
Experimental Design of Work Chunking for

Graph Algorithms on High Bandwidth

Memory Architectures

George M. Slota1 Sivasankaran Rajamanickam2

1Rensselaer Polytechnic Institute, 2Sandia National Labs
slotag@rpi.edu, srajama@sandia.gov

IPDPS 24 May 2018

1 / 19



Intro and Overview of Talk

Ongoing trend: expansion of memory hierarchy for
increased CPU throughput

E.g., high-bandwidth memory (HBM) layer on current
generation Intel Xeon Phis (Knight’s Landing)

Can we explicitly design graph computations to effectively
utilize this layer?
We explore a work chunking approach that iteratively
brings in pieces of a large graph to perform local updates
in HBM – we specifically look at the label propagation
algorithm. We find:

Chunking has minimal impact on solution quality
Chunking can also decrease time to solution

Primary assumption: the graphs being processed are too large
to fit entirely within MCDRAM

2 / 19



Intel Knight’s Landing (KNL)
68-72 cores with High Bandwidth Multi-channel DRAM (MCDRAM)

Source:Intel

Stream Triad Bandwidth
(Capacity)

DDR4: 90 GB/s
(up to 384 GB)

MCDRAM: 450 GB/s
(16 GB)

Multiple MCDRAM modes

Cache Mode

Flat Mode

Hybrid Mode

Latency: MCDRAM ≈ DDR4

3 / 19



Label Propagation

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 19



Label Propagation

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 19



Label Propagation

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 19



Label Propagation

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 19



Label Propagation

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 19



Why Label Propagation?

Iterative vertex updates – prototypical of many other
graph computations

Wide usage – community detection, partitioning, other
unsupervised learning problems

Nondeterministic algorithm by design – solution
quality can vary based on processing methodology

Suitably complex – longer execution times might
benefit from chunking optimizations

Straightforward to implement via work chunking

→ → →

5 / 19



Multilevel Memory Label Propagation
via work chunking

1: L← LPChunking(G(V,E),Cnum,Citer)
2: for all v ∈ V : L(v)← id(v) . Initialize labels as vertex ids
3: while at least one L(v) updates do
4: for c = 1 · · ·Cnum do
5: Vc ← Chunk(c, V ), Ec ← 〈v, u〉 ∈ E : v or u ∈ Vc

6: for iter = 1 . . . Citer while one L(v) : v ∈ Vc updates do
7: for all v ∈ Vc do in parallel . Random order
8: Counts← ∅ . Hash table
9: for all 〈v, u〉 ∈ Ec do

10: Counts(L(u))← Counts(L(u)) + 1

11: NewLabel← GetKeyOfMaxVal(Counts(. . .))
12: if NewLabel 6= L(v) then
13: L(v)← NewLabel

6 / 19



Chunking Considerations

Primary chunking variables

Number of total chunks (Cnum)

Work iterations performed on each chunk (Citer)

How to determine data per chunk?

Block methods (vertex block, edge block)

Randomization or hashing

Explicit partitioning

How to transfer chunked data?

All threads transfer, then all threads work

Overlap transfer of ci+1 with work on ci

Vary number of work/transfer threads to ensure balance

7 / 19



Algorithmic Variants

Baseline Cache

Baseline implementation running in cache mode

Baseline Hybrid

Baseline implementation with hash table allocated in
MCDRAM

Graph structure and other data handled by MCDRAM
cache

Chunk-HBM

All data explicitly allocated in MCDRAM

Per-chunk graph structure transfered into MCDRAM

All vertex labels static in MCDRAM

8 / 19



Experimental Setup
Test System and test graphs

Test System: Bowman at Sandia Labs – each node has a
KNL with 68 cores, 96 GB DDR, and 16 GB MCDRAM

Test Graphs:

Network n m davg dmax D̃

LiveJournal 4.8 M 69 M 18 20 K 18
Friendster 66 M 1.8 B 27 5.2 K 34
Twitter 52 M 2.0 B 37 3.7 M 19
Host 89 M 2.0 B 22 3.4 M 23
uk-2007 105 M 3.3 B 31 975 K 82
wBTER 50 50 M 1.2 B 24 110 K 12
wBTER 100 100 M 2.4 B 24 135 K 12

9 / 19



How does chunking impact solution quality?

10 / 19



Convergence and Solution Quality
For label propagation and community detection algorithms in general

Defining convergence

True convergence: no more label updates can occur

Looser criteria: fixed iterations, some modularity gain or
change, number of labels, others

We run to true convergence when possible, but fix iterations to
enable a parametric study of chunking variables.

Defining solution quality

Standard metrics when no ground truth exists: modularity,
conductance, among many others

When ground truth exists: normalized mutual information
(NMI) and related measurements

Despite some observed flaws with their usage, we select the
standard measurements of modularity and NMI.

