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» PageRank, Harmonic centrality, finding largest SCC,
WCC decomposition, approximate K-core computation,
community structure detection

» Common optimizations
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Graphs are ...

» Everywhere
» Internet, Social networks, Biology, Scientific computing
» Massive

> Internet: e.g., Google crawls trillions of pages, index size
is over 100 PB

» Social networks: e.g., Facebook has 1.6 B active users

» Neuroscience: e.g., human brain has 86 B neurons

» Complex

» Real-world graph characteristics impose computational
challenges: skewed degree distributions (power law,
irregular) and small-world nature

» Many interesting graph problems are NP-complete
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Parallel platforms are ...

» Everywhere
» mobile phones to supercomputers
» Powerful

» Energy-efficient multicore and manycore processors
» Aggregate memory capacities and bandwidths growing
at an exponential rate

» Challenging to program
» Using compute resources efficiently

» Load balancing, memory locality
» Reducing inter-node communication
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Questions Motivating our Work

» Q: How efficiently can we analyze large publicly-
available graph instances on multi-node platforms?
» e.g., 2012 Web Data Commons (WDC12) hyperlink
graph: 3.6 billion vertices (URLs) and 129 billion edges
(directed links)

» Q: What optimizations strategies and abstractions
are common to multiple graph analytics?
» Best practices for distributed-memory graph analytics
» Guide and simplify new implementations
» Q: Can we write simple, yet high-performance code?

» 1000s of lines of code; within small factor of Graph500
BFS performance
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Graphs+HPC, The State-of-the-art

» Many publicly-available frameworks exist for graph analysis

» Shared-memory libraries (Galois, Ligra, etc.) cannot process
100 B+ edge graphs (yet)

» External memory frameworks (e.g., FlashGraph) might require
specialized hardware (SSD arrays) and big shared-memory
nodes (512 GB+)

» MapReduce-like frameworks (e.g., Giraph) are limited by disk
[/O and untuned inter-node communication

» Several distributed-memory graph frameworks (e.g., GraphLab
and its derivatives, GraphX) fail to the process WDC12 graph
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Challenges and Research Goals

» Skewed vertex degree distributions of graphs make
distributed-memory parallelization difficult
» Use hybrid programming models to fully exploit shared
memory on a node
» Investigate several distributed-memory graph layout
alternatives
» Optimizations may be specialized for graph analytic (e.g.,
BFS, SSSP) and not portable across platforms
» Investigate algorithms for multiple analytics
» Optimize end-to-end running time (including parallel

1/0)



Talk Outline

Motivating massive-scale distributed-memory analytics

v

v

Parallel implementations of six analytics for processing
massive (hyperlink) graphs

Performance results

v

2012 Web Data Commons graph analysis

v

30



Massive Distributed-memory Graph Analytics

v

Optimized implementations of six analytics

v

End-to-end tuning with almost no serial routines
Hybrid parallelism with MPI and OpenMP
Parallel 1/0

Compact and efficient: ~2,000 total lines of code

v

v

v
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Graph Analytics Considered

» Centrality: PageRank iterations, Harmonic centrality

» Connectivity: finding the largest strongly connected
component (SCC), weakly connected component
decomposition (WCC)

» Approximate K-core decomposition, or computing
coreness upper bound for every vertex

» Global community structure detection using label
propagation

» We apply all these analytics to the 2012 Web Data
Commons graph (3.6 billion vertices, 129 billion edges)

» Though optimized for large scale, also efficient at small
scale

10/30



Design Tradeoffs and Considerations
Tradeoffs (ease of implementation vs. scalability):
» 1D (vertex-based) vs. 2D (edge-based) partitioning and
graph layout
» Bulk-synchronous vs. asynchronous communication
» Programming language and parallel programming model
» High-level language (e.g., Scala) vs. C/C++
» High-level model (e.g., Spark) vs. MPl-only vs.
MPI+OpenMP
Other considerations:
» In-memory graph representation

» Vanilla CRS-like vs. compressed (e.g., with RLE)
adjacencies

» Partitioning strategy (with 1D layout)

» Vertex-balanced, Edge-balanced, Random vs.
Explicit partitioning
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Graph Representation

Data Size Description

n_global 1 Global vertex count

m_global 1 Global edge count

n_loc 1 Task-local vertex count

n_gst 1 Ghost vertex count

m_out 1 Task-local out-edges count
m_in 1 Task-local in-edges count
out_edges m_out Array of out-edges
out_indexes n_loc Start indices for local out-edges
in_edges m_in Array of in-edges

in_indexes n_loc Start indices for local in-edges
map n_loc+n_gst Global to local id hash table
unmap n_loc+n_gst Array for local to global id conv.
tasks n_gst Array storing owner of ghost vertices
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Optimizing Inter-process Communication

