
A Case Study of Complex Graph Analysis

in Distributed Memory:

Implementation and Optimization

George M. Slota1,2, Siva Rajamanickam1,
Kamesh Madduri2

1Sandia National Laboratoriesa

2The Pennsylvania State University
www.gmslota.com gslota@psu.edu

24 May 2016

a
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a

wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

1 / 30

Presentation Overview

I Motivating massive-scale distributed-memory analytics

I Parallel implementations of six analytics for processing
massive (hyperlink) graphs

I PageRank, Harmonic centrality, finding largest SCC,
WCC decomposition, approximate K-core computation,
community structure detection

I Common optimizations

I Performance results on the Blue Waters supercomputer

2 / 30

Graphs are ...

I Everywhere
I Internet, Social networks, Biology, Scientific computing

I Massive
I Internet: e.g., Google crawls trillions of pages, index size

is over 100 PB
I Social networks: e.g., Facebook has 1.6 B active users
I Neuroscience: e.g., human brain has 86 B neurons

I Complex
I Real-world graph characteristics impose computational

challenges: skewed degree distributions (power law,
irregular) and small-world nature

I Many interesting graph problems are NP-complete

3 / 30

Parallel platforms are ...

I Everywhere
I mobile phones to supercomputers

I Powerful
I Energy-efficient multicore and manycore processors
I Aggregate memory capacities and bandwidths growing

at an exponential rate

I Challenging to program
I Using compute resources efficiently
I Load balancing, memory locality
I Reducing inter-node communication

4 / 30

Questions Motivating our Work

I Q: How efficiently can we analyze large publicly-
available graph instances on multi-node platforms?

I e.g., 2012 Web Data Commons (WDC12) hyperlink
graph: 3.6 billion vertices (URLs) and 129 billion edges
(directed links)

I Q: What optimizations strategies and abstractions
are common to multiple graph analytics?

I Best practices for distributed-memory graph analytics
I Guide and simplify new implementations

I Q: Can we write simple, yet high-performance code?
I 1000s of lines of code; within small factor of Graph500

BFS performance

5 / 30

Graphs+HPC, The State-of-the-art

I Many publicly-available frameworks exist for graph analysis

I Shared-memory libraries (Galois, Ligra, etc.) cannot process
100 B+ edge graphs (yet)

I External memory frameworks (e.g., FlashGraph) might require
specialized hardware (SSD arrays) and big shared-memory
nodes (512 GB+)

I MapReduce-like frameworks (e.g., Giraph) are limited by disk
I/O and untuned inter-node communication

I Several distributed-memory graph frameworks (e.g., GraphLab
and its derivatives, GraphX) fail to the process WDC12 graph

6 / 30

Challenges and Research Goals

I Skewed vertex degree distributions of graphs make
distributed-memory parallelization difficult

I Use hybrid programming models to fully exploit shared
memory on a node

I Investigate several distributed-memory graph layout
alternatives

I Optimizations may be specialized for graph analytic (e.g.,
BFS, SSSP) and not portable across platforms

I Investigate algorithms for multiple analytics
I Optimize end-to-end running time (including parallel

I/O)

7 / 30

Talk Outline

I Motivating massive-scale distributed-memory analytics

I Parallel implementations of six analytics for processing
massive (hyperlink) graphs

I Performance results

I 2012 Web Data Commons graph analysis

8 / 30

Massive Distributed-memory Graph Analytics

I Optimized implementations of six analytics

I End-to-end tuning with almost no serial routines

I Hybrid parallelism with MPI and OpenMP

I Parallel I/O

I Compact and efficient: ∼2,000 total lines of code

9 / 30

Graph Analytics Considered

I Centrality: PageRank iterations, Harmonic centrality

I Connectivity: finding the largest strongly connected
component (SCC), weakly connected component
decomposition (WCC)

I Approximate K-core decomposition, or computing
coreness upper bound for every vertex

I Global community structure detection using label
propagation

I We apply all these analytics to the 2012 Web Data
Commons graph (3.6 billion vertices, 129 billion edges)

I Though optimized for large scale, also efficient at small
scale

10 / 30

Design Tradeoffs and Considerations
Tradeoffs (ease of implementation vs. scalability):

I 1D (vertex-based) vs. 2D (edge-based) partitioning and
graph layout

I Bulk-synchronous vs. asynchronous communication
I Programming language and parallel programming model

I High-level language (e.g., Scala) vs. C/C++
I High-level model (e.g., Spark) vs. MPI-only vs.

