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Highlights

We present PuLP, a multi-constraint multi-objective
partitioner designed for small-world graphs

Shared-memory parallelism

PuLP demonstrates an average speedup of 14.5×
relative to state-of-the-art partitioners

PuLP requires 8-39× less memory than state-of-the-art
partitioners

PuLP produces partitions with comparable or better
quality than state-of-the-art partitioners for small-world
graphs
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Overview

PuLP: Partitioning Using Label Propagation
Overview

Graph partitioning formulation
Label propagation
Using label propagation for partitioning

PuLP Algorithm

Degree-weighted label prop
Label propagation for balancing constraints and
minimizing objectives
Label propagation for iterative refinement

Results

Performance comparisons with other partitioners
Partitioning quality with different objectives
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Overview
Partitioning

Graph Partitioning: Given a graph G(V,E) and p
processes or tasks, assign each task a p-way disjoint
subset of vertices and their incident edges from G

Balance constraints – (weighted) vertices per part,
(weighted) edges per part
Quality metrics – edge cut, communication volume,
maximal per-part edge cut

We consider:

Balancing edges and vertices per part
Minimizing edge cut (EC) and maximal per-part edge
cut (ECmax)
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Overview
Partitioning - Objectives and Constraints

Lots of graph algorithms follow a certain iterative model

BFS, SSSP, FASCIA subgraph counting (Slota and
Madduri 2014)
computation, synchronization, communication,
synchronization, computation, etc.

Computational load: proportional to vertices and edges
per-part

Communication load: proportional to total edge cut and
max per-part cut

We want to minimize the maximal time among tasks for
each comp/comm stage

5 / 37



Overview
Partitioning - Balance Constraints

Balance vertices and edges:

(1− εl)
|V |
p
≤ |V (πi)| ≤ (1 + εu)

|V |
p

(1)

|E(πi)| ≤ (1 + ηu)
|E|
p

(2)

εl and εu: lower and upper vertex imbalance ratios

ηu: upper edge imbalance ratio

V (πi): set of vertices in part πi

E(πi): set of edges with both endpoints in part πi
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Overview
Partitioning - Objectives

Given a partition Π, the set of cut edges (C(G,Π)) and
cut edge per partition (C(G, πk)) are

C(G,Π) = {{(u, v) ∈ E} | Π(u) 6= Π(v)} (3)

C(G, πk) = {{(u, v) ∈ C(G,Π)} | (u ∈ πk ∨ v ∈ πk)} (4)

Our partitioning problem is then to minimize total edge
cut EC and max per-part edge cut ECmax:

EC(G,Π) = |C(G,Π)| (5)

ECmax(G,Π) = max
k
|C(G, πk)| (6)
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Overview
Partitioning - HPC Approaches

(Par)METIS (Karypis et al.), PT-SCOTCH (Pellegrini et
al.), Chaco (Hendrickson et al.), etc.

Multilevel methods:

Coarsen the input graph in several iterative steps
At coarsest level, partition graph via local methods
following balance constraints and quality objectives
Iteratively uncoarsen graph, refine partitioning

Problem 1: Designed for traditional HPC scientific
problems (e.g. meshes) – limited balance constraints and
quality objectives

Problem 2: Multilevel approach – high memory
requirements, can run slowly and lack scalability
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Overview
Label Propagation

Label propagation: randomly initialize a graph with
some p labels, iteratively assign to each vertex the
maximal per-label count over all neighbors to generate
clusters (Raghavan et al. 2007)

Clustering algorithm - dense clusters hold same label
Fast - each iteration in O(n+m), usually fixed iteration
count (doesn’t necessarily converge)
Näıvely parallel - only per-vertex label updates
Observation: Possible applications for large-scale
small-world graph partitioning
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Overview
Partitioning - “Big Data” Approaches

Methods designed for small-world graphs (e.g. social
networks and web graphs)

Exploit label propagation/clustering for partitioning:
Multilevel methods - use label propagation to coarsen
graph (Wang et al. 2014, Meyerhenke et al. 2014)
Single level methods - use label propagation to directly
create partitioning (Ugander and Backstrom 2013,
Vaquero et al. 2013)

