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Graphs are...

Everywhere

Internet
Social, communication networks
Computational biology and
chemistry
Scientific computing, meshing,
interactions

Figure sources: Franzosa et al. 2012, http://www.unc.edu/ unclng/Internet History.htm
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Graphs are...

Complex

Graph analytics is listed as one of DARPA’s 23 toughest
mathematical challenges
Highly diverse – graph structure and problems vary from
application to application
Real-world graph characteristics makes computational
analysis challenging

Skewed degree distributions
‘Small-world’ nature
Dynamic
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Accelerators (GPUs, Xeon Phi) are also ...

Everywhere

Most of the top supercomputers
and academic clusters use GPUs
and Intel Xeon Phi co-processors
Manycore processors might
replace multicore in future

Complex

Multilevel memory, processing
hierarchy
Explicit communication and data
handling
Require programming for wide
parallelism

Figure sources: NCSA, NVIDIA
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Motivating questions for this work

Q: What are some common abstractions that we can
use to develop parallel graph algorithms for manycores?

Q: What key optimization strategies can we identify
to design new parallel graph algorithms for manycores?

Q: Is it possible to develop performance-portable
implementations of graph algorithms using advanced
libraries and frameworks using the above optimizations
and abstractions?



Our contributions

Q: Common abstractions for manycores?

We use array-based data structures, express computation
in the form of nested loops.

Q: Key optimization strategies

We improve load balance by manual loop collapse.

Q: Performance-portable implementations of graph
algorithms using advanced libraries and frameworks?

We use Kokkos (Edwards et al., JPDC 2014).

We compare high-level implementations using new
framework to hand-optimized code + vary graph
computations + vary graph inputs + vary manycore
platform.



Talk Overview

Manycores and the Kokkos programming model

Abstracting graph algorithms

Optimizing for manycore processing

Algorithms

Results



Background
GPU and Xeon Phi microarchitecture

GPU

Multiprocessors (up to about 15/GPU)
Multiple groups of stream processors per MP (12×16)
Warps of threads all execute SIMT on single group of
stream processors (32 threads/warp, two cycles per
instruction)
Irregular computation (high degree verts, if/else, etc.)
can result in most threads in warp doing NOOPs

Xeon Phi (MIC)

Many simple (Pentium 4) cores, 57-61
4 threads per core, need at least 2 threads/core for OPs
on each cycle
Highly vectorized (512 bit width) - difficult for irregular
computations to exploit



Background
Kokkos and GPU microarchitecture

Kokkos

Developed as back-end for portable scientific computing
Polymorphic multi-dimensional arrays for varying access
patterns
Thread parallel execution for fine-grained parallelism

Kokkos model - performance portable programming to
multi/manycores

Thread team - multiple warps on same multiprocessor,
but all still SIMT for GPU
Thread league - multiple thread teams, over all teams all
work is performed
Work statically partitioned to teams before parallel code
is called



Abstracting graph algorithms
for large sparse graph analysis

Observation: most (synchronous) graph algorithms
follow a tri-nested loop structure

Optimize for this general algorithmic template
Transform structure for more parallelism
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Optimizations for Manycore Processors
Parallelization strategies

Baseline parallelization

Hierarchical expansion (e.g., Hong et al., PPoPP 2011)

‘Manhattan collapse - local’ (e.g.m Merrill et al., PPoPP 2012)

‘Manhattan collapse - global’ (e.g., Davidson et al., IPDPS 2014)
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Optimizations for Manycore Processors
Locality and SIMD Parallelism using Kokkos

Memory access

Explicit shared memory utilization on GPU
Coalescing memory access (locality)
Minimize access to global/higher-level memory

Collective operations

Warp and team-based operations (team scan, team
reduce)
Minimize global atomics (team-based atomics)



Graph computations
Implemented algorithms

Breadth-first search

Color propagation

Trimming

The Multistep algorithm (Slota et al., IPDPS 2014) for
Strongly Connected Components (SCC) decomposition



Graph computations
Breadth-first search

Useful subroutine in other graph computations
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Graph computations
Color propagation

Basic algorithm for connectivity

General approach applies to other algorithms (e.g., label
propagation)
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Graph computations
Trimming

Routine for accelerating connectivity decomposition
Iteratively trim 0-degree vertices
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Graph computations
Multistep SCC decomposition (Slota et al., IPDPS 2014)

Combination of trimming, BFS, and color propagation

1: T ← Trim(G)
2: V ← V \ T
3: Select v ∈ V for which din(v) ∗ dout(v) is maximal
4: D ← BFS(G(V,E(V )), v)
5: S ← D ∩ BFS(G(D,E ′(D)), v)
6: V ← V \ S
7: while NumVerts(V ) > 0 do
8: C ← ColorProp(G(V,E(V )))
9: V ← V \ C



Experimental Setup

Test systems: One node of Shannon and Compton at Sandia, Blue

Waters at NCSA

Intel Xeon E5-2670 (Sandy Bridge), dual-socket, 16 cores,
64-128 GB memory
NVIDIA Tesla K40M GPU, 2880 cores, 12 GB memory
NVIDIA Tesla K20X GPU, 2688 cores, 6 GB memory
Intel Xeon Phi (KNC, ∼3120A), 228 cores, 6 GB memory

Test graphs:

Various real and synthetic small-world graphs, 5.1 M to
936 M edges
Social networks, circuit, mesh, RDF graph, web crawls,
R-MAT and G(n, p), Wikipedia article links



Results
BFS and Coloring versus loop strategies

Performance in GTEPS (109 trav. edges per second) for
BFS (left) and color propagation (right) on Tesla K40M.

H: Hierarchical, ML: Local collapse, MG: Global collapse,
gray bar: Baseline
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Results
BFS performance and cumulative impact of optimizations, Tesla K40M

M: local collapse, C: coalescing memory access, S: shared
memory use, L: local team-based primitives
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Results
SCC cross-platform performance comparison

B: Baseline, MG: Manhattan Global, ML: Manhattan
Local, OMP: Optimized OpenMP code

 SNB  KNC  K20X  K40M
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Conclusions

We express several graph computations in the Kokkos
programming model using an algorithm design
abstraction that allows portability across both multicore
platforms and accelerators.

The SCC code on GPUs (using the Local Manhattan
Collapse strategy) demonstrates up to a 3.25× speedup
relative to a state-of-the-art parallel CPU implementation
running on a dual-socket compute node.

Future work: Expressing other computations using this
framework; Heterogeneous CPU-GPU processing; Newer
architectures.
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