A Case Study of Complex Graph Analysis in Distributed Memory: Implementation and Optimization

> George M. Slota^{1,2}, Siva Rajamanickam¹, Kamesh Madduri²

> > ¹Sandia National Laboratories^a
> > ²The Pennsylvania State University
> > www.gmslota.com gslota@psu.edu

24 May 2016

^aSandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Presentation Overview

- Motivating massive-scale distributed-memory analytics
- Parallel implementations of six analytics for processing massive (hyperlink) graphs
 - PageRank, Harmonic centrality, finding largest SCC, WCC decomposition, approximate K-core computation, community structure detection
- Common optimizations
- Performance results on the Blue Waters supercomputer

Graphs are ...

Everywhere

Internet, Social networks, Biology, Scientific computing

Massive

- Internet: e.g., Google crawls trillions of pages, index size is over 100 PB
- ► Social networks: e.g., Facebook has 1.6 B active users
- ► Neuroscience: e.g., human brain has 86 B neurons

Complex

- Real-world graph characteristics impose computational challenges: skewed degree distributions (power law, irregular) and small-world nature
- Many interesting graph problems are NP-complete

Parallel platforms are ...

Everywhere

mobile phones to supercomputers

Powerful

- Energy-efficient multicore and manycore processors
- Aggregate memory capacities and bandwidths growing at an exponential rate

Challenging to program

- Using compute resources efficiently
- Load balancing, memory locality
- Reducing inter-node communication

Questions Motivating our Work

- Q: How efficiently can we analyze large publiclyavailable graph instances on multi-node platforms?
 - e.g., 2012 Web Data Commons (WDC12) hyperlink graph: 3.6 billion vertices (URLs) and 129 billion edges (directed links)
- Q: What optimizations strategies and abstractions are common to multiple graph analytics?
 - Best practices for distributed-memory graph analytics
 - Guide and simplify new implementations
- Q: Can we write simple, yet high-performance code?
 - 1000s of lines of code; within small factor of Graph500 BFS performance

Graphs+HPC, The State-of-the-art

- Many publicly-available frameworks exist for graph analysis
- Shared-memory libraries (Galois, Ligra, etc.) cannot process 100 B+ edge graphs (yet)
- External memory frameworks (e.g., FlashGraph) might require specialized hardware (SSD arrays) and big shared-memory nodes (512 GB+)
- MapReduce-like frameworks (e.g., Giraph) are limited by disk I/O and untuned inter-node communication
- Several distributed-memory graph frameworks (e.g., GraphLab and its derivatives, GraphX) fail to the process WDC12 graph

Challenges and Research Goals

- Skewed vertex degree distributions of graphs make distributed-memory parallelization difficult
 - Use hybrid programming models to fully exploit shared memory on a node
 - Investigate several distributed-memory graph layout alternatives
- Optimizations may be specialized for graph analytic (e.g., BFS, SSSP) and not portable across platforms
 - Investigate algorithms for multiple analytics
 - Optimize end-to-end running time (including parallel I/O)

Talk Outline

- Motivating massive-scale distributed-memory analytics
- Parallel implementations of six analytics for processing massive (hyperlink) graphs
- Performance results
- > 2012 Web Data Commons graph analysis

Massive Distributed-memory Graph Analytics

- Optimized implementations of six analytics
- End-to-end tuning with almost no serial routines
- Hybrid parallelism with MPI and OpenMP
- Parallel I/O
- Compact and efficient: ~2,000 total lines of code

Graph Analytics Considered

- Centrality: PageRank iterations, Harmonic centrality
- Connectivity: finding the largest strongly connected component (SCC), weakly connected component decomposition (WCC)
- Approximate K-core decomposition, or computing coreness upper bound for every vertex
- Global community structure detection using label propagation
- We apply all these analytics to the 2012 Web Data Commons graph (3.6 billion vertices, 129 billion edges)
- Though optimized for large scale, also efficient at small scale

Design Tradeoffs and Considerations

Tradeoffs (ease of implementation vs. scalability):

- 1D (vertex-based) vs. 2D (edge-based) partitioning and graph layout
- Bulk-synchronous vs. asynchronous communication
- Programming language and parallel programming model
 - ► High-level language (e.g., Scala) vs. C/C++
 - High-level model (e.g., Spark) vs. MPI-only vs.
 MPI+OpenMP

