Experimental Design of Work Chunking for
Graph Algorithms on High Bandwidth
Memory Architectures

George M. Slota' Sivasankaran Rajamanickam?

1 Rensselaer Polytechnic Institute, 2Sandia National Labs
slotag@rpi.edu, srajama@sandia.gov

IPDPS 24 May 2018

Intro and Overview of Talk

m Ongoing trend: expansion of memory hierarchy for

increased CPU throughput
m E.g., high-bandwidth memory (HBM) layer on current
generation Intel Xeon Phis (Knight's Landing)

m Can we explicitly design graph computations to effectively
utilize this layer?

m We explore a work chunking approach that iteratively
brings in pieces of a large graph to perform local updates
in HBM — we specifically look at the label propagation
algorithm. We find:

m Chunking has minimal impact on solution quality
m Chunking can also decrease time to solution

Primary assumption: the graphs being processed are too large
to fit entirely within MCDRAM

Intel Knight's Landing (KNL)

68-72 cores with High Bandwidth Multi-channel DRAM (MCDRAM)

36 Tiles
connected by
2D Mesh
Interconnect

Source:Intel

Stream Triad Bandwidth
(Capacity)
m DDR4: 90 GB/s
(up to 384 GB)

= MCDRAM: 450 GB/s
(16 GB)

Multiple MCDRAM modes
m Cache Mode
m Flat Mode
= Hybrid Mode
Latency: MCDRAM ~ DDR4

/19

Label Propagation

= Randomly label with n = #wverts labels

Label Propagation

= Randomly label with n = #wverts labels

Label Propagation

= Randomly label with n = #wverts labels
m lteratively update each v € V(G) with max per-label count over neighbors with ties broken randomly

Label Propagation

= Randomly label with n = #wverts labels
m lteratively update each v € V(G) with max per-label count over neighbors with ties broken randomly

Label Propagation

= Randomly label with n = #wverts labels
m lteratively update each v € V(G) with max per-label count over neighbors with ties broken randomly
m Algorithm completes when no new updates possible; in large graphs, fixed iteration count

Why Label Propagation?

m Iterative vertex updates — prototypical of many other
graph computations

m Wide usage — community detection, partitioning, other
unsupervised learning problems

m Nondeterministic algorithm by design — solution
quality can vary based on processing methodology

m Suitably complex — longer execution times might
benefit from chunking optimizations

m Straightforward to implement via work chunking

Multilevel Memory Label Propagation

via work chunking

1: L + LPChunking(G(V, E), Cpum, Citer)
2: forallv e V: L(v) < id(v) > Initialize labels as vertex ids
3: while at least one L(v) updates do

4: forc=1.--Cpym do

5: Ve < Chunk(c, V), E. < (v,u) e E:voruecV,

6: for iter =1...Cjt, while one L(v) : v € V. updates do
7 for all v € V. do in parallel > Random order
8: Counts + () > Hash table
0: for all (v,u) € E, do

10: Counts(L(u)) < Counts(L(u)) + 1

11: NewlLabel < GetKeyOfMaxVal(Counts(. . .))

12: if NewlLabel # L(v) then

13: L(v) < NewlLabel

Chunking Considerations

Primary chunking variables

m Number of total chunks (Cpum)

m Work iterations performed on each chunk (Cizr)
How to determine data per chunk?

m Block methods (vertex block, edge block)

m Randomization or hashing

m Explicit partitioning
How to transfer chunked data?

m All threads transfer, then all threads work

m Overlap transfer of ¢; 1 with work on ¢;

m Vary number of work/transfer threads to ensure balance

Algorithmic Variants

Baseline Cache
m Baseline implementation running in cache mode
Baseline Hybrid

m Baseline implementation with hash table allocated in
MCDRAM

m Graph structure and other data handled by MCDRAM
cache

Chunk-HBM
m All data explicitly allocated in MCDRAM
m Per-chunk graph structure transfered into MCDRAM
m All vertex labels static in MCDRAM

Experimental Setup

Test System and test graphs

Test System: Bowman at Sandia Labs — each node has a
KNL with 68 cores, 96 GB DDR, and 16 GB MCDRAM

Test Graphs:

Network n m davg dmaxr D

LiveJournal 48 M 69 M 18 20K 18
Friendster 66 M 1.8 B 27 2K 34

Twitter 52M 2.08B 3r 37M 19
Host 89M 208B 22 34M 23
uk-2007 105M 33B 31 975K 82

wBTER5H0 50M 12B 24 110K 12
wBTER_100 100 M 2.48B 24 135K 12

How does chunking impact solution quality?

10/19

Convergence and Solution Quality

For label propagation and community detection algorithms in general

Defining convergence
m True convergence: no more label updates can occur

m Looser criteria: fixed iterations, some modularity gain or
change, number of labels, others

We run to true convergence when possible, but fix iterations to
enable a parametric study of chunking variables.

