

Scaling Graph Connectivity to Hundreds of Billions of Edges on Hundreds of GPUs¹

George M. Slota (RPI) and Michael Mandulak (RPI)

SIAM ACDA

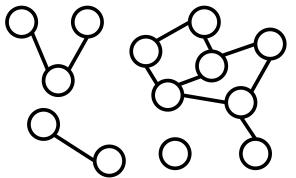
August 1st, 2025

¹This work is supported by the NSF under Grant No. 2047821

Graph Connectivity

Specifically, 1-connectivity and connected components

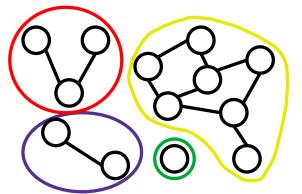
- **Connected Components Decomposition:** Identify all maximal components C_i in graph G where all vertex pairs $u, v \in C_i$ are pairwise reachable via some u, v-path.
- This is a basic analytic which is used on its own as well as a subroutine in more complex algorithms.
- One of the most studied problems in the discrete algorithms field.



Graph Connectivity

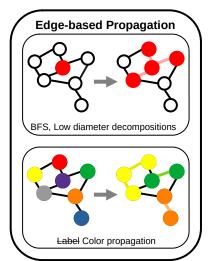
Specifically, 1-connectivity and connected components

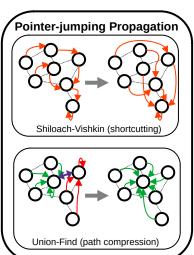
- **Connected Components Decomposition:** Identify all maximal components C_i in graph G where all vertex pairs $u, v \in C_i$ are pairwise reachable via some u, v-path.
- This is a basic analytic which is used on its own as well as a subroutine in more complex algorithms.
- One of the most studied problems in the discrete algorithms field.



Graph Connectivity Algorithms

We can place them in four semi-related buckets





Graph Connectivity Algorithms

A short overview

Classic Algorithms

- BFS and Color propagation relatively trivial to implement and optimize but limited by parallel depth complexity proportional to graph diameter
- Shiloach-Vishkin (SV) $O(\log n)$ parallel depth PRAM algorithm using pointers and pointer-jumping
- Union-Find (UF) Disjoint trees, similar complexity

Multi-phase Algorithms

- Multistep: Trim \rightarrow BFS \rightarrow Color Propagation \rightarrow Serial
- ConnectIt: Sampling → Finish
 - Sampling: BFS, Low diameter decomposition (LDD), sparsification
 - Finish: Shiloach-Vishkin, Union-Find, any connectivity algorithm

A Large-scale Performance History

Performance on the 2012 Web Data Commons Crawl

Web Data Commons 2012 Crawl

(\sim 3.5 billion vertices and 128 billion edges)

- **2016:** HPCGraph (Multistep: BFS+Color propagation)
 - 90 seconds on 256 CPU nodes
- **2018:** Gluon (Color propagation)
 - 75 seconds on 256 CPU nodes
- **2019**: FastSV (Shiloach-Vishkin)
 - 30 seconds on 4096 CPU nodes
- **2020**: ConnectIt (LDD+Union-Find)
 - 8.2 seconds on 1 CPU node
- 2025: This Work (BFS+Shiloach-Vishkin)
 - 4.1 seconds on 400 GPUs across 67 nodes

This Work's Novelty

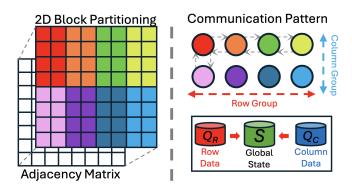
We consider for implementation many of the above proposed algorithms for a distributed multi-GPU environment.

To our knowledge, this is the first work

- ... to optimize a 2D distribution for connectivity.
- ... to run the WDC12 input solely on GPUs.
- ... to break the 5 second performance mark on WDC12.
- \blacksquare ... to run on 1 trillion NNZs with $O(\log n)$ depth algos.

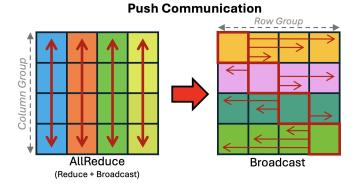
2D Graph Distributions

- Two-phase communications (gather-scatter or reduce-broadcast)
- De-facto default for large-scale performance (e.g., Graph500)
- $\blacksquare \ O(p)$ messages, but $O(\frac{n}{\sqrt{p}} + \frac{m}{p})$ work and communication volume



Standard 2D Communication Patterns

- Can utilize 'push' or 'pull' style communication
- **Push:** A vertex calculates potential update to a neighbor's state we communicate such updates across the column group, and then broadcast a reduced new state value across a row group
- Pull: Reduce across row groups, broadcast to column groups



Our Implementations

We implement the following algorithms:

- Breadth-first search, low diameter decompositions
- Color propagation
- Shiloach-Vishkin (FastSV)
- Union-Find
- *k*-out sampling
- Low diameter decompositions

BFS and Color Propagations Implementations

BFS

- We implement a standard 2D direction-optimizing BFS
- Used only within multi-phase framework
- We halt after $\log n$ iterations
 - $lue{O}(\log n)$ depth when combined with SV or UF
 - Implicitly relabel source to vertex ID 0 then use min-VID pointer resolution in SV or UF
 - Note: we don't need to communicate pointer values, only found vertex IDs
- Future work: possible Graph500 optimizations

Color Propagation

- Implementations from Slota and Mandulak ICPP'25
- Push-based with variable dense/sparse communications

The Issue with Shiloach-Vishkin and Union-Find

The Big Issue:

- Both algorithms are pointer-based
- $lue{}$ Distributed pointer jumping requires messages from any arbitrary vertex u to any arbitrary vertex v
- Standard 2D communications only follow direct adjacencies

We implement a generalized approach for arbitrary $u \to v$ messages.

