Vertex Ordering Refinement and
Coarsening Methods for
Accelerated Graph Analysis

Michael Mandulak' Christopher Brissette'
George M. Slota’

'Rensselaer Polytechnic Institute

SIAM Conference on Computational Science and
Engineering (CSE23)

3 March 2023

Outline

» Motivation & Background - Vertex Ordering and Coarsening

» Experimental Study - Metrics and Analysis Methods

» Experimental Study - Considered Ordering Methods

» Explicit Ordering Refinement - Previous Work

» Applications Within Coarsening - Algebraic Distance Refinement
» Experimental Results - Improvements and Variability

» Conclusions & Future Works

Vertex Ordering Problem - Coarsening

Motivation
Goal: Develop ordering refinement methods within coarsening
» Improve analysis runtime and cache efficiency.
» Integrate ordering refinement with coarsening methods.
Why?
» Faster graph analysis — growing network sizes.

» Memory access pattern concerns on HPC systems.
Focus:

» Improve vertex locality for improved memory access
patterns.

» Consider vertex ordering in the context of coarsening.
» Experimental study — is optimization viable?
» Apply partitioning methods to vertex ordering.

Vertex Ordering Problem
Background

Problem:

» Undirected graph G = (V[0, n), E € V x V), find
permutation

1t : V>N to minimize a metric.
Metrics:

» Linear Gap Arrangement (LinGap) problem:

LinGap(G,) = Z Z OOl
UEN v;esN(u)

» Log Gap Arrangement (LogGap) problem:
LogGap(G,m) = 1 - :
ogiapGm =) > loglln(w) - (@)D

Graph Coarsening Problem

Background
Problem:
» Undirected graph G = (V[0, n), E € V x V), find
permutation
> Find representation G = (V_,E_) where |V | =n _<n.
Metric:

» Similarity - Algebraic Distance

Algorithm 1 Algebraic Distance

Input: Parameter w, initial random vector z”
1: fork=1,2,...do
2 .’ffk) — E]- wijxg.k_l)/ Zj Wij Vi
3 z®) (1 —wzkD 4wz
4: end for

Experimental Study

Considerations:
» What analysis algorithms can we test with?

» What ordering methods can we compare with?
» How do our metrics relate to analysis measures?
» How should we refine? How to include coarsening?

Analysis Algorithms

Memory Access

Focus: Vertex-centric approaches with CPU-based shared
memory parallelism.
PageRank
» Sparse matrix-vector multiplication.
» Compressed Sparse Row locality.
Louvain
» Community detection through edge density.

» Ordering dependent within neighborhoods.
Multistep

» Traversal and propagation connectivity.
» BFS-based vertex access.

Ordering Methods

Natural Ordering
Rabbit
» Community generation and mapping to cache-hierarchies.

» Optimizes for cache efficiency.
Layered Label Propagation (LLP)

» Community detection through label propagation.
» Considers global distribution of labels.

» Optimizes for compression.

Shingle
» Order by neighborhood commonalities.
» Optimizes for compression.

Previous Refinement Work
Highlights:

» Positive refinement metric and analysis measure
correlations.

» Degree-based refinement method.
» Experimental results - high improvement with initial

Rabbit ordering.

Relative Analysis Improvements

Ordering Cache | L1 Cache | Time
LLP 0.991 1.002 | 1.637
LLPLinRefine 1.053 1.005 | 1.623
LLPLogRefine 1.056 1.007 | 1.593
Rabbit 1.002 0.999 | 1.933
RabbitLinRefine 1.144 1.017 | 2.025
RabbitLogRefine 1.137 1.031 | 1.973
Shingle 1.017 1.018 | 1.317
ShingleLinRefine 1.043 0.986 | 1.336
ShingleLogRefine | 1.050 1.026 | 1.340
LinRefine 1.054 1.007 | 1.479
LogRefine 1.058 0.992 | 1.458