Observation: many iterative graph algorithms have similar
communication patterns

» (Vanilla) BFS-like: frontier expansion, information pushed
from vertices to adjacencies, volume of data exchanged is
variable or fixed across iterations

» (Vanilla) PageRank-like: information pulled from
incoming arcs, either fixed or variable communication
pattern in every iteration

We use optimized skeleton code for these two (or four)
patterns, fill in analytic-specific details
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Analytic-specific Details

BFS-like:
SCC: 1st stage of MuLTISTEP-SCC (FW-BW algorithm)
WCC: 1st stage of MULTISTEP-WCC

(Approx.) K-Core: lterative searches to find upper
bound power-of-2 coreness

v

v

v

v

Harmonic Centrality: Routine for calculating centrality
value of any given vertex

PageRank-like:
» PageRank: Standard iterative algorithm
» Label Propagation: Community detection algorithm
» WCC: 2nd stage of MULTISTEP-WCC
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BFS-like Algorithmic Pattern

14:
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: procedure BFS-LIKE(G(V/, E))

for all v € V do
D(v) « init()
if addToQ(v) then
Qnext — <Va D(V)>
while any Qe: # @ do
(@, D) + AllToAllExchange( Qpext)
Qnext — g
for all v € Q do
for all (v,u) € E do
D(u) + update()
if addToQ(v) then
Qnext — <U, D(U)>
return D

> Task Parallel
> Thread Parallel

> Thread Parallel

> Thread Parallel
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PageRank-like Algorithmic Pattern

14:
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: procedure PAGERANK-LIKE(G(V/, E))

for all v € V do
D(v) « init()
if addToQ(v) then
Qnext — <V, D(V)>
while any Qex: # @ do

(Q, D) + AlIToAllExchange( Qnext)

Qnext — 9
for all v € Q do
for all (v,u) € E do

D(v) + update()

if addToQ(v) then

return D

Qnext ¢+ (v, D(v))

> Task Parallel
> Thread Parallel

> Thread Parallel

> Thread Parallel
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Experimental Setup

Test systems, Graphs

» Blue Waters: dual-socket AMD Interlagos 6276, 16 cores, 64 GB

memory

» Compton cluster: dual-socket Intel Xeon E5-2670, 16 cores, 64 GB
memory

Graph n m D, Source

Web Crawl (WC) 36B 129B 36 [Meusel et al., 2015]

R-MAT 36B 129 B 36 [Chakrabarti et al., 2004]

Rand-ER 36B 1298B 36  Erdos-Rényi

R-MAT 225232 229236 16  [Chakrabarti et al., 2004]

Rand-ER 225032 029936 16  Erdos-Rényi

Pay 39M 623 M 16 [Meusel et al., 2015]

LiveJournal 48 M 69 M 14 [Leskovec et al., 2009]

Google 875 K 5.1M 5.8 [Leskovec et al., 2009]
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End-to-end Analysis

256 nodes of Blue Waters

> Executed all six analytics on WC (with three partitioning strategies)

and synthetic (R-MAT, Rand-ER) graphs of the same size

> With vertex block () and edge block () partitioning strategies,

n
p

cumulative time on WC is about 20 minutes (+ 3 minutes for |/O

and preprocessing)

> We use vertex block () partitioning for R-MAT and Rand-ER

Execution time in seconds

e R-MAT  Rand-ER

Analytic Partitioning a o Rand a a

P P P P

PageRank (20 iter) 87 111 227 125 121

Label Propagation (10 iter) 400 435 367 993 992
WCC 88 63 112 68 7

Harmonic Centrality (1 iter) 54 46 101 252 84
K-core (= 27 BFS’es) 445 363 583 579 481
Largest SCC (=~ 2 BFS'es) 184 108 184 89 83
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W(C performance rates
256 nodes of Blue Waters, best partitioning strategy chosen

» Perf. units are similar to GTEPS (Giga Traversed Edges
Per Second): T*Mter

tx 109
Analytic Time (s)  Perf. Our evaluation
PageRank 87 29.6 ®
Label Propagation 367 35 ®
WCC 63 2.0 ®
Harmonic Centrality 46 2.8 ®
K-core 363 9.6 ©
Largest SCC 108 2.4 ®
Overall 1034 7.6 )
Graph500 (estimate) 119.2 )
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Weak Scaling on Synthetic Graphs

