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Motivation

Networked dynamics describe various phenomena ranging from

Michaelis-Menten gene regulation [4] to epidemic spreading processes [3].

As networks become larger, our ability to simulate their dynamics is

dependent on our ability to compute those dynamics in parallel.

Parallel methods for numerical integration either require known finite time

intervals, or excessive message passing, making parallel computation of

asymptotic fixed points unrealistic to compute.

The system

We consider dynamics on a graph G = (V, E) with adjacency matrix A. The

derivative of each node xi is given by the following sum [1].

ẋi = f (xi) +
n−1∑
j=0

Aijg(xi, xj) (1)

f (xi) captures the intrinsic dynamics of each node arising from its current state.

g(xi, xj) captures the extrinsic dynamics contributed from neighboring nodes.

We specifically consider the following two systemswhichwe refer to as regulatory

dynamics and epidemic dynamics respectively.

ẋk = −Bxf
k +

∑
j

AkjR
xh

k

xh
k + 1

(2)

ẋk = −Bxk +
∑

j

AkjR(1 − xk)xj (3)

Here R and B are constants that change with the problem. We take them to be

unit for our simulations.

Dataset

Table 1:Networks taken from the Koblenz network repository that were used

in experiments. The number of nodes and edges are displayed.

Network Nodes Edges

CA roads 1,965,206 2,766,607

PA roads 1,088,092 1,541,898

TX roads 1,379,917 1,921,660

Orkut 3,072,441 117,184,899

Livejournal 4,847,571 68,475,391

Google 875,713 5,105,039
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Figure 1:Compute times per edge for networks from Koblenz. These trials were

done in 1,2,4,8, and 16 compute ranks. We see clear power law scaling.
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Figure 2:Error results for a suite of Barabási Albert and Erdős Rényi networks for

the regulatory dynamics 2 and epidemic dynamics 3. We see clear differences in

accuracy for both the differing dynamics and differing topologies.

Method

Observation: If a network has steady state x∗, a subnetwork will evolve

towards that steady state if the state of each exterior neighboring node vi is

held constant at x∗
i .

We perform a series of meanfield approximations as in [2] to obtain the

following equation where β is the network resilience.

ẋ = f (x) + βg(x, x) (4)

We calculate the fixed point of this one-dimensional equation xeff .

We then partition the network amongst our compute ranks and numerically

integrate each rank using xeff as a stand in for the true dynamics outside of

our subnetwork to obtain steady state x∗(0).
Then calculate the proportional error as ε = ||x∗

0−x∗||
||x∗|| .

To improve this error we can exchange information between ranks and then

numerically integrate again using the initial steady state estimate x∗(0) as a
stand in for the dynamics exterior to our subnetwork. This yields a second

estimate x∗(1)
This can then be iterated to improve accuracy further.

Findings

As expected from [2] the proportional error of x∗(0) diminishes as the

network topology becomes more regular.

We find that additional message passing drastically improves accuracy of

later estimates x∗(k).
We also find that the wall time scales well with the number of processors

and that the per-edge computation time is similar across varying network

topologies.
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