
Scalable Generation of Graphs

for Benchmarking HPC

Community-Detection Algorithms

George M. Slota1 Jonathan Berry2

Simon D. Hammond2 Stephen L. Olivier2

Cynthia Phillips2 Siva Rajamanickam2

1Rensselaer Polytechnic Institute, 2Sandia National Labs

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. 1 / 31

Highlights: Adapted bter

Primary results of this work:

Novel: First scalable approach for HPC community
detection benchmarking via “engineered solutions”
– We also develop a novel approach for scaling degree
and clustering coefficient distributions

Realistic: We utilize real-world graph distributions with a
bter implementation1 and edge-skipping2

Fast: 1 trillion edges/minute on current supercomputers
– Orders-of-magnitude faster than state-of-the-art

We call our approach “Adapted bter”

1[Kolda et al., 2014]
2[Miller and Hagberg, 2011]

2 / 31

What is community detection?
Community Detection: Basic problem

We have some real-world interaction network (e.g., Facebook)

Community detection: identifying clusters within the network
Why: communities are often homogeneous (like-attracts-like) so we can
often infer information about community members.

3 / 31

What is community detection?
Community Detection: Basic problem

We have some real-world interaction network (e.g., Facebook)

Community detection: identifying clusters within the network
Why: communities are often homogeneous (like-attracts-like) so we can
often infer information about community members.

3 / 31

What is community detection?
Community Detection: Basic problem

We have some real-world interaction network (e.g., Facebook)
Community detection: identifying clusters within the network

Why: communities are often homogeneous (like-attracts-like) so we can
often infer information about community members.

3 / 31

What is community detection?
Community Detection: Basic problem

We have some real-world interaction network (e.g., Facebook)
Community detection: identifying clusters within the network
Why: communities are often homogeneous (like-attracts-like) so we can
often infer information about community members.

3 / 31

What is community detection?
Community Detection: Basic problem

We have some real-world interaction network (e.g., Facebook)
Community detection: identifying clusters within the network
Why: communities are often homogeneous (like-attracts-like) so we can
often infer information about community members.

3 / 31

How do we evaluate algorithm solution quality?
Community Detection Algorithms: Evaluation

Given some community detection algorithm, how can
we determine the quality of its output?

Ideally: Evaluate on real-world datasets with “known”
communities
– Very few such datasets exists, none at HPC/real-world
social network scale

Small scale: Generate synthetic networks with an
“approximate engineered solution” (EAS) as communities
– Until this current work, infeasible to generate and evaluate
at a large scale

Large scale: Calculate some global measurement such as
modularity (how well-clustered is the solution versus random
expectation)
– For modularity in particular, this approach is rather flawed

4 / 31

The problem with evaluating with modularity
Community Detection Algorithms: Evaluating with Modularity

Modularity suffers from a “resolution limit”
Small well-defined communities can not be individually resolved
Example: maximizing modularity on ring of cliques
– cliques converge into single communities against intuition

Real-world networks scale to billions of vertices
– Yet human “community” sizes tend to be relatively constant
Takeaway: higher modularity != higher solution quality

5 / 31

The problem with evaluating with modularity
Community Detection Algorithms: Evaluating with Modularity

Modularity suffers from a “resolution limit”
Small well-defined communities can not be individually resolved
Example: maximizing modularity on ring of cliques
– cliques converge into single communities against intuition

Real-world networks scale to billions of vertices
– Yet human “community” sizes tend to be relatively constant
Takeaway: higher modularity != higher solution quality

5 / 31

The problem with evaluating with modularity
Community Detection Algorithms: Evaluating with Modularity

Modularity suffers from a “resolution limit”
Small well-defined communities can not be individually resolved
Example: maximizing modularity on ring of cliques
– cliques converge into single communities against intuition

Real-world networks scale to billions of vertices
– Yet human “community” sizes tend to be relatively constant
Takeaway: higher modularity != higher solution quality

5 / 31

The problem with evaluating with modularity
Community Detection Algorithms: Evaluating with Modularity

Modularity suffers from a “resolution limit”
Small well-defined communities can not be individually resolved
Example: maximizing modularity on ring of cliques
– cliques converge into single communities against intuition

Real-world networks scale to billions of vertices
– Yet human “community” sizes tend to be relatively constant
Takeaway: higher modularity != higher solution quality