Other considerations:

- In-memory graph representation
 - Vanilla CRS-like vs. compressed (e.g., with RLE) adjacencies
- Partitioning strategy (with 1D layout)
 - Vertex-balanced, Edge-balanced, Random vs.
 Explicit partitioning

Graph Representation

Data	Size	Description
n_global	1	Global vertex count
m_global	1	Global edge count
n_loc	1	Task-local vertex count
n_gst	1	Ghost vertex count
m_out	1	Task-local out-edges count
m_in	1	Task-local in-edges count
out_edges	m_out	Array of out-edges
out_indexes	n_loc	Start indices for local out-edges
in_edges	m_in	Array of in-edges
in_indexes	n_loc	Start indices for local in-edges
map	n_loc+n_gst	Global to local id hash table
unmap	n_loc+n_gst	Array for local to global id conv.
tasks	n_gst	Array storing owner of ghost vertices

Optimizing Inter-process Communication

Observation: many iterative graph algorithms have similar communication patterns

- (Vanilla) BFS-like: frontier expansion, information pushed from vertices to adjacencies, volume of data exchanged is variable or fixed across iterations
- (Vanilla) PageRank-like: information pulled from incoming arcs, either fixed or variable communication pattern in every iteration

We use optimized skeleton code for these two (or four) patterns, fill in analytic-specific details

Analytic-specific Details

BFS-like:

- ▶ SCC: 1st stage of MULTISTEP-SCC (FW-BW algorithm)
- ▶ WCC: 1st stage of MULTISTEP-WCC
- (Approx.) K-Core: Iterative searches to find upper bound power-of-2 coreness
- Harmonic Centrality: Routine for calculating centrality value of any given vertex

PageRank-like:

- PageRank: Standard iterative algorithm
- **Label Propagation**: Community detection algorithm
- ► WCC: 2nd stage of MULTISTEP-WCC

BFS-like Algorithmic Pattern

```
procedure BFS-LIKE(G(V, E))
                                                                               ▷ Task Parallel
 1:
 2:
          for all v \in V do
                                                                            ▷ Thread Parallel
 3:
               D(v) \leftarrow init()
 4:
               if addToQ(v) then
 5:
                    Q_{next} \leftarrow \langle v, D(v) \rangle
 6:
          while any Q_{next} \neq \emptyset do
 7:
                \langle Q, D \rangle \leftarrow AIIToAIIExchange(Q_{next})
                                                                            ▷ Thread Parallel
 8:
                Q_{next} \leftarrow \emptyset
               for all v \in Q do
                                                                            ▷ Thread Parallel
 9:
                    for all \langle v, u \rangle \in E do
10:
11:
                         D(u) \leftarrow update()
                         if addToQ(u) then
12:
13:
                              Q_{next} \leftarrow \langle u, D(u) \rangle
14:
           return D
```

3

イロト イポト イヨト イヨト

BFS-like Algorithmic Pattern

```
procedure BFS-LIKE(G(V, E))
                                                                                ▷ Task Parallel
 1:
 2:
          for all v \in V do
                                                                             ▷ Thread Parallel
 3:
                D(v) \leftarrow init()
               if addToQ(v) then
 4:
 5:
                    Q_{next} \leftarrow \langle v, D(v) \rangle
 6:
          while any Q_{next} \neq \emptyset do
 7:
                \langle Q, D \rangle \leftarrow \mathsf{AllToAllExchange}(Q_{next})
                                                                             ▷ Thread Parallel
 8:
                Q_{next} \leftarrow \emptyset
               for all v \in Q do
 9:
                                                                             ▷ Thread Parallel
                    for all \langle v, u \rangle \in E do
10:
11:
                          D(u) \leftarrow update()
                         if addToQ(u) then
12:
13:
                               Q_{next} \leftarrow \langle u, D(u) \rangle
14:
           return D
```