Defining solution quality
m Standard metrics when no ground truth exists: modularity,
conductance, among many others

m When ground truth exists: normalized mutual information
(NMI) and related measurements
Despite some observed flaws with their usage, we select the
standard measurements of modularity and NM|.

11/19

Chunking Parameters

Evaluating impact of number of chunks and iterations per chunk

m Heatmaps of iterations to convergence (left) and impact on final
modularity (right) — lighter is better

m About 5X increase in iterations captured in left plot and 2% total
modularity change in right plot

m While chunking increases iterations to convergence, it has minimal
impact on final solution quality (and actually improves it in
several instances — LiveJournal, Host, wBTER)

50 50

20 20 .
c c

10 2 10 2
(@] (@]

5 5 5 5
o o

3 B 3 B

2 - 2 -

1 1

N MmO o ga E; N MmO o Ea o
Number of Chunks Number of Chunks

12/19

Chunking Parameters

Lancichinetti-Fortunato-Radicchi (LFR) benchmark

m Ran same parametric tests on LFR benchmark
(n = 10,000, k = 15, mazk = 500, t1 = 2, t2 = 1,
pw=0.05...0.6)

m Heatmap of iterations to convergence (left) and NMI
versus baseline (right)

m Similar takeaways to real-world test instances

-&- Base A~ Chunk_5_5 -=- Chunk_50_50

1.000 4 B—A— A

50
20 0.995-
0

p= 4
= 0990

Iter Per Chunk

0.985 -

- D W o=

o9s0- .0
N MmO O o o 0.1 02 03 0.4 05 06
Number of Chitks Mixing Parameter 'mu’

13/19

Can HBM chunking improve time to solution?

14 /19

Effect of Partitioning Methodology

5 iterations per chunk, minimum number of chunks possible (~5), 40 iterations

m Effects of partitioning method on per-iteration speedup
vs. baseline timing (left) and modularity (right)

m Explicit partitioning demonstrates largest improvements,
but at the obvious cost of computing the partition

5 100

0.75-

0.50-

S 0.25-

; 0.00-

Partitioning Strategy Partitioning Strategy

- N
(3] o
1 1

Per—iter Speedup
2 o

Modularity Improvemen

g
o

dind -
Yo0|gH8A -
¥00|g96p3 -
wopuey -
dnd -
¥20|gHIaA -
%o0|gebp3 -
wiopuey -

15/19

Overall: Cache vs. Hybrid vs. Flat modes

Best times (in seconds) in each mode for each graph for 40 iter or convergence

Network Cache Hybrid Flat Method

LiveJournal 33 29 25 P-OL
Friendster 495 337 333 VB
Twitter 1,793 871 242 P-OL
Host 2,447 2086 712 EB-OL
uk-2007 1,981 1,241 783 P-OL
wBTER_50 577 474 225 VB-OL

wBTER_100 1,602 491 435 EB-OL

Partitioning: VB: Vertex Block; EB: Edge Block; P: PULP
-OL indicates with overlapping communication

16/19

Time and modularity vs. iterations

Per-iteration time and total time doesn’t tell the whole story

Friendster (left) and Twitter (right) for modularity vs. iterations (top)

and time per iteration (bottom). Baseline and Cyym-Citer-

~©- Base 4~ 5_2 5-10_5 20_5 -5~ Base %~ 10_5 & 20_5

1.00- =
’?0.75-] 2
g ‘ S
S 0.50- S 0.
° °
s s
0.25- |/
000 . ' ' '
00 5 10 15 20 25 30 35 40 10 15 20 25
Number of Global Iterations Number of Global Ilterations
-o- Base 4~ 5_2 -5 10_5 — 20_5 -o- Base 4 10_5 = 20_5
1.00- 55 1.00~
2075 b0.75-
= =
S 5]
S 0.50- S 0.50-
° °
s s
0.25- 0.25-
0.00- & 0.00- &
0 100 200 300 400 500 0 500 1000 1500)
Time (s) 17/19

Time (s)

Discussion: Generalization

To other vertex programs on KNLs with HBM
m Tested chunked versions of PageRanks and K-cores
m Speedups still there but much less — under 25%

m Hash table for label propagation is likely just extremely
ill-performant in cache mode; benefits most from
memory considerations

m Minimal impact on solution quality for PR (for K-cores, we
run to true convergence)
GPU and SSD-based graph processing
m Note: biggest general takeaway is running multiple local
iterations doesn't impact solution quality
m So limited-memory GPUS and large-scale processing with
SSD arrays might consider similar approaches
Distributed processing

m Equivalence to only communicating every nth_iteration
18 /19

Conclusions

and future work

m Chunking minimally affects solution quality of label
propagation, but can increase the number of iterations
required for a given “quality”

m Explicit handling of HBM generally improves per-iteration
timing and can improve time-to-solution in select instances
m Future work:

m Further explore generalizations to other vertex programs
m Multi-tiered chunking — hold key vertices in HBM and
update every iteration

www.gmslota.com, slotag@rpi.edu

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energys National Nuclear Security Administration under contract DE-NA0003525

19/19