Blue Waters: 8 to 1024 nodes

> With vertex block () partitioning

226

» 222 vertices per node and edges per compute node

—— R-MAT -#- Rand-ER

HarmonicCentrality PageRank

250
200
150
100

a
o
1

Execution time (s)

o
1

8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024

Nodes
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Label Propagation: Strong Scaling Results
Blue Waters: 256 to 4096 nodes
» PageRank-like in general strong scales nicely; BFS-like is

more dependent on graph structure (high number of
synchronizations and low computation per iteration)

WC-np —£~ WC-mp —=- WC-rand —— R-MAT Rand-ER

16+

12+

R e

256 512 1024 2048 4096
Nodes

Speedup
e}
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Comparison to Distributed Graph Frameworks

Our approach vs. GraphX, PowerGraph, PowerlLyra
» Compared GraphX (GX), PowerGraph (PG), and PowerLyra (PL) on 16 nodes

of Compton to our code (SRM)

> About 38x faster on average for PageRank (top), 201x faster for WCC
(bottom) against distributed memory frameworks

PageRank Speedup vs. GraphX

WCC Speedup vs. GraphX
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Community Structure of WC

» Used label propagation to identify disjoint communities

» Community size distribution appears to follow a

heavy-tailed power law

Largest Communities (numbers in millions)

Size  Mcomm meyt  Rep. Page

112 2126 32  YouTube

18 548 277  Tumblr
9 516 84 Creative Commons
8 186 85 WordPress
7 57 83  Amazon
6 41 21  Flickr

ities

Number of Commun

1e+08-

1e+06

1e+04 -

1e+02 -

14

1
12

T ! 1
1e+02 1e+04 1e+06
Vertices in Community
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Centrality Measurements of Web Crawl

» Determined the top 10 web pages according to different
centrality indices

» Similar to results found in prior work using smaller
host-level graph [Meusel et al., 2014]

» Note that out degree is meaningless as a centrality index

Out-degree

In-degree

PageRank

Harmonic Centrality

photoshare.ru/..
dvderotik.com/. .
zoover.be/. .

cran.r-project.org/..

cran.rakanu.com/. .
linkagogo.com/. .

cran.r-project.org/..

fussballdaten.de/..
fussballdaten.de/..
fussballdaten.de/..

youtube. com
wordpress.org
youtube.com/t/. .
youtube.com/. .
youtube.com/t/. .
youtube.com/. .
youtube.com/t/. .
gmpg .org/xfn/11
google.com

google.com/intl/..

youtube. com
youtube.com/t/. .
youtube.com/testtube
youtube.com/t/. .
youtube.com/t/. .
tumblr.com
google.com/intl/en/. .
wordpress.org
google.com/intl/. .
google.com

wordpress.org

twitter.com
twitter.com/privacy
twitter.com/about
twitter.com/tos
twitter.com/account/. .
twitter.com/account/..
twitter.com/about/resources
twitter.com/login
twitter.com/about/contact
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Approximate K-core Decomposition of WC

» We estimate coreness upper bound of every vertex

» At least 75% of the vertices have coreness value less than
32, only 0.5% have a coreness greater than 1024

[
o
=]

o

3

a
1

Cumulative Vertex Fraction
o o
N 1
(6] o
L

1) 1 T 1 U U 1
12 82°5 200 25 2020 2°25
Approximate K-core
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Possible Future Extensions

Beat us if you can!

» Processing quadrillion-edge (petascale) graphs?

» 10x performance improvement (20 min to 2 min) by next
IPDPS? Direction optimization, asynchronous
communication, graph compression, other partitioning
strategies

» |dentify and implement additional analytics that fit
push /pull/fixed /variable communication patterns

» Open-source code

» Contact gslota@psu.edu for current code
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Conclusions and Thanks!

» Graphs are ubiquitous, massive, and complex: scalability
and efficiency are important considerations for analytics

» We identified two distinct communication patterns that
fit a large class of graph algorithms

» Implemented several algorithms fitting these patterns and
demonstrated scalability up to 65k cores of Blue Waters

» Analyzed the 2012 Web Data Commons hyperlink graph

» Demonstrated 26-1573x speedup vs. GraphX on 256
cores of Compton with graphs less than 0.5% the size of
the Web Crawl

Thank you! Questions? gslota@psu.edu, www.gmslota.com
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