MPI+OpenMP

Other considerations:
I In-memory graph representation

I Vanilla CRS-like vs. compressed (e.g., with RLE)
adjacencies

I Partitioning strategy (with 1D layout)
I Vertex-balanced, Edge-balanced, Random vs.

Explicit partitioning
11 / 30

Graph Representation

Data Size Description

n global 1 Global vertex count
m global 1 Global edge count
n loc 1 Task-local vertex count
n gst 1 Ghost vertex count
m out 1 Task-local out-edges count
m in 1 Task-local in-edges count

out edges m out Array of out-edges
out indexes n loc Start indices for local out-edges
in edges m in Array of in-edges
in indexes n loc Start indices for local in-edges

map n loc+n gst Global to local id hash table
unmap n loc+n gst Array for local to global id conv.
tasks n gst Array storing owner of ghost vertices

12 / 30

Optimizing Inter-process Communication

Observation: many iterative graph algorithms have similar
communication patterns

I (Vanilla) BFS-like: frontier expansion, information pushed
from vertices to adjacencies, volume of data exchanged is
variable or fixed across iterations

I (Vanilla) PageRank-like: information pulled from
incoming arcs, either fixed or variable communication
pattern in every iteration

We use optimized skeleton code for these two (or four)
patterns, fill in analytic-specific details

13 / 30

Analytic-specific Details

BFS-like:

I SCC: 1st stage of Multistep-SCC (FW-BW algorithm)

I WCC: 1st stage of Multistep-WCC

I (Approx.) K-Core: Iterative searches to find upper
bound power-of-2 coreness

I Harmonic Centrality: Routine for calculating centrality
value of any given vertex

PageRank-like:

I PageRank: Standard iterative algorithm

I Label Propagation: Community detection algorithm

I WCC: 2nd stage of Multistep-WCC

14 / 30

BFS-like Algorithmic Pattern

1: procedure BFS-like(G (V ,E)) . Task Parallel
2: for all v ∈ V do . Thread Parallel
3: D(v)← init()
4: if addToQ(v) then
5: Qnext ← 〈v ,D(v)〉
6: while any Qnext 6= ∅ do
7: 〈Q,D〉 ← AllToAllExchange(Qnext) . Thread Parallel
8: Qnext ← ∅
9: for all v ∈ Q do . Thread Parallel

10: for all 〈v , u〉 ∈ E do
11: D(u)← update()
12: if addToQ(u) then
13: Qnext ← 〈u,D(u)〉
14: return D

15 / 30

BFS-like Algorithmic Pattern

1: procedure BFS-like(G (V ,E)) . Task Parallel
2: for all v ∈ V do . Thread Parallel
3: D(v)← init()
4: if addToQ(v) then
5: Qnext ← 〈v ,D(v)〉
6: while any Qnext 6= ∅ do
7: 〈Q,D〉 ← AllToAllExchange(Qnext) . Thread Parallel
8: Qnext ← ∅
9: for all v ∈ Q do . Thread Parallel

10: for all 〈v , u〉 ∈ E do
11: D(u)← update()
12: if addToQ(u) then
13: Qnext ← 〈u,D(u)〉
14: return D

16 / 30

PageRank-like Algorithmic Pattern

1: procedure PageRank-like(G (V ,E)) . Task Parallel
2: for all v ∈ V do . Thread Parallel
3: D(v)← init()
4: if addToQ(v) then
5: Qnext ← 〈v ,D(v)〉
6: while any Qnext 6= ∅ do
7: 〈Q,D〉 ← AllToAllExchange(Qnext) . Thread Parallel
8: Qnext ← ∅
9: for all v ∈ Q do . Thread Parallel

10: for all 〈v , u〉 ∈ E do
11: D(v)← update()

12: if addToQ(v) then
13: Qnext ← 〈v ,D(v)〉
14: return D

17 / 30

Talk Outline

I Motivating massive-scale distributed-memory analytics

I Parallel implementations of six analytics for processing
massive (hyperlink) graphs