イロト イポト イヨト イヨト

PageRank-like Algorithmic Pattern

```
procedure PAGERANK-LIKE(G(V, E))
                                                                              ▷ Task Parallel
 1:
 2:
          for all v \in V do
                                                                           ▷ Thread Parallel
 3:
               D(v) \leftarrow init()
 4:
               if addToQ(v) then
 5:
                    Q_{next} \leftarrow \langle v, D(v) \rangle
 6:
          while any Q_{next} \neq \emptyset do
 7:
                \langle Q, D \rangle \leftarrow AllToAllExchange(Q_{next})
                                                                           ▷ Thread Parallel
 8:
               Q_{next} \leftarrow \emptyset
 9:
               for all v \in Q do
                                                                           ▷ Thread Parallel
                    for all \langle v, u \rangle \in E do
10:
11:
                         D(v) \leftarrow update()
12:
                    if addToQ(v) then
                         Q_{next} \leftarrow \langle v, D(v) \rangle
13:
14:
          return D
```

3

Talk Outline

- Motivating massive-scale distributed-memory analytics
- Parallel implementations of six analytics for processing massive (hyperlink) graphs
- Performance results
- > 2012 Web Data Commons graph analysis

Experimental Setup

Test systems, Graphs

- Blue Waters: dual-socket AMD Interlagos 6276, 16 cores, 64 GB memory
- Compton cluster: dual-socket Intel Xeon E5-2670, 16 cores, 64 GB memory

Graph	п	т	D_{avg}	Source
Web Crawl (WC)	3.6 B	129 B	36	[Meusel et al., 2015]
R-MAT	3.6 B	129 B	36	[Chakrabarti et al., 2004]
Rand-ER	3.6 B	129 B	36	Erdös-Rényi
R-MAT	2 ²⁵ -2 ³²	2 ²⁹ -2 ³⁶	16	[Chakrabarti et al., 2004]
Rand-ER	2 ²⁵ -2 ³²	2 ²⁹ -2 ³⁶	16	Erdös-Rényi
Pay	39 M	623 M	16	[Meusel et al., 2015]
LiveJournal	4.8 M	69 M	14	[Leskovec et al., 2009]
Google	875 K	5.1M	5.8	[Leskovec et al., 2009]

End-to-end Analysis

256 nodes of Blue Waters

- Executed all six analytics on WC (with three partitioning strategies) and synthetic (R-MAT, Rand-ER) graphs of the same size
- ▶ With vertex block (ⁿ/_p) and edge block (^m/_p) partitioning strategies, cumulative time on WC is about 20 minutes (+ 3 minutes for I/O and preprocessing)

• We use vertex block $\left(\frac{n}{p}\right)$ partitioning for R-MAT and Rand-ER

	Execution time in seconds				
Anglatia Destitionian	п	WC	Dand	R-MAT	Rand-ER
Analytic Partitioning	p	p	Rand	p	P
PageRank (20 iter)	87	111	227	125	121
Label Propagation (10 iter)	400	435	367	993	992
WCĆ	88	63	112	68	77
Harmonic Centrality (1 iter)	54	46	101	252	84
K-core (≈ 27 BFS'es)	445	363	583	579	481
Largest SCC ($pprox$ 2 BFS'es)	184	108	184	89	83

WC performance rates

256 nodes of Blue Waters, best partitioning strategy chosen

 Perf. units are similar to GTEPS (Giga Traversed Edges Per Second): ^{m*n}iter t×10⁹

Analytic	Time (s)	Perf.	Our evaluation
PageRank	87	29.6	<u>:</u>
Label Propagation	367	3.5	\bigcirc
WCC	63	2.0	$(\mathbf{\dot{z}})$
Harmonic Centrality	46	2.8	$(\mathbf{\dot{z}})$
K-core	363	9.6	\bigcirc
Largest SCC	108	2.4	(
Overall	1034	7.6	÷
Graph500 (estimate)		119.2	÷

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Weak Scaling on Synthetic Graphs

Blue Waters: 8 to 1024 nodes

- With vertex block $\left(\frac{n}{p}\right)$ partitioning
- ▶ 2²² vertices per node and 2²⁶ edges per compute node

-R-MAT -Rand-ER

Label Propagation: Strong Scaling Results Blue Waters: 256 to 4096 nodes

 PageRank-like in general strong scales nicely; BFS-like is more dependent on graph structure (high number of synchronizations and low computation per iteration)

Comparison to Distributed Graph Frameworks

Our approach vs. GraphX, PowerGraph, PowerLyra

- Compared GraphX (GX), PowerGraph (PG), and PowerLyra (PL) on 16 nodes of Compton to our code (SRM)
- About 38× faster on average for PageRank (top), 201× faster for WCC (bottom) against distributed memory frameworks

