V | d(v), the

probability of selecting any stub on vertex u with degree d(u) is d(u)
2m

. Thus, given two
vertices u, v with degrees d(u), d(v), a total of m edge selections, and the fact that we can
select u, v or v, u in 2 different ways, the attachment probability between u, v is

pu,v =
d(u)

2m

d(v)

2m
× 2×m =

d(u)d(v)

2m

24.1.3 Chung-Lu Model

The Chung-Lu model is a variation of the configuration model. Generally, we consider it
in terms of the attachment probabilities, as above. Between vertices u, v we have:

pu,v =
wuwv

2m

where wu and wv are weights associated with each vertex. Most commonly, these weights
are simply considered as degrees, giving the same attachment probabilities as the configu-
ration model. As with the configuration model, there is an inherent assumption that this
model is only applicable to the class of loopy multi-graphs. While some theorists might
claim that as |V (G)| → ∞ the probability of self-loops and multi-edges approaches zero
and therefore this model is applicable to simple graphs as well, these theorists are fools.

Let’s discuss issues that can arise when considering these attachment probabilities in
the context of simple graphs. Consider what happens when wuwv > 2m, which is not
an uncommon occurrence in graphs with heavily skewed degree distributions or graphs
that are suitably dense. In multi-graphs, this would imply the expectation of a non-
zero number of multi-edges between u, v. In simple graphs, this probability is meaning-
less. In fact, the divergence between actual uniformly random simple graph attachment
probabilities and the Chung-Lu or configuration model is quite substantial, even when
∀u, v ∈ V : wuwv << 2m. 55



24.1.4 Null Models

We’ll define null models to be graphs that have some set of equivalent properties to a
graph being studied, but are otherwise selected uniformly randomly from all possible
configurations within the graph class defined by these properties. Uniformly random
implies, in this context, that an explicit instantiation of such a null model will result in
an unbiased selection of a single graph topology among all possible graph topologies (a
combinatorially massive number) that fit the given properties. The specific properties are
usually n, m, or an explicit degree sequence, among others.

For all graphs in the class of loopy multi-graphs, the configuration model or Chung-Lu
model provide a means to realize explicitly or measure implicitly (i.e., by using attach-
ment probabilities) null model statistics for a given degree sequence. For simple graphs,
there is no direct generative method or closed-form equation for attachment probabilities.
However, we can still uniformly select from the class of simple graphs with a given degree
sequence by performing a Markov process of double edge swaps on any arbitrary graph
with that degree sequence.

u w

v x

→
u w

v x

or
u w

v x

Double edge swaps take two edges in some graph (u, v), (w, x) and swap their endpoints
to construct edges (u,w), (v, x) or (u, x), (w, v). Note that these swaps would not alter
the degrees of any of these vertices. By randomly selecting these edges and how they’re
swapped, not performing any swap that creates multi-edges or self loops, and repeating
this a “suitably large” number of times, we can effectively produce a uniformly random
sample from all possible simple graph topologies with some given degree distribution. How
large our “suitably large” number actually is, is called the mixing time and is theoretically
unknown in the general case.

Regardless, we can also use this approach to determine our “actual” simple attachment
probabilities. To do this, we would generate some number of random samples, measure
how often vertices within the various degree classes actually connect, and take the averages
to be our pi,j attachment probabilities between some vertex of degree i and some vertex
of degree j. However, his is a computationally expensive procedure.
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