I Performance results

I 2012 Web Data Commons graph analysis

18 / 30

Experimental Setup
Test systems, Graphs

I Blue Waters: dual-socket AMD Interlagos 6276, 16 cores, 64 GB
memory

I Compton cluster: dual-socket Intel Xeon E5-2670, 16 cores, 64 GB
memory

Graph n m Davg Source

Web Crawl (WC) 3.6 B 129 B 36 [Meusel et al., 2015]
R-MAT 3.6 B 129 B 36 [Chakrabarti et al., 2004]
Rand-ER 3.6 B 129 B 36 Erdös-Rényi

R-MAT 225-232 229-236 16 [Chakrabarti et al., 2004]
Rand-ER 225-232 229-236 16 Erdös-Rényi

Pay 39 M 623 M 16 [Meusel et al., 2015]
LiveJournal 4.8 M 69 M 14 [Leskovec et al., 2009]
Google 875 K 5.1M 5.8 [Leskovec et al., 2009]

19 / 30

End-to-end Analysis
256 nodes of Blue Waters

I Executed all six analytics on WC (with three partitioning strategies)
and synthetic (R-MAT, Rand-ER) graphs of the same size

I With vertex block (n
p) and edge block (m

p) partitioning strategies,

cumulative time on WC is about 20 minutes (+ 3 minutes for I/O
and preprocessing)

I We use vertex block (n
p) partitioning for R-MAT and Rand-ER

Execution time in seconds
WC R-MAT Rand-ER

Analytic Partitioning n
p

m
p

Rand n
p

n
p

PageRank (20 iter) 87 111 227 125 121
Label Propagation (10 iter) 400 435 367 993 992

WCC 88 63 112 68 77
Harmonic Centrality (1 iter) 54 46 101 252 84

K-core (≈ 27 BFS’es) 445 363 583 579 481
Largest SCC (≈ 2 BFS’es) 184 108 184 89 83

20 / 30

WC performance rates
256 nodes of Blue Waters, best partitioning strategy chosen

I Perf. units are similar to GTEPS (Giga Traversed Edges
Per Second): m∗niter

t×109

Analytic Time (s) Perf. Our evaluation

PageRank 87 29.6
Label Propagation 367 3.5
WCC 63 2.0
Harmonic Centrality 46 2.8
K-core 363 9.6
Largest SCC 108 2.4

Overall 1034 7.6

Graph500 (estimate) 119.2

21 / 30

Weak Scaling on Synthetic Graphs
Blue Waters: 8 to 1024 nodes

I With vertex block (n
p

) partitioning

I 222 vertices per node and 226 edges per compute node

 HarmonicCentrality PageRank

0

50

100

150

200

250

8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Nodes

E
xe

cu
tio

n
tim

e
(s

)

R−MAT Rand−ER

22 / 30

Label Propagation: Strong Scaling Results
Blue Waters: 256 to 4096 nodes

I PageRank-like in general strong scales nicely; BFS-like is
more dependent on graph structure (high number of
synchronizations and low computation per iteration)

4

8

12

16

256 512 1024 2048 4096
Nodes

S
pe

ed
up

WC−np WC−mp WC−rand R−MAT Rand−ER

23 / 30

Comparison to Distributed Graph Frameworks
Our approach vs. GraphX, PowerGraph, PowerLyra

I Compared GraphX (GX), PowerGraph (PG), and PowerLyra (PL) on 16 nodes
of Compton to our code (SRM)

I About 38× faster on average for PageRank (top), 201× faster for WCC
(bottom) against distributed memory frameworks

44x 78x 26x

 Google LiveJournal Pay

1

10

100
S

R
M

P
G P
L

G
X

S
R

M

P
G P
L

G
X

S
R

M

P
G P
L

G
X

P
ag

eR
an

k
S

pe
ed

up
 v

s.
 G

ra
ph

X

1573x 668x 249x

 Google LiveJournal Pay

1

10

100

1000

S
R

M

P
G P
L

G
X

S
R

M

P
G P
L

G
X

S
R

M

P
G P
L

G
XW

C
C

 S
pe

ed
up

 v
s.