Downside: We require $O(p^{1.5})$ messages, but still only use $O(\frac{n}{\sqrt{p}})$ communication volume.

Pointer Jumping Communications

- 1. For all vertices involved in computation, initialize pointer 'packages' as {head, tail} tuples. (the 'pointers')
 - Note 1: The tail originally owns this package.
 - **Note 2:** Tails are partitioned among a row group such that each rank owns unique packages.
- 2. Determine row group ownership of heads in packages.
- **3.** Build communication queues and perform all-to-all package exchange along column group, passing from tail to head.
- **4.** Update head values to head[head] in each received package. (the 'jump')
- **5.** Pass updated head values back to tail vertex via column communication. Then broadcast updates across row group.
- **6.** UF: Repeat to (2.) if the head value is actually updated.

Shiloach-Vishkin and Union-Find Implementations

Shiloach-Vishkin

- We compute new pointers via min-VID resolution
- We build packages and pointer jump (the shortcutting)
- Iterate until convergence

Union-Find

- In distributed framework, very similar implementation
- Union: determine potential new roots for pointers
 - We use min-VID pointer resolution, as other methods much more communication heavy
 - E.g., tracking tree sizes or tree depth
- Find: find root of pointer tree via pointer jumping
 - Update intermediate pointers as we jump (path compression)
 - A single jump is equivalent to Shiloach-Vishkin shortcutting, we jump 3 times at most

Other Methods

That we don't consider in our current results

K-out Sampling

- lacktriangle Compute connectivity on sparsified graph, only k edges per vertex
- Does not help note that $O(\frac{n}{\sqrt{p}})$ is dominant term in 2D scaling. Reducing edges makes little difference.

Low Diameter Decompositions

- Multi-source BFS, new roots initialized at varying iterations
- Now need to communicate parent labels, which doubles communication volume relative to our baseline BFS
- Requires β tuning parameter, the optimal value of which can be *highly* variable across different graph diameters
- Regardless, still testing if any benefit can be found

Experimental Setup

Name	Description	Vertices	NNZs
twitter-2010 USA-road-d Queen-4147 kmer_A2a MOLIERE_2016 gsh-2015 WDC12	Social network Road network 3D mesh Protein k-mer graph Hypothesis network Web crawl Web crawl	41M 24M 4.1M 170M 30M 988M 3.5B	2.8B 58M 317M 361M 6.7B 68B 256B
RM <i>XX</i> ER <i>XX</i> LINE <i>XX</i> GRID <i>XX</i>	RMAT graph Erdös-Rényi graph 1D line graph 2D grid graph	$\begin{array}{c} 2^{24} - 2^{32} \\ 2^{24} - 2^{32} \\ 2^{24} - 2^{32} \\ 2^{24} - 2^{32} \\ 2^{24} - 2^{32} \end{array}$	$ 2^{28}-2^{40} 2^{28}-2^{40} \sim 2^{25}-2^{33} \sim 2^{29}-2^{34} $

Test Graphs: We use standard benchmark instances for strong scaling and select random graphs for weak scaling.

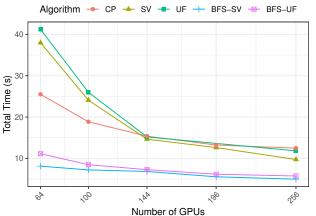
Test System: AiMOS at RPI, with $6 \times V100$ GPUs per node with EDR Infiniband network, up to 256 GPUs for most tests.

Test Algorithms: We ran various algorithm combinations in both single and multi-phase configurations.

Strong Scaling on WDC12

With select algorithm combinations

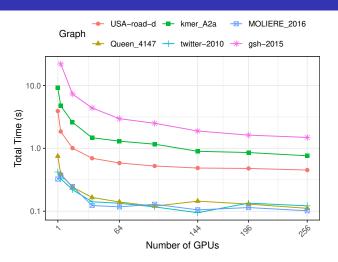
CP: Color propagation, **SV:** Shiloach-Vishkin, **UF:** Union-find **BFS-SV:** BFS then Shiloach-Vishkin, **BFS-UF:** BFS then Union-find



Using BFS+Shiloach-Vishkin, we solve WDC12 in 4.9 seconds.

Strong Scaling on smaller inputs

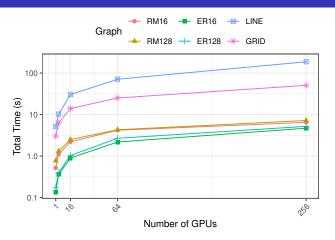
Using BFS then Shiloach Vishkin (BFS-SV)



We observe strong scaling to 256 GPUs on many inputs, including the road network – our smallest input. $_{17/19}$

Weak Scaling on Random Graphs

Again using BFS then Shiloach Vishkin (BFS-SV)



We solve an Erdös-Rényi graph with 1.1 trillion NNZs in 5.2 seconds. Note $O(\sqrt{p})$ scaling behavior and timing dependence on graph diameter and number of vertices. 18/19

Conclusions

and Thanks!

Main takeaway: High performance distributed connectivity on GPUs at a massive scale is possible.

- We achieve new performance benchmarks for the graph connectivity problem, both in time-to-solution and problem scale on GPUs.
- It is possible to achieve speedups in a distributed and multi-GPU environment.
- Future work: better overlap computation/communication, improve load balance, explore faster communications?

Contact: slotag@rpi.edu, www.gmslota.com