Parallel computation of fixed points on networks of nonlinear ODE
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stand in for the dynamics exterior to our subnetwork. This vields a second

;) captures the intrinsic dynamics of each node arising from it t state. |
f(x;) captures the intrinsic dynamics of each node arising from its current state estimate x*(1)

g(x;, z;) captures the extrinsic dynamics contributed from neighboring nodes.

We specifically consider the following two systems which we refer to as regulatory ACCUTaCy = This can then be iterated to improve accuracy further.
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