5 / 31

Using an “engineered approximate solution” (EAS)
Community Detection Algorithms: Evaluating with EAS instead

Generate a synthetic network with some set of engineered “communities”

Include a mixing parameter – µ – that controls the ratio of inter- to
intra-community edges: µ ≈ inter-comm. edges

total edges

– Effectively, this determines how well-defined the communities are
Evaluate how well an algorithm’s output matches the defined solution
– Commonly utilize Normalized Mutual Information (NMI)
Compare how well algorithms perform as you increase edge mixing via µ

6 / 31

Using an “engineered approximate solution” (EAS)
Community Detection Algorithms: Evaluating with EAS instead

Generate a synthetic network with some set of engineered “communities”
Include a mixing parameter – µ – that controls the ratio of inter- to
intra-community edges: µ ≈ inter-comm. edges

total edges

– Effectively, this determines how well-defined the communities are

Evaluate how well an algorithm’s output matches the defined solution
– Commonly utilize Normalized Mutual Information (NMI)
Compare how well algorithms perform as you increase edge mixing via µ

6 / 31

Using an “engineered approximate solution” (EAS)
Community Detection Algorithms: Evaluating with EAS instead

Generate a synthetic network with some set of engineered “communities”
Include a mixing parameter – µ – that controls the ratio of inter- to
intra-community edges: µ ≈ inter-comm. edges

total edges

– Effectively, this determines how well-defined the communities are

Evaluate how well an algorithm’s output matches the defined solution
– Commonly utilize Normalized Mutual Information (NMI)
Compare how well algorithms perform as you increase edge mixing via µ

6 / 31

Using an “engineered approximate solution” (EAS)
Community Detection Algorithms: Evaluating with EAS instead

Generate a synthetic network with some set of engineered “communities”
Include a mixing parameter – µ – that controls the ratio of inter- to
intra-community edges: µ ≈ inter-comm. edges

total edges

– Effectively, this determines how well-defined the communities are

Evaluate how well an algorithm’s output matches the defined solution
– Commonly utilize Normalized Mutual Information (NMI)
Compare how well algorithms perform as you increase edge mixing via µ

6 / 31

Using an “engineered approximate solution” (EAS)
Community Detection Algorithms: Evaluating with EAS instead

Generate a synthetic network with some set of engineered “communities”
Include a mixing parameter – µ – that controls the ratio of inter- to
intra-community edges: µ ≈ inter-comm. edges

total edges

– Effectively, this determines how well-defined the communities are
Evaluate how well an algorithm’s output matches the defined solution
– Commonly utilize Normalized Mutual Information (NMI)

Compare how well algorithms perform as you increase edge mixing via µ

6 / 31

Using an “engineered approximate solution” (EAS)
Community Detection Algorithms: Evaluating with EAS instead

Generate a synthetic network with some set of engineered “communities”
Include a mixing parameter – µ – that controls the ratio of inter- to
intra-community edges: µ ≈ inter-comm. edges

total edges

– Effectively, this determines how well-defined the communities are
Evaluate how well an algorithm’s output matches the defined solution
– Commonly utilize Normalized Mutual Information (NMI)
Compare how well algorithms perform as you increase edge mixing via µ

0

0.2

0.4

0.6

0.8

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Target mu

N
M

I

Louvain LabelPropagation

6 / 31

Current State-of-the-Art: LFR
For benchmark graph generation with engineered solutions

“Lancichinetti–Fortunato–Radicchi” (lfr)3:

With >1600 citations, this is a de facto standard

Generates approximate solution to test against
– Uses tunable parameter for community
coherence: µ

Limited scalability: best implementation takes ∼17hrs to
generate ∼10B edges4

– Original code takes hours for million+ edge graphs

Our Goal: Develop methods to evaluate algorithms at HPC
scale against an “engineered approximate solution.”

