\,_ﬁE_'-'\
")\
/i — (

® Rensselaer

Achieving Speedups for Distributed Graph

Biconnectivity

lan Bogle (AMD) & George M. Slota (RPI)
IEEE High Performance Extreme Computing Conference

September 20th, 2022

1/11

The Biconnectivity Problem

m Given some graph, we seek to ...

2/11

The Biconnectivity Problem

m Given some graph, we seek to ...
m identify all vertices that, when removed, disconnect the graph, and

2/11

The Biconnectivity Problem

m Given some graph, we seek to ...
m identify all vertices that, when removed, disconnect the graph, and
m label all maximal remaining (biconnected) edge-wise components.

2/11

The Biconnectivity Solutions

An Exciting History: Part 1

= Hopcroft and Tarjan (1973) - Work optimal serial
algorithm using depth-first search

m Tarjan and Vishkin (1985) - Shared-memory time
optimal (but not work optimal) using various subroutines
(spanning tree, Euler tour, auxiliary graph construction)

m Cong and Bader (2005) - An improvement on Tarjan
and Vishkin using Cheriyan and Thurimella (1991)
edge filtering

m Only a fraction of edges in most real graphs are
necessary for determining separating vertex sets

m Slota and Madduri (2014) - Shared-memory
breadth-first search and color propagation algorithms with
a focus on simplicity (and ease of optimization)

3/11

The Biconnectivity Solutions

An Exciting History: Part 2

And now, the distributed algorithms:

m Kazmierczak and Radhakrishnan (2000); Ahmadi and
Stone (2006)

m Ear decomposition-based approaches
m Practical issue: Linear+ time complexities
m Yan et al. (2014) and Feng et al. (2018)
m Variations of optimization for Tarjan-Vishkin
m Practical issue: No speedup relative to serial
(Hopcroft-Tarjan on commodity CPU)

The goal of this work: Achieve practical speedups for the
biconnectivity problem in distributed memory.

4/11

The Goal: Achieve speedups relative to serial

and efficient shared-memory implementations, if we can.

This work overall considers distributed implementations
of two algorithms:

The Slota-Madduri color propagation algorithm
m Note: Uses breadth-first search and label propagation as
key subroutines, which are straightforward to implement
(and optimize!) in distributed memory.
m However, it is neither time nor work optimal.

Cheriyan-Thurimella edge filtering
m Note: Can be implemented using breadth-first search
and label propagation as well.
m Edge filtering is applicable to any biconnectivity (or even
vertex connectivity) algorithm.

Note: We also considered a Tarjan-Vishkin implementation.
5/11

Implementation Considerations

We use a standard 1D graph representation

m Data Structures and Backend: HPCGraph!
m Utilize modified graph structures, communication
routines, and multilevel processing queues
m Can scale complex routines to trillion+ edge graphs
m Parallelization Strategy: MPI4+OpenMP
m Efficient use of “heavyweight” nodes on modern systems
m Both widely-used, lightweight, and well-optimized
m Communication Strategy: Synchronous AlltoAll
m All routines can effectively utilize this approach
m Efficient to parallelize communication buffer
construction and processing
m Relatively balanced with block or random partitioning

Note: We consider a true O(%) per-node memory bound.
1Slota et al., IPDPS 2016

6/11

Experimental Setup

Test graphs:

Graph Name Type 14 |E| | D | #BiCCs
soc-LiveJournall | Social 48M | 43 M | 46 76 K
com-Friendster Social 52M| 1.1B |35 55 M
web-Google Web 855 K | 43 M | 25 60 K
web-ClueWeb09 | Web 225 M| 1.0B | 40 15M
dbpedia-link Info. 18M | 127 M | 13 28 M
wikipedia_link_en | Info. 14 M| 335 M | 12 19 M
RMAT _25 Random | 34 M | 537 M | 11 174 K

Note: We only consider the largest connected component.

Test system:

AIMOS at RPI — 268 nodes with 2x 20-core 3.15 GHz IBM
Power 9 CPUs, 4-6x NVidia V100 GPUs, and 512 GB DDR

7/11

Strong scaling

Running on 1-64 ranks of AiMOS.

We test our distributed implementation of the Slota-Madduri algorithm
with (Color-BiCC-Dist) and without edge filtering (Color-BiCC-NoFilter)
as well as the Hopcroft-Tarjan serial algorithm (HT-Serial) and the
Slota-Madduri shared-memory implementation (Color-BiCC-SM).

soc-LiveJournall com-Friendster web-Google
. T T T — —
1%E 100—"‘I 1 F o2f 1
g] | g
& 1& &
] g | frrmmmeeeeeeeeees]
El E s0f 12 o1f 1
& 1 & &
@ v ©
g g g
] 3]
w «w 0 L w 0 L L L
0 20 40 60 0 20 40 60
dbpedia-link wikipedia_link_en
— — T T T T . T T T T
£ af 1% |1 "
: g ol | I
Z 3 | & 27| |
o o o
E 20f 1 2 E
= 5 10r 1 E 10 e B
3 3 =3 _
w 0 L L L wn 0L T w 0 I
0 20 40 60 0 20 40 60 0 20 40 60
Number of MPI Ranks Number of MPT Ranks Number of MPI Ranks

‘+ Color-BiCC-Dist —#— Color-BiCC-NoFilter - = HT-Serial —= Color-BiCC-SM ‘

We consistently achieve speedups vs. serial in 2-4 MPI ranks. 8/11

Overall Performance

HT: Serial, SM: Shared-memory, CBD: With filtering, CBNF: Without filtering

m Times reported are on 64 ranks (20 threads each) for
distributed algorithms, 20 threads for the shared-memory
algorithm, and a single thread? for the serial algorithm.
Speedup reported is relative to the serial algorithm.

m We achieve consistent speedups vs. serial and shared-memory,
while edge filtering is almost always “worth it".

Graph HT SM | CBNF || CBD | Speedup
soc-LiveJournall | 2.2 | 0.80 0.36 || 0.23 10x
com-Friendster 61 33 5.6 2.2 30x
web-Google 0.21 | 0.098 | 0.047 || 0.060 3.7%
web-ClueWeb09 30 38 7.3 4.9 8.9x
dbpedia-link 6.5 6.6 0.97 | 0.72 22 %
wikipedia_link_en | 9.3 6.6 1.5 1.0 13x

2| hope this is obvious.
9/11

Performance Breakdown

Using the Color-BiCC-Dist implementation with edge filtering

—
T

m Edge filtering takes about
half of the total execution
time. However, it almost
always reduces time more
than its cost.

IS = o
T

Proportion of Execution Time
o

m All routines can be further
optimized. E.g., the
connectivity
decomposition of edge

Note: | am aware the algorithm subroutines fllterlng does not use an

were not discussed in detail. I'm including optimal, or even hlgh'y
this figure anyways to mainly highlight the o .

edge filtering vs. biconnectivity algorithm Optlmlzed' algorlthm.
relative proportions of execution time.

OFilter-Tree X Filter-CC H Filter-Forest B Filter-Construct
B BiCC-BFS B BiCC-LCA Wl BiCC-Color

10/11

Conculsions

and Thanks!

Main takeaway: Distributed biconnectivity speedups are
possible.

m We achieve distributed-memory speedups for the
biconnectivity problem relative to serial and an optimized
shared-memory implementation in a small number of
ranks.

m Cheriyan and Thurimella edge filtering is possible in
distributed-memory, and it is often quite worth doing.

m Our future work will look towards better implementations
of our constituent subroutines and possible
implementations on GPU.

Contact: gmslota@gmail.com, www.gmslota.com

11/11

