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The Biconnectivity Problem

Given some graph, we seek to ...

identify all vertices that, when removed, disconnect the graph, and
label all maximal remaining (biconnected) edge-wise components.
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The Biconnectivity Solutions
An Exciting History: Part 1

Hopcroft and Tarjan (1973) - Work optimal serial
algorithm using depth-first search

Tarjan and Vishkin (1985) - Shared-memory time
optimal (but not work optimal) using various subroutines
(spanning tree, Euler tour, auxiliary graph construction)

Cong and Bader (2005) - An improvement on Tarjan
and Vishkin using Cheriyan and Thurimella (1991)
edge filtering

Only a fraction of edges in most real graphs are
necessary for determining separating vertex sets

Slota and Madduri (2014) - Shared-memory
breadth-first search and color propagation algorithms with
a focus on simplicity (and ease of optimization)
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The Biconnectivity Solutions
An Exciting History: Part 2

And now, the distributed algorithms:

Kazmierczak and Radhakrishnan (2000); Ahmadi and
Stone (2006)

Ear decomposition-based approaches
Practical issue: Linear+ time complexities

Yan et al. (2014) and Feng et al. (2018)

Variations of optimization for Tarjan-Vishkin
Practical issue: No speedup relative to serial
(Hopcroft-Tarjan on commodity CPU)

The goal of this work: Achieve practical speedups for the
biconnectivity problem in distributed memory.
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The Goal: Achieve speedups relative to serial
and efficient shared-memory implementations, if we can.

This work overall considers distributed implementations
of two algorithms:

1 The Slota-Madduri color propagation algorithm
Note: Uses breadth-first search and label propagation as
key subroutines, which are straightforward to implement
(and optimize!) in distributed memory.
However, it is neither time nor work optimal.

2 Cheriyan-Thurimella edge filtering
Note: Can be implemented using breadth-first search
and label propagation as well.
Edge filtering is applicable to any biconnectivity (or even
vertex connectivity) algorithm.

Note: We also considered a Tarjan-Vishkin implementation.
5 / 11



Implementation Considerations
We use a standard 1D graph representation

Data Structures and Backend: HPCGraph1

Utilize modified graph structures, communication
routines, and multilevel processing queues
Can scale complex routines to trillion+ edge graphs

Parallelization Strategy: MPI+OpenMP
Efficient use of “heavyweight” nodes on modern systems
Both widely-used, lightweight, and well-optimized

Communication Strategy: Synchronous AlltoAll
All routines can effectively utilize this approach
Efficient to parallelize communication buffer
construction and processing
Relatively balanced with block or random partitioning

Note: We consider a true O(n
p
) per-node memory bound.

1Slota et al., IPDPS 2016
6 / 11



Experimental Setup

Test graphs:
Graph Name Type |V | |E| D #BiCCs

soc-LiveJournal1 Social 4.8 M 43 M 46 76 K
com-Friendster Social 52 M 1.1 B 35 5.5 M
web-Google Web 855 K 4.3 M 25 60 K
web-ClueWeb09 Web 225 M 1.0 B 40 15 M
dbpedia-link Info. 18 M 127 M 13 2.8 M
wikipedia link en Info. 14 M 335 M 12 1.9 M
RMAT 25 Random 34 M 537 M 11 174 K

Note: We only consider the largest connected component.

Test system:
AiMOS at RPI – 268 nodes with 2× 20-core 3.15 GHz IBM
Power 9 CPUs, 4-6× NVidia V100 GPUs, and 512 GB DDR
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Strong scaling
Running on 1-64 ranks of AiMOS.

We test our distributed implementation of the Slota-Madduri algorithm
with (Color-BiCC-Dist) and without edge filtering (Color-BiCC-NoFilter)
as well as the Hopcroft-Tarjan serial algorithm (HT-Serial) and the
Slota-Madduri shared-memory implementation (Color-BiCC-SM).
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We consistently achieve speedups vs. serial in 2-4 MPI ranks.
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Overall Performance
HT: Serial, SM: Shared-memory, CBD: With filtering, CBNF: Without filtering

Times reported are on 64 ranks (20 threads each) for
distributed algorithms, 20 threads for the shared-memory
algorithm, and a single thread2 for the serial algorithm.
Speedup reported is relative to the serial algorithm.
We achieve consistent speedups vs. serial and shared-memory,
while edge filtering is almost always “worth it”.

Graph HT SM CBNF CBD Speedup
soc-LiveJournal1 2.2 0.80 0.36 0.23 10×
com-Friendster 61 33 5.6 2.2 30×
web-Google 0.21 0.098 0.047 0.060 3.7×
web-ClueWeb09 30 38 7.3 4.9 8.9×
dbpedia-link 6.5 6.6 0.97 0.72 22×
wikipedia link en 9.3 6.6 1.5 1.0 13×

2I hope this is obvious.
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Performance Breakdown
Using the Color-BiCC-Dist implementation with edge filtering
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Note: I am aware the algorithm subroutines
were not discussed in detail. I’m including
this figure anyways to mainly highlight the
edge filtering vs. biconnectivity algorithm
relative proportions of execution time.

Edge filtering takes about
half of the total execution
time. However, it almost
always reduces time more
than its cost.

All routines can be further
optimized. E.g., the
connectivity
decomposition of edge
filtering does not use an
optimal, or even highly
optimized, algorithm.
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Conculsions
and Thanks!

Main takeaway: Distributed biconnectivity speedups are
possible.

We achieve distributed-memory speedups for the
biconnectivity problem relative to serial and an optimized
shared-memory implementation in a small number of
ranks.

Cheriyan and Thurimella edge filtering is possible in
distributed-memory, and it is often quite worth doing.

Our future work will look towards better implementations
of our constituent subroutines and possible
implementations on GPU.

Contact: gmslota@gmail.com, www.gmslota.com
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