Degree-based Refinement Method
Algorithm

Algorithm 2 Log Gap Arrangement Refinement by Degree

1: function LOGGAP DEGREE REFINE(G,p)
2: S = sort(V') ascending by degree

3: for each vertex u in the first p percent of S in parallel
do

4: for each vertex v in u’s adjacency list do

5: bs = evalLogGapArrLocal(G, u, v)

6: as = evalLogGapArrLocalSwap(G, u, v)

7 if as < bs and as < desiredSwapV al,, then
8: desiredSwap, = v

9: desiredSwapVal, = as
10: end if
11: end for
12: end for
13: for each vertex u in the first p percent of S do
14: bs = evalLogGapArr(G)

15: swap(G, u, desiredSwap,,)

16: as = evalLogGapArr(G)

17: if bs < as then

18: swap(G, u, desiredSwap,,)

19: end if

20: end for
21: end function

Integrate With Coarsening

Motivation:

» Ordering and coarsening framework - maintain
locality.

» Relate coarsening metrics to analysis measures.

» Predict ordering vertex set from coarsening.
Considerations:

» Can we predict an ordering using our metrics?

» Can we consider coarsening metrics in ordering
refinement?

» Can we develop a refinement method to integrate
with coarsening?

Coarsening Method

Algebraic Distance

Vertex Similarity Metric: Algebraic Distance

Algorithm 4 Algebraic Distance Coarsening

1: function ALGDIST COARSEN(G,V ,p) > GPU Parallel
2: Vaa < algDist(G,V)
SetEdgeW eights(V,q, G)
M = SuitorMatching(G)
algDistRefine(G, Vad, p) > Refine Ordering
G = merge(G, M)
end function

Algorithm 5 GPU-Suitor Algorithm

1: function GPU-SUITOR(G(V, E), mate)
2 while there are vertices to process do
for each Vj; in parallel do
for eachv € V; do
Process adj(v) in parallel
Determine best candidate for v in parallel
end for
Set suitor for each candidate of V; in parallel
Store self or displaced vertices
Synchronize across warps; load balance

(e

=
jay

Algebraic Distance Refinement Method
Algorithm

Algorithm 3 Algebraic Distance Refinement

1: function ALGEBRAIC DISTANCE REFINE(G,p)
2: Vad = algDist(G)

3 V, = degreeSort AndChoose(G, p)

4 for u € V in parallel do

5: for each vertex v in u’s adjacency list do
6: local AlgDist = |Vyq[u] — Vaa[v]]

7 if local AlgDist is maximum then

8 mazPair = v

9.

E end if
10: end for
11 minV = smallestLabel(u, mazPair)
12: mazV = largestLabel(u, mazPair)
13: for each vertex v in minV’s adjancency list do
14: if |label[maz V] — label[v]| is minimum then
15: desiredSwapiny = v
16: end if
17: end for

18: end for
19: for each desiredSwapminy do

20: bs = evalLogGapArr(G)

21: swap(G, minV, desiredSwapminyv)

22: as = evalLogGapArr(G)

23: if bs < as then

24: swap(G, minV, desiredSwapminy)
25: end if

26 end for
27: end function

Algebraic Distance Refinement Method

Desired Swaps
» Find least similar (maximum) neighbor from metric.
» Find the closest label among the smallest label vertex’s

neighbors.

2: Vaa = algDist(G)

3: Vs = degreeSort AndChoose(G, p)

4: for u € V; in parallel do

5 for each vertex v in u’s adjacency list do

6: local AlgDist = |Vaa[u] — Vaa[v]]

7: if local AlgDist is maximum then

8: mazPair = v

9: end if

10: end for

11: minV = smallestLabel(u, mazPair)
12: mazV = largestLabel (u, mazPair)
13: for each vertex v in minV’s adjancency list do
14: if |label[maxV] — label[v]| is minimum then
15: desiredSwapminy = v
16: end if
17: end for

18: end for

Algebraic Distance Refinement Method

Swap Completion

» Sequentially consider p X n swaps.
» Commit swap if the metric still holds - changes per swap.