3[Lancichinetti et al., 2008]
4[Hamann et al., 2018]

7 / 31

a-bter: Adapted bter
Our full approach for HPC-scale benchmark generation and evaluation

Input: Real or synthetic degree and clustering coefficient
distributions

1 Optional step: Scale the input degree and clustering
coefficient distributions

2 Solve linear program to (further) shift clustering
coefficient distributions to match some target µg

3 Pass new distributions to an efficient edge-skipping based
bter implementation

4 Run community detection algorithm on generated graph,
evaluate versus “engineered approximate solution” (EAS)

Output: A measure of algorithm solution quality

8 / 31

a-bter: Adapted bter
Our full approach for HPC-scale benchmark generation and evaluation

Input: Real or synthetic degree and clustering coefficient
distributions

1 Optional step: Scale the input degree and
clustering coefficient distributions

2 Solve linear program to (further) shift clustering
coefficient distribution to match some target µg

3 Pass new distributions to an efficient edge-skipping based
bter implementation

4 Run community detection algorithm on generated graph,
evaluate versus “engineered approximate solution” (EAS)

Output: A measure of algorithm solution quality

9 / 31

Background:

Degree and Clustering Coefficient Distributions

Degree Distribution: How many vertices in the graph with each degree?

Clustering Coefficient Distribution: What is the average clustering
coefficient for each unique degree?
Clustering Coefficient: Fraction of my friends that are friends with each
other

10 / 31

Background:

Degree and Clustering Coefficient Distributions

Degree Distribution: How many vertices in the graph with each degree?
Clustering Coefficient Distribution: What is the average clustering
coefficient for each unique degree?

Clustering Coefficient: Fraction of my friends that are friends with each
other

10 / 31

Background:

Degree and Clustering Coefficient Distributions

Degree Distribution: How many vertices in the graph with each degree?

Clustering Coefficient Distribution: What is the average clustering
coefficient for each unique degree?

Clustering Coefficient: Fraction of my friends that are friends with each
other

10 / 31

Background:

Degree and Clustering Coefficient Distributions

Degree Distribution: How many vertices in the graph with each degree?

Clustering Coefficient Distribution: What is the average clustering
coefficient for each unique degree?

Clustering Coefficient: Fraction of my friends that are friends with each
other

10 / 31

Background:

Degree and Clustering Coefficient Distributions

Degree Distribution: How many vertices in the graph with each degree?

Clustering Coefficient Distribution: What is the average clustering
coefficient for each unique degree?

Clustering Coefficient: Fraction of my friends that are friends with each
other

10 / 31

Background:

Degree and Clustering Coefficient Distributions

Degree Distribution: How many vertices in the graph with each degree?

Clustering Coefficient Distribution: What is the average clustering
coefficient for each unique degree?

Clustering Coefficient: Fraction of my friends that are friends with each
other

10 / 31

Distribution Scaling
How to generate a 4× Twitter a-bter graph

Consider some input degree distribution (e.g., Twitter)

We can interpolate and smooth this distribution to create a probability
curve for degrees
Then scale and shift this curve to analytically match some new #
vertices and # edges
Finally, we randomly sample using this curve “new # vertices” times to
create the new distribution

11 / 31

Distribution Scaling
How to generate a 4× Twitter a-bter graph

Consider some input degree distribution (e.g., Twitter)
We can interpolate and smooth this distribution to create a probability
curve for degrees

Then scale and shift this curve to analytically match some new #
vertices and # edges
Finally, we randomly sample using this curve “new # vertices” times to
create the new distribution

11 / 31

Distribution Scaling
How to generate a 4× Twitter a-bter graph

Consider some input degree distribution (e.g., Twitter)
We can interpolate and smooth this distribution to create a probability
curve for degrees
Then scale and shift this curve to analytically match some new #
vertices and # edges

Finally, we randomly sample using this curve “new # vertices” times to
create the new distribution

11 / 31

Distribution Scaling
How to generate a 4× Twitter a-bter graph

Consider some input degree distribution (e.g., Twitter)
We can interpolate and smooth this distribution to create a probability
curve for degrees
Then scale and shift this curve to analytically match some new #
vertices and # edges
Finally, we randomly sample using this curve “new # vertices” times to
create the new distribution

11 / 31

Distribution Scaling
Comparison to real-world graph growth

Our approach can often closely match real-world growth for degree
and CC distributions
We compare against uk-2005 and uk-2007 real world degree (left)
and CC coefficients (right) as crawled from LAW5

We scale from scaling uk-2005 to the N,M of uk-2007
– Compare against graph growing EvoGraph [Park and Kim, 2018]

5
Laboratory for Web Algorithmics

12 / 31

a-bter: Adapted bter
Our full approach for HPC-scale benchmark generation and evaluation