Problem 1: Multilevel methods still can lack scalability,
might also require running traditional partitioner at
coarsest level

Problem 2: Single level methods can produce
sub-optimal partition quality

10 / 37



Overview
PuLP

PuLP : Partitioning Using Label Propagation

Utilize label propagation for:

Vertex balanced partitions, minimize edge cut (PuLP)
Vertex and edge balanced partitions, minimize edge cut
(PuLP-M)
Vertex and edge balanced partitions, minimize edge cut
and maximal per-part edge cut (PuLP-MM)
Any combination of the above - multi objective, multi
constraint
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Algorithms
Primary Algorithm Overview

PuLP-MM Algorithm
Constraint 1: balance vertices, Constraint 2: balance
edges
Objective 1: minimize edge cut, Objective 2: minimize
per-partition edge cut
Pseudocode gives default iteration counts

Initialize p random partitions
Execute 3 iterations degree-weighted label propagation (LP)
for k1 = 1 iterations do

for k2 = 3 iterations do
Balance partitions with 5 LP iterations to satisfy constraint 1
Refine partitions with 10 FM iterations to minimize objective 1

for k3 = 3 iterations do
Balance partitions with 2 LP iterations to satisfy constraint 2

and minimize objective 2 with 5 FM iterations
Refine partitions with 10 FM iterations to minimize objective 1
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Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP)
for k1 iterations do

for k2 iterations do
Balance partitions with LP to satisfy vertex

constraint
Refine partitions with FM to minimize edge cut

for k3 iterations do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut
Refine partitions with FM to minimize edge cut
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Algorithms
Primary Algorithm Overview

Randomly initialize p partitions (p = 4)

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

After random initialization, we then perform label
propagation to create partitions

Initial Observations:

Partitions are unbalanced, for high p, some partitions
end up empty
Edge cut is good, but can be better

PuLP Solutions:

Impose loose balance constraints, explicitly refine later
Degree weightings - cluster around high degree vertices,
let low degree vertices form boundary between partitions
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Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP)
for k1 iterations do

for k2 iterations do
Balance partitions with LP to satisfy vertex

constraint
Refine partitions with FM to minimize edge cut

for k3 iterations do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut
Refine partitions with FM to minimize edge cut
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Algorithms
Primary Algorithm Overview

Part assignment after random initialization.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

After label propagation, we balance vertices among
partitions and minimize edge cut (baseline PuLP ends
here)

Observations:

Partitions are still unbalanced in terms of edges
Edge cut is good, max per-part cut isn’t necessarily

PuLP-M and PuLP-MM Solutions:

Maintain vertex balance while explicitly balancing edges
Alternate between minimizing total edge cut and max
per-part cut (for PuLP-MM, PuLP-M only minimizes
total edge cut)
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Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP)
for k1 iterations do

for k2 iterations do
Balance partitions with LP to satisfy vertex

constraint
Refine partitions with FM to minimize edge cut

for k3 iterations do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut
Refine partitions with FM to minimize edge cut
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Algorithms
Primary Algorithm Overview

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

Part assignment after balancing for vertices and minimizing
edge cut.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP)
for k1 iterations do

for k2 iterations do
Balance partitions with LP to satisfy vertex

constraint
Refine partitions with FM to minimize edge cut

for k3 iterations do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut
Refine partitions with FM to minimize edge cut
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Algorithms
Primary Algorithm Overview

Part assignment after balancing for vertices and minimizing
edge cut.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

Part assignment after balancing for edges and minimizing total
edge cut and max per-part edge cut

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Results
Test Environment and Graphs

Test system: Compton
Intel Xeon E5-2670 (Sandy Bridge), dual-socket, 16 cores, 64
GB memory.