11 / 19



Chunking Parameters
Evaluating impact of number of chunks and iterations per chunk

Heatmaps of iterations to convergence (left) and impact on final
modularity (right) – lighter is better
About 5× increase in iterations captured in left plot and 2% total
modularity change in right plot
While chunking increases iterations to convergence, it has minimal
impact on final solution quality (and actually improves it in
several instances – LiveJournal, Host, wBTER)

2 3 5

1
0

2
0

5
0

Number of Chunks

1

2

3

5

10

20

50

It
e
r 

P
e
r 

C
h
u
n
k

2 3 5

1
0

2
0

5
0

Number of Chunks

1

2

3

5

10

20

50

It
e
r 

P
e
r 

C
h
u
n
k

12 / 19



Chunking Parameters
Lancichinetti-Fortunato-Radicchi (LFR) benchmark

Ran same parametric tests on LFR benchmark
(n = 10, 000, k = 15, maxk = 500, t1 = 2, t2 = 1,
µ = 0.05 . . . 0.6)
Heatmap of iterations to convergence (left) and NMI
versus baseline (right)
Similar takeaways to real-world test instances

2 3 5

1
0

2
0

5
0

Number of Chunks

1

2

3

5

10

20

50

It
e

r 
P

e
r 

C
h

u
n

k

0.980

0.985

0.990

0.995

1.000

0.1 0.2 0.3 0.4 0.5 0.6

Mixing Parameter 'mu'

N
M

I
Base Chunk_5_5 Chunk_50_50

13 / 19



Can HBM chunking improve time to solution?

14 / 19



Effect of Partitioning Methodology
5 iterations per chunk, minimum number of chunks possible (∼5), 40 iterations

Effects of partitioning method on per-iteration speedup
vs. baseline timing (left) and modularity (right)
Explicit partitioning demonstrates largest improvements,
but at the obvious cost of computing the partition

0.0

0.5

1.0

1.5

2.0

P
u
L
P

V
e
rtB

lo
c
k

E
d
g
e
B

lo
c
k

R
a
n
d
o
m

Partitioning Strategy

P
e
r−

it
e
r 

S
p
e
e
d
u
p

0.00

0.25

0.50

0.75

1.00
P

u
L
P

V
e
rtB

lo
c
k

E
d
g
e
B

lo
c
k

R
a
n
d
o
m

Partitioning Strategy

M
o
d
u
la

ri
ty

 I
m

p
ro

ve
m

e
n
t

15 / 19



Overall: Cache vs. Hybrid vs. Flat modes
Best times (in seconds) in each mode for each graph for 40 iter or convergence

Network Cache Hybrid Flat Method

LiveJournal 33 29 25 P-OL
Friendster 495 337 333 VB
Twitter 1,793 871 242 P-OL
Host 2,447 2,086 712 EB-OL
uk-2007 1,981 1,241 783 P-OL
wBTER 50 577 474 225 VB-OL
wBTER 100 1,602 491 435 EB-OL

Partitioning: VB: Vertex Block; EB: Edge Block; P: PuLP
-OL indicates with overlapping communication

16 / 19



Time and modularity vs. iterations
Per-iteration time and total time doesn’t tell the whole story

Friendster (left) and Twitter (right) for modularity vs. iterations (top)
and time per iteration (bottom). Baseline and Cnum Citer.

0.00

0.25

0.50

0.75

1.00

01 5 10 15 20 25 30 35 40

Number of Global Iterations

M
o
d
u
la

ri
ty

Base 5_2 10_5 20_5

0.00

0.25

0.50

0.75

1.00

0 1 5 10 15 20 25

Number of Global Iterations

M
o
d
u
la

ri
ty

Base 10_5 20_5

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500

Time (s)

M
o
d
u
la

ri
ty

Base 5_2 10_5 20_5

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

Time (s)

M
o
d
u
la

ri
ty

Base 10_5 20_5

17 / 19



Discussion: Generalization

To other vertex programs on KNLs with HBM
Tested chunked versions of PageRanks and K-cores
Speedups still there but much less – under 25%

Hash table for label propagation is likely just extremely
ill-performant in cache mode; benefits most from
memory considerations

Minimal impact on solution quality for PR (for K-cores, we
run to true convergence)

GPU and SSD-based graph processing
Note: biggest general takeaway is running multiple local
iterations doesn’t impact solution quality
So limited-memory GPUS and large-scale processing with
SSD arrays might consider similar approaches

Distributed processing
Equivalence to only communicating every nth iteration

18 / 19



Conclusions
and future work

Chunking minimally affects solution quality of label
propagation, but can increase the number of iterations
required for a given “quality”

Explicit handling of HBM generally improves per-iteration
timing and can improve time-to-solution in select instances

Future work:

Further explore generalizations to other vertex programs
Multi-tiered chunking – hold key vertices in HBM and
update every iteration

www.gmslota.com, slotag@rpi.edu

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energys National Nuclear Security Administration under contract DE-NA0003525

19 / 19