19: for each desiredSwap,,iny do

20: bs = evalLogGapArr(G)

21: swap(G, minV, desiredSwap.,inv)

92 as = evalLogGapArr(G)

23: if bs < as then

24: swap(G, minV, desiredSwapminy)
25: end if

26: end for

Experimentation

Data: Diverse classes and sizes
» SNAP, DIMACS, WebGraph
Collection:

» Ten runs per analysis algorithm per initial ordering per
refinement method.

Architecture:

» AMD system — 2TB DDR4 RAM.

» Cache per core: 4MiB L1, 64 MiB L2, 256MiB shared L3 per

socket. TABLE 1
Basic ordering graph properties

Graph Class #Vertices | #Edges | Cite
com-Friendster Social 66 M 1.8B | [27]
twitter-2010 Social 417M 15B | [28]
LiveJournal Social 48M 69M | [29]
web-ClueWeb09 | Web Graph 1.7B 79B | [30]
enwiki-2013 Web Graph 42M | 1013 M [4]
web-BerkStan Web Graph 685 K 76 M | [31]
it-2004 Web Graph 41.3M 12B | [32]
antlkm Mesh 13.5M 53.8M | [33]
trianglemesh1 Mesh 19M 19M [34]
bunny Mesh 348K | 69.6K! [35]
USA-road-d Road 24M 583M | [36]

Results - Louvain (L) & Multistep (R)

Algebraic Distance Refinement

= RabbitLinRefine
EEA RabbitLogRefine

[LLPLinRefine
I LLPLogRefine

E==1 ShingleLinRefine [LinRefine
EEE ShingleLogRefine ISEM LogRefine

30

N
o

Speedup (%)

Speedup (%)

trianglemeshl livejournal

trianglemeshl livejournal ~ web-BerkStan USA-road-d enwiki-2013

Cache Miss Improvement (%)
=N Y8 g3y

Cache Miss Improvement (%)

e

0
trian

trianglemeshl livejournal web-BerkStan USA-road-d enwiki-2013

Results - Ordering per Coarsening Level

Algebraic Distance Refinement

PageRank Cache

=g EA Rabbit £33 Shingle T3 LinRefine
B (PLinRefine BB RabbitlinRefine [ShingleLinRefine [ESM LogRefine
=3 LiPlogRefine B3 RabbitlogRefine [ShingleLogRefine

Cache Miss Improvement (%)
o

Cache Miss Improvement (%)

bunnycl bunnyc2 bunnyc3

Results Summary

» Overall slight analysis improvements for Louvain and
Multistep using algebraic distance refinement.

» Algebraic distance refinement on an initial

natural ordering can show high improvement.

» Initial results for refinement per coarsening level
show variable improvement trends.

» Optimization shows potential for improvements to
heuristic methods.

Contributions & Conclusions

Contributions
» Experimental study into integrated ordering within coarsening.

» Refinement framework for similarity metric-based ordering
refinement.

» Experimental results for the improvement of analysis measures.
Conclusions:

» Explicit ordering methods are complex!

» Algebraic distance refinement shows similar improvements to
degree-based refinement.

» Not currently competitive with heuristics - can show high
improvement with a carefully chosen refinement set.

Future Works

Refinement Testing

» Further testing of algebraic distance refinement — more
graph classes and sizes.

» More diverse analysis algorithms — not TLAV.
» Alternative similarity metrics.
Framework

» Runtime analysis per coarsening level and refinement
amount.

» Active prediction of ordering based on similarity - omit
portions of refinement from predicted coarsening/ordering.

» Apply spectral and multi-level methods to the refinement
process.

Acknowledgement & Contact

Acknowledgement

» This work is supported by the National Science
Foundation under Grant No. 2047821.

Contact

» Michael Mandulak: mandum@rpi.edu
» George Slota: slotag@rpi.edu

mailto:mandum@rpi.edu
mailto:slotag@rpi.edu