Input: Real or synthetic degree and clustering coefficient
distributions

1 Optional step: Scale the input degree and clustering
coefficient distributions

2 Solve linear program to (further) shift clustering
coefficient distributions to match some target µg

3 Pass new distributions to an efficient edge-skipping based
bter implementation

4 Run community detection algorithm on generated graph,
evaluate versus “engineered approximate solution” (EAS)

Output: A measure of algorithm solution quality

13 / 31

Linear Program - This paper has math!
Shifting the native µ of a graph’s CC distribution

Minimally shift the input clustering coefficient (CC) distribution such that the output
graph has a desired goal µg :

µg = 1
N

D∑
d

dinter
d

definition of mixing parameter

minimize
D∑
d

|p̂d − pd| minimize shift in CC distribution

subject to
D∑
d

ndp̂d = n(1− µg) achieve target mixing parameter

0 ≤ p̂d ≤ 1 keep CC curve smooth and feasible
|p̂d − pd| ≥ |p̂d+1 − pd+1|
|p̂d − p̂d+1| ≤ 0.01

output ĉd = p̂3d

pd is G(n, p) probabilities per degree from CC distribution cd, pd = 3
√
cd

p̂d is output probabilities to get new CC distribution ĉd, ĉd = p̂3d
nd is degree distribution: n vertices of d degree – D is unique degrees
dinter is expected number of inter-community edges for vertex of degree d
N is number of vertices in graph, M is number of edges

14 / 31

Shifting the CC distribution
CC distribution output running our LP on Twitter

We can shift the CC distribution while still retaining
interesting properties. We show the CC distributions for
various µ on Twitter. Labeled as “Twitter µ”.

15 / 31

Generation Accuracy
Final outputs in terms of µ – TLDR: It works!

Our LP and CC shifting procedure has good accuracy in terms
of achieving some target mixing parameter when combined
with bter. On the right, we compare to lfr itself by using
distributions output by that generator.

0.1

0.3

0.5

0.7

0.9

0.
1

0.
3

0.
5

0.
7

0.
9

Target mu

A
−

B
T

E
R

 m
u

 (
re

a
l
g

ra
p

h
 d

is
ts

.)

LiveJournal

WikiLinks

Friendster

R−MAT_26

Twitter

uk−2007

0.1

0.3

0.5

0.7

0.9

0.
1

0.
3

0.
5

0.
7

0.
9

Target mu

A
v
g

.
m

u
 (

L
F

R
 d

is
tr

ib
u

ti
o

n
s
)

A−BTER LFR

16 / 31

Solution Time
Solve time for our LP isn’t a deal-breaker

While LP solve times in general can be slow, we have several
things working in our favor:

We only require non-zeros in the degree distribution D to
be variables in the LP
– Generally, |D| � dmax �M

We can utilize a binning strategy, where we group x
vertices in degree order into a bin represented by a single
variable in the LP

Our most difficult test case (Twitter, ∼20K nonzeros)
takes only a second to solve

17 / 31

a-bter: Adapted bter
Our full approach for HPC-scale benchmark generation and evaluation

Input: Real or synthetic degree and clustering coefficient
distributions

1 Optional step: Scale the input degree and clustering
coefficient distributions

2 Solve linear program to (further) shift clustering
coefficient distributions to match some target µg

3 Pass new distributions to an efficient edge-skipping
based BTER implementation

4 Run community detection algorithm on generated graph,
evaluate versus “engineered approximate solution” (EAS)

Output: A measure of algorithm solution quality

18 / 31

Background: bter
Block Two-level Erdős-Rényi Graph Generator

Step 0: Input degree (nd) and clustering coefficient (cd) distributions

Step 1: With ordered degree sequence, group d+ 1 vertices v of degree
d(v) >= d into affinity blocks
Step 2: Use Erdös-Rényi probability pd = 3

√
cd to create intra-block

edges via G(n, p) process
Step 3: Create inter-block edges via Chung-Lu process

19 / 31

Background: bter
Block Two-level Erdős-Rényi Graph Generator

Step 0: Input degree (nd) and clustering coefficient (cd) distributions
Step 1: With ordered degree sequence, group d+ 1 vertices v of degree
d(v) >= d into affinity blocks

Step 2: Use Erdös-Rényi probability pd = 3
√
cd to create intra-block

edges via G(n, p) process
Step 3: Create inter-block edges via Chung-Lu process

19 / 31

Background: bter
Block Two-level Erdős-Rényi Graph Generator

Step 0: Input degree (nd) and clustering coefficient (cd) distributions
Step 1: With ordered degree sequence, group d+ 1 vertices v of degree
d(v) >= d into affinity blocks