Test graphs:
LAW graphs from UF Sparse Matrix, SNAP, MPI, Koblenz
Real (one R-MAT), small-world, 60 K–70 M vertices,
275 K–2 B edges

Test Algorithms:
METIS - single constraint single objective
METIS-M - multi constraint single objective
ParMETIS - METIS-M running in parallel
KaFFPa - single constraint single objective
PuLP - single constraint single objective
PuLP-M - multi constraint single objective
PuLP-MM - multi constraint multi objective

Metrics: 2–128 partitions, serial and parallel running times, memory
utilization, edge cut, max per-partition edge cut
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Results
Running Times - Serial (top), Parallel (bottom)

In serial, PuLP-MM runs 1.7× faster (geometric mean) than next
fastest
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In parallel, PuLP-MM runs 14.5× faster (geometric mean) than
next fastest (ParMETIS times are fastest of 1 to 256 cores)
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Results
Memory utilization for 128 partitions

PuLP utilizes minimal memory, O(n), 8-39× less than
other partitioners

Savings are mostly from avoiding a multilevel approach

Memory Utilization Improv.Network
METIS-M KaFFPa PuLP-MM Graph Size

LiveJournal 7.2 GB 5.0 GB 0.44 GB 0.33 GB 21×
Orkut 21 GB 13 GB 0.99 GB 0.88 GB 23×
R-MAT 42 GB - 1.2 GB 1.02 GB 35×
DBpedia 46 GB - 2.8 GB 1.6 GB 28×
WikiLinks 103 GB 42 GB 5.3 GB 4.1 GB 25×
sk-2005 121 GB - 16 GB 13.7 GB 8×
Twitter 487 GB - 14 GB 12.2 GB 39×
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Results
Performance - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs

PuLP-MM produces better max edge cut than METIS-M over most graphs
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Results
Balanced communication

uk-2005 graph from LAW, METIS-M (left) vs. PuLP-MM (right)
Blue: low comm; White: avg comm; Red: High comm
PuLP reduces max inter-part communication requirements and
balances total communication load through all tasks
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Future Work

Explore techniques for avoiding local minima, such as
simulated annealing, etc.

Further parallelization in distributed environment for
massive-scale graphs

Demonstrate performance of PuLP partitions with graph
analytics

Explore tradeoff and interactions in various parameters
and iteration counts
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Conclusions

We presented PuLP, a multi-constraint multi-objective
partitioner designed for small-world graphs

Shared-memory parallelism

PuLP demonstrates an average speedup of 14.5×
relative to state-of-the-art partitioners

PuLP requires 8-39× less memory than state-of-the-art
partitioners

PuLP produces partitions with comparable or better
quality than METIS/ParMETIS for small-world graphs

Questions?
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Results
Running Times - Serial (top), Parallel (bottom)

PuLP faster than others over most tests in serial
In parallel, PuLP always faster than other
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In parallel, PuLP runs 14.5× faster (geometric mean)
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Results
Memory utilization for 128 partitions

PuLP utilizes minimal memory - O(n)

Savings are mostly from avoiding a multilevel approach

Memory Utilization Improv.Network
METIS-M KaFFPa PuLP-MM Graph Size

LiveJournal 7.2 GB 5.0 GB 0.44 GB 0.33 GB 21×
Orkut 21 GB 13 GB 0.99 GB 0.88 GB 23×
R-MAT 42 GB - 1.2 GB 1.02 GB 35×
DBpedia 46 GB - 2.8 GB 1.6 GB 28×
WikiLinks 103 GB 42 GB 5.3 GB 4.1 GB 25×
sk-2005 121 GB - 16 GB 13.7 GB 8×
Twitter 487 GB - 14 GB 12.2 GB 39×

36 / 37



Results
Performance - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs

PuLP-MM produces better max edge cut than METIS-M over most graphs

Taken together, these demonstrate the tradeoff for multi objective

Across all Lab for Web Algorithmics graphs
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Results
Performance - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs
PuLP-MM produces better max edge cut than METIS-M over most graphs
Taken together, these demonstrate the tradeoff for multi objective
Across all Lab for Web Algorithmics graphs
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Results
Performance - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs
PuLP-MM produces better max edge cut than METIS-M over most graphs
Taken together, these demonstrate the tradeoff for multi objective
Across all Lab for Web Algorithmics graphs
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