Talk Outline

- Motivating massive-scale distributed-memory analytics
- Parallel implementations of six analytics for processing massive (hyperlink) graphs
- Performance results
- > 2012 Web Data Commons graph analysis

Community Structure of WC

- Used label propagation to identify disjoint communities
- Community size distribution appears to follow a heavy-tailed power law

Largest Communities (numbers in millions)				
Size	m _{comm}	m _{cut}	Rep. Page	
112	2126	32	YouTube	
18	548	277	Tumblr	
9	516	84	Creative Commons	
8	186	85	WordPress	
7	57	83	Amazon	
6	41	21	Flickr	

 $c_{1} = c_{1} + c_{2} + c_{3} + c_{4} + c_{5} + c_{5$

τ.

< ロト < 同ト < ヨト < ヨト

Centrality Measurements of Web Crawl

- Determined the top 10 web pages according to different centrality indices
- Similar to results found in prior work using smaller host-level graph [Meusel et al., 2014]
- Note that out degree is meaningless as a centrality index

Out-degree	In-degree	PageRank	Harmonic Centrality
photoshare.ru/	<pre>youtube.com</pre>	<pre>youtube.com</pre>	<pre>wordpress.org</pre>
dvderotik.com/	wordpress.org	youtube.com/t/	twitter.com
zoover.be/	youtube.com/t/	youtube.com/t/	twitter.com/privacy
cran.r-project.org/	youtube.com/	youtube.com/t/	twitter.com/about
cran.rakanu.com/	youtube.com/t/	youtube.com/intl/en/	twitter.com/account/
linkagogo.com/	youtube.com/t/	google.com/intl/en/	twitter.com/account/
fussballdaten.de/	gmgg.org/xfn/11	wordpress.org	twitter.com/about/resources
fussballdaten.de/	google.com	google.com/intl/	twitter.com/about/resources
fussballdaten.de/	google.com/intl/	google.com/	twitter.com/about/contact

Approximate K-core Decomposition of WC

- We estimate coreness upper bound of every vertex
- At least 75% of the vertices have coreness value less than 32, only 0.5% have a coreness greater than 1024

Possible Future Extensions

Beat us if you can!

- Processing quadrillion-edge (petascale) graphs?
- 10× performance improvement (20 min to 2 min) by next IPDPS? Direction optimization, asynchronous communication, graph compression, other partitioning strategies
- Identify and implement additional analytics that fit push/pull/fixed/variable communication patterns
- Open-source code
 - Contact gslota@psu.edu for current code

Acknowledgments

Sandia and FASTMATH

This research is supported by NSF grants CCF-1439057 and the DOE Office of Science through the FASTMath SciDAC Institute. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

Blue Waters Fellowship

This research is part of the Blue Waters sustained petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070, ACI-1238993, and ACI-1444747) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana Champaign and its National Center for Supercomputing Applications.

Kamesh Madduri's CAREER Award

This research was also supported by NSF grant ACI-1253881.

Conclusions and Thanks!

- Graphs are ubiquitous, massive, and complex: scalability and efficiency are important considerations for analytics
- We identified two distinct communication patterns that fit a large class of graph algorithms
- Implemented several algorithms fitting these patterns and demonstrated scalability up to 65k cores of *Blue Waters*
- Analyzed the 2012 Web Data Commons hyperlink graph
- Demonstrated 26-1573× speedup vs. GraphX on 256 cores of *Compton* with graphs less than 0.5% the size of the Web Crawl

Thank you! Questions? gslota@psu.edu, www.gmslota.com

Bibliography I

- M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring user influence in Twitter: The million follower fallacy. In Proc. Int'l. Conf. on Weblogs and Social Media (ICWSM), 2010.
- Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model for graph mining. In Proc. Int'l. Conf. on Data Mining (SDM), 2004.
- J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. *Internet Mathematics*, 6(1):29–123, 2009.
- Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. Graph structure in the web revisited: A trick of the heavy tail. In *Proc. WWW*, 2014.
- Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The graph structure in the web analyzed on different aggregation levels. J. Web Sci., 1(1):33–47, 2015.