Step 2: Use Erdös-Rényi probability pd = 3
√
cd to create intra-block

edges via G(n, p) process
Step 3: Create inter-block edges via Chung-Lu process

19 / 31

Background: bter
Block Two-level Erdős-Rényi Graph Generator

Step 0: Input degree (nd) and clustering coefficient (cd) distributions
Step 1: With ordered degree sequence, group d+ 1 vertices v of degree
d(v) >= d into affinity blocks
Step 2: Use Erdös-Rényi probability pd = 3

√
cd to create intra-block

edges via G(n, p) process

Step 3: Create inter-block edges via Chung-Lu process

19 / 31

Background: bter
Block Two-level Erdős-Rényi Graph Generator

Step 0: Input degree (nd) and clustering coefficient (cd) distributions
Step 1: With ordered degree sequence, group d+ 1 vertices v of degree
d(v) >= d into affinity blocks
Step 2: Use Erdös-Rényi probability pd = 3

√
cd to create intra-block

edges via G(n, p) process
Step 3: Create inter-block edges via Chung-Lu process

19 / 31

Our Implementation - For Community Detection
How we adapt bter for community detection benchmarking

Adapting BTER:

We wrap the bter process to generate benchmark graphs

Treat affinity blocks as EAS communities

The LP shifting from the prior steps results in some goal
mixing parameter µg based on EAS assignments

We utilize the edge-skipping technique for very efficient
generation

20 / 31

Background: Edge-skipping
For efficient Erdős-Rényi, Chung-Lu, and bter graph generation

Consider the undirected simple Erdős-Rényi G(n, p) model as an
adjacency matrix

Nonzeros (i.e., edges) appear in upper triangle at index i, j with
probability p
Instead of flipping a coin for all indices, we can instead sample
∼m = p× (n−1)(n−2)

2
skip lengths

We traverse through an ordered space of unique possible edges, moving
by each samples skip length and outputting the edge we land on

21 / 31

Background: Edge-skipping
For efficient Erdős-Rényi, Chung-Lu, and bter graph generation

Consider the undirected simple Erdős-Rényi G(n, p) model as an
adjacency matrix
Nonzeros (i.e., edges) appear in upper triangle at index i, j with
probability p

Instead of flipping a coin for all indices, we can instead sample
∼m = p× (n−1)(n−2)

2
skip lengths

We traverse through an ordered space of unique possible edges, moving
by each samples skip length and outputting the edge we land on

21 / 31

Background: Edge-skipping
For efficient Erdős-Rényi, Chung-Lu, and bter graph generation

Consider the undirected simple Erdős-Rényi G(n, p) model as an
adjacency matrix
Nonzeros (i.e., edges) appear in upper triangle at index i, j with
probability p
Instead of flipping a coin for all indices, we can instead sample
∼m = p× (n−1)(n−2)

2
skip lengths

We traverse through an ordered space of unique possible edges, moving
by each samples skip length and outputting the edge we land on

21 / 31

Background: Edge-skipping
For efficient Erdős-Rényi, Chung-Lu, and bter graph generation

Consider the undirected simple Erdős-Rényi G(n, p) model as an
adjacency matrix
Nonzeros (i.e., edges) appear in upper triangle at index i, j with
probability p
Instead of flipping a coin for all indices, we can instead sample
∼m = p× (n−1)(n−2)

2
skip lengths

We traverse through an ordered space of unique possible edges, moving
by each samples skip length and outputting the edge we land on

21 / 31

Background: Edge-skipping
For efficient Erdős-Rényi, Chung-Lu, and bter graph generation

Consider the undirected simple Erdős-Rényi G(n, p) model as an
adjacency matrix
Nonzeros (i.e., edges) appear in upper triangle at index i, j with
probability p
Instead of flipping a coin for all indices, we can instead sample
∼m = p× (n−1)(n−2)

2
skip lengths

We traverse through an ordered space of unique possible edges, moving
by each samples skip length and outputting the edge we land on

21 / 31

Background: Edge-skipping
For efficient Erdős-Rényi, Chung-Lu, and bter graph generation