 G
ra

ph
X

24 / 30

Talk Outline

I Motivating massive-scale distributed-memory analytics

I Parallel implementations of six analytics for processing
massive (hyperlink) graphs

I Performance results

I 2012 Web Data Commons graph analysis

25 / 30

Community Structure of WC

I Used label propagation to identify disjoint communities

I Community size distribution appears to follow a
heavy-tailed power law

Largest Communities (numbers in millions)

Size mcomm mcut Rep. Page

112 2126 32 YouTube
18 548 277 Tumblr

9 516 84 Creative Commons
8 186 85 WordPress
7 57 83 Amazon
6 41 21 Flickr

26 / 30

Centrality Measurements of Web Crawl

I Determined the top 10 web pages according to different
centrality indices

I Similar to results found in prior work using smaller
host-level graph [Meusel et al., 2014]

I Note that out degree is meaningless as a centrality index

Out-degree In-degree PageRank Harmonic Centrality

photoshare.ru/.. youtube.com youtube.com wordpress.org
dvderotik.com/.. wordpress.org youtube.com/t/.. twitter.com
zoover.be/.. youtube.com/t/.. youtube.com/testtube twitter.com/privacy
cran.r-project.org/.. youtube.com/.. youtube.com/t/.. twitter.com/about
cran.rakanu.com/.. youtube.com/t/.. youtube.com/t/.. twitter.com/tos
linkagogo.com/.. youtube.com/.. tumblr.com twitter.com/account/..
cran.r-project.org/.. youtube.com/t/.. google.com/intl/en/.. twitter.com/account/..
fussballdaten.de/.. gmpg.org/xfn/11 wordpress.org twitter.com/about/resources
fussballdaten.de/.. google.com google.com/intl/.. twitter.com/login
fussballdaten.de/.. google.com/intl/.. google.com twitter.com/about/contact

27 / 30

Approximate K-core Decomposition of WC

I We estimate coreness upper bound of every vertex

I At least 75% of the vertices have coreness value less than
32, only 0.5% have a coreness greater than 1024

0.25

0.50

0.75

1.00

1 2 8 2^5 2^10 2^15 2^20 2^25
Approximate K−core

C
um

ul
at

iv
e

V
er

te
x

F
ra

ct
io

n

28 / 30

Possible Future Extensions
Beat us if you can!

I Processing quadrillion-edge (petascale) graphs?

I 10× performance improvement (20 min to 2 min) by next
IPDPS? Direction optimization, asynchronous
communication, graph compression, other partitioning
strategies

I Identify and implement additional analytics that fit
push/pull/fixed/variable communication patterns

I Open-source code
I Contact gslota@psu.edu for current code

29 / 30

Acknowledgments

I Sandia and FASTMATH
I This research is supported by NSF grants CCF-1439057 and the

DOE Office of Science through the FASTMath SciDAC Institute.
Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energys National Nuclear Security Administration
under contract DE-AC04-94AL85000.

I Blue Waters Fellowship
I This research is part of the Blue Waters sustained petascale

computing project, which is supported by the National Science
Foundation (awards OCI-0725070, ACI-1238993, and
ACI-1444747) and the state of Illinois. Blue Waters is a joint effort
of the University of Illinois at Urbana Champaign and its National
Center for Supercomputing Applications.

I Kamesh Madduri’s CAREER Award
I This research was also supported by NSF grant ACI-1253881.

30 / 30

Conclusions and Thanks!

I Graphs are ubiquitous, massive, and complex: scalability
and efficiency are important considerations for analytics

I We identified two distinct communication patterns that
fit a large class of graph algorithms

I Implemented several algorithms fitting these patterns and
demonstrated scalability up to 65k cores of Blue Waters

I Analyzed the 2012 Web Data Commons hyperlink graph

I Demonstrated 26-1573× speedup vs. GraphX on 256
cores of Compton with graphs less than 0.5% the size of
the Web Crawl

Thank you! Questions? gslota@psu.edu, www.gmslota.com

31 / 30

Bibliography I

M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring user influence in Twitter: The million
follower fallacy. In Proc. Int’l. Conf. on Weblogs and Social Media (ICWSM), 2010.

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model for graph mining. In Proc.
Int’l. Conf. on Data Mining (SDM), 2004.

J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. Graph structure in the web - revisited: A
trick of the heavy tail. In Proc. WWW, 2014.

Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The graph structure in the web - analyzed
on different aggregation levels. J. Web Sci., 1(1):33–47, 2015.

32 / 30