Consider the undirected simple Erdős-Rényi G(n, p) model as an
adjacency matrix
Nonzeros (i.e., edges) appear in upper triangle at index i, j with
probability p
Instead of flipping a coin for all indices, we can instead sample
∼m = p× (n−1)(n−2)

2
skip lengths

We traverse through an ordered space of unique possible edges, moving
by each samples skip length and outputting the edge we land on

21 / 31

Edge-skipping
For Erdős-Rényi, Chung-Lu, and bter graph generation

Edge-skipping is provably equivalent to flipping a coin for
each possible edge

Recall: bter creates Erdős-Rényi blocks and layers a
Chung-Lu graph for inter-block edges

For Chung-Lu generation, we use edge skipping to create
bipartite graphs with attachment probability pi,j =

di×dj
2m

for each unique degree pair (di, dj)
Combining all of these bipartite graphs gives us the full
Chung-Lu graph
Combined with the Erdős-Rényi blocks, we have
our BTER graph!

We can parallelize block and Chung-Lu generation with
MPI and OpenMP to get a parallel time of O(M

P
+ |D|)

22 / 31

Edge Generation – Experimental setup for scaling
Non-graph SC people: you can start paying attention again

Test Systems:

Mutrino – 96× KNL nodes with 68 cores, 96 GB DDR, 16 GB
MCDRAM

Trinity – 9800× KNL nodes with 68 cores, 96 GB DDR, and 16 GB
MCDRAM

Astra – 2500× ARM nodes with 56 cores and 128 GB DDR

Test Graphs:

Network N M davg dmax cavg cmax Source

LiveJournal 2.1 M 25 M 24 2.0 K 0.27 0.39 SNAP
Wikilinks 1.9 M 21 M 21 8.6 K 0.12 0.18 Koblenz
RMAT26 63 M 1.1 B 33 6.7 K 0.00 0.00 GTGraph
Twitter 39 M 1.4 B 73 56 K 0.07 0.49 Max Planck Inst.
Friendster 40 M 1.8 B 90 5.2 K 0.13 0.33 SNAP
uk-2007 81 M 3.3 B 80 82 K 0.78 0.99 LAW

We pre-process the distributions such that the minimum degree is 5 and maximum is
√
n log(n). This

pre-processing is not necessary for our methods to work, but it enables more defined community boundaries.

23 / 31

Strong Scaling
Strong scalability of our edge-skipping bter generator

Strong scaling on Mutrino (KNL)
– Generating 9 test graphs from µ = 0.1 . . . 0.9
Average speedup is 5.8× across 16 nodes

LiveJournal WikiLinks Friendster

R−MAT_26 Twitter uk−2007

0

2

4

6

0

5

10

15

0

50

100

150

200

250

0

50

100

150

200

0

100

200

0

200

400

600

12 4 8 16 12 4 8 16 12 4 8 16

Number of KNL Nodes (68 cores per node)

S
u

m
 G

en
.

T
im

e
(s

)

24 / 31

Terascale Scaling
Scalability of our edge-skipping bter generator

Friendster scaled from 2× to 512× and generated on on
Trinity (KNL) and Astra (ARM)

The largest test utilizes 512 nodes of each system and
generates a 15 terabyte edge list of 925 billion edges

Scale m n dmax Memory TKNL TARM

1× 1.8 B 40 M 5.2 K 29 GB 33 s 22 s
4× 7.2 B 93 M 10 K 115 GB 35 s 28 s
16× 29 B 260 M 15 K 459 GB 35 s 29 s
64× 115 B 786 M 20 K 1.8 TB 55 s 32 s
256× 464 B 2.5 B 26 K 7.4 TB 102 s 69 s
512× 925 B 4.6 B 30 K 15 TB 134 s 76 s

We generate edges at a rate of almost 1T per minute!
25 / 31

Matching Input Distributions
Output quality in terms of distribution matching

Our edge-skipping bter generator also closely matches the
input degree and clustering coefficient distributions.

26 / 31

Matching Input Distributions
Output quality in terms of distribution matching

Our edge-skipping bter generator also closely matches the
input degree and clustering coefficient distributions.

26 / 31

a-bter: Adapted bter
Our full approach for HPC-scale benchmark generation and evaluation

Input: Real or synthetic degree and clustering coefficient
distributions

1 Optional step: Scale the input degree and clustering
coefficient distributions

2 Solve linear program to (further) shift clustering
coefficient distributions to match some target µg

3 Pass new distributions to an efficient edge-skipping based
bter implementation

4 Run community detection algorithm on generated
graph, evaluate versus “engineered approximate
solution” (EAS)

Output: A measure of algorithm solution quality
27 / 31

Using our Benchmark Generator
Benchmarking algorithms in practice

We develop a parallel evaluation algorithm for Normalized
Mutual Information
– Optimal work and parallel time complexity
– O(n) and O(1), respectively
– Recent literature has claimed O(n2) work to compute

We use it with a-bter to benchmark parallel Louvain6

and Label Propagation7 community detection algorithms
– And compare our benchmark performance vs. lfr

We also benchmark Label Propagation at the very very
large scale
– And compare its output quality as we strong scale

6[Ghosh et al., 2018]
7[Slota et al., 2016]

28 / 31

Benchmark Comparison to lfr
The conclusions drawn between benchmarks are the same

We compare benchmark outputs from a-bter (top) and lfr (bottom)
– Read labels as (num vertices) (average degree)
We generate a-bter graphs using degree and CC distributions from lfr
We note similar observations in terms of performance of Louvain vs.
Label Propagation – Takeaway: Louvain > Label Propagation

4096_16 4096_24 4096_32

0
0.2
0.4
0.6
0.8

1

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9N

M
I

(A
−

B
T

E
R

)

Louvain LabelPropagation

4096_16 4096_24 4096_32

0
0.2
0.4
0.6
0.8

1

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

Target mu

N
M

I
(L

F
R

)

29 / 31

Massive Scale Evaluation
Comparing algorithm output up to ∼0.5T edges

We run Label Propagation on 16× (left) and 256× (right) Friendster on
various node counts
We note running Label Propagation in distributed memory initially has a
large effect on solution quality, though further strong scaling has minimal
impact
First benchmark evaluation of community detection algorithms
against Engineered Approximate Solution at HPC scale

16x

0

0.2

0.4

0.6

0.8

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Target mu

N
M

I

16 32 64

256x

0

0.2

0.4

0.6

0.8

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Target mu

N
M

I

512 1024 2048

30 / 31

Conclusions
and future work

Our approach can output graphs for community detection
order-of-magnitudes faster than commonly-used
generators, e.g., LFR
Our approach can output graphs with more realistic
degree and CC distributions than commonly-used
generators
We can scale up degree and CC distributions to generate
terascale benchmarks
Future Work: Develop generation methods for
hierarchical or overlapping communities

If you propose a new community detection algorithm,
you now have to use our code
Code: www.github.com/HPCGraphAnalysis/SAGE

www.gmslota.com, slotag@rpi.edu
31 / 31

Bibliography I

Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth Kalyanaraman, Hao Lu, Daniel
Chavarria-Miranda, Arif Khan, and Assefaw Gebremedhin. Distributed louvain algorithm for graph community
detection. In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
885–895. IEEE, 2018.

Michael Hamann, Ulrich Meyer, Manuel Penschuck, Hung Tran, and Dorothea Wagner. I/o-efficient generation of
massive graphs following the LFR benchmark. J. Exp. Algorithmics, 23(1):2.5:1–2.5:33, August 2018. ISSN
1084-6654. doi: 10.1145/3230743. URL http://doi.acm.org/10.1145/3230743.

Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C Seshadhri. A scalable generative graph model with community
structure. SIAM Journal on Scientific Computing, 36(5):C424–C452, 2014.

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing community detection
algorithms. Physical Review E, 78(4):1–5, October 2008. ISSN 1539-3755. doi:
10.1103/PhysRevE.78.046110. URL http://link.aps.org/doi/10.1103/PhysRevE.78.046110.

Joel C Miller and Aric Hagberg. Efficient generation of networks with given expected degrees. In International
Workshop on Algorithms and Models for the Web-Graph, pages 115–126. Springer, 2011.

Himchan Park and Min-Soo Kim. Evograph: an effective and efficient graph upscaling method for preserving graph
properties. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2051–2059. ACM, 2018.

G. M. Slota, S. Rajamanickam, and K. Madduri. A case study of complex graph analysis in distributed memory:
Implementation and optimization. In International Parallel & Distributed Processing Symposium (IPDPS),
2016.

32 / 31

http://doi.acm.org/10.1145/3230743
http://link.aps.org/doi/10.1103/PhysRevE.78.046110

