PULP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks

George M. Slota^{1,2} Kamesh Madduri² Sivasankaran Rajamanickam¹

¹Sandia National Laboratories, ²The Pennsylvania State University gslota@psu.edu, madduri@cse.psu.edu, srajama@sandia.gov

BigData14 28 Oct 2014

Highlights

- We present PULP, a multi-constraint multi-objective partitioner designed for small-world graphs
- Shared-memory parallelism
- PULP demonstrates an average speedup of 14.5× relative to state-of-the-art partitioners
- PULP requires 8-39× less memory than state-of-the-art partitioners
- PULP produces partitions with comparable or better quality than state-of-the-art partitioners for small-world graphs

Overview

■ PULP: Partitioning Using Label Propagation

Overview

- Graph partitioning formulation
- Label propagation
- Using label propagation for partitioning
- PULP Algorithm
 - Degree-weighted label prop
 - Label propagation for balancing constraints and minimizing objectives
 - Label propagation for iterative refinement
- Results
 - Performance comparisons with other partitioners
 - Partitioning quality with different objectives

- **Graph Partitioning**: Given a graph *G*(*V*, *E*) and *p* processes or tasks, assign each task a *p*-way disjoint subset of vertices and their incident edges from *G*
 - Balance constraints (weighted) vertices per part, (weighted) edges per part
 - Quality metrics edge cut, communication volume, maximal per-part edge cut
- We consider:
 - Balancing edges and vertices per part
 - Minimizing edge cut (EC) and maximal per-part edge cut (EC_{max})

Overview Partitioning - Objectives and Constraints

Lots of graph algorithms follow a certain iterative model

- BFS, SSSP, FASCIA subgraph counting (Slota and Madduri 2014)
- computation, synchronization, communication, synchronization, computation, etc.
- Computational load: proportional to vertices and edges per-part
- Communication load: proportional to total edge cut and max per-part cut
- We want to minimize the maximal time among tasks for each comp/comm stage

Overview Partitioning - Balance Constraints

Balance vertices and edges:

$$(1 - \epsilon_l) \frac{|V|}{p} \leq |V(\pi_i)| \leq (1 + \epsilon_u) \frac{|V|}{p}$$
(1)
$$|E(\pi_i)| \leq (1 + \eta_u) \frac{|E|}{p}$$
(2)

• ϵ_l and ϵ_u : lower and upper vertex imbalance ratios

- η_u : upper edge imbalance ratio
- $V(\pi_i)$: set of vertices in part π_i
- $E(\pi_i)$: set of edges with both endpoints in part π_i

 Given a partition Π, the set of *cut edges* (C(G, Π)) and cut edge per partition (C(G, π_k)) are

$$C(G,\Pi) = \{\{(u,v) \in E\} \mid \Pi(u) \neq \Pi(v)\}$$
(3)
$$C(G,\pi_k) = \{\{(u,v) \in C(G,\Pi)\} \mid (u \in \pi_k \lor v \in \pi_k)\}$$
(4)

Our partitioning problem is then to minimize total edge cut EC and max per-part edge cut EC_{max}:

$$EC(G,\Pi) = |C(G,\Pi)|$$

$$EC_{max}(G,\Pi) = \max_{k} |C(G,\pi_{k})|$$
(6)
(6)

Overview Partitioning - HPC Approaches

- (Par)METIS (Karypis et al.), PT-SCOTCH (Pellegrini et al.), Chaco (Hendrickson et al.), etc.
- Multilevel methods:
 - Coarsen the input graph in several iterative steps
 - At coarsest level, partition graph via local methods following balance constraints and quality objectives
 - Iteratively uncoarsen graph, refine partitioning
- Problem 1: Designed for traditional HPC scientific problems (e.g. meshes) – limited balance constraints and quality objectives
- Problem 2: Multilevel approach high memory requirements, can run slowly and lack scalability

・ロン ・四 と ・ ヨ と ・ ヨ

Overview Label Propagation

- **Label propagation**: randomly initialize a graph with some *p* labels, iteratively assign to each vertex the maximal per-label count over all neighbors to generate clusters (Raghavan et al. 2007)
 - Clustering algorithm dense clusters hold same label
 - Fast each iteration in *O*(*n* + *m*), usually fixed iteration count (doesn't necessarily converge)
 - Naïvely parallel only per-vertex label updates
 - Observation: Possible applications for large-scale small-world graph partitioning

Overview Partitioning - "Big Data" Approaches

- Methods designed for small-world graphs (e.g. social networks and web graphs)
- Exploit label propagation/clustering for partitioning:
 - Multilevel methods use label propagation to coarsen graph (Wang et al. 2014, Meyerhenke et al. 2014)
 - Single level methods use label propagation to directly create partitioning (Ugander and Backstrom 2013, Vaquero et al. 2013)
- Problem 1: Multilevel methods still can lack scalability, might also require running traditional partitioner at coarsest level
- Problem 2: Single level methods can produce sub-optimal partition quality

Overview PULP

PuLP : Partitioning Using Label Propagation

Utilize label propagation for:

- Vertex balanced partitions, minimize edge cut (PuLP)
- Vertex and edge balanced partitions, minimize edge cut (PuLP-M)
- Vertex and edge balanced partitions, minimize edge cut and maximal per-part edge cut (PuLP-MM)
- Any combination of the above multi objective, multi constraint

PuLP-MM Algorithm

- Constraint 1: balance vertices, Constraint 2: balance edges
- Objective 1: minimize edge cut, Objective 2: minimize per-partition edge cut
- Pseudocode gives default iteration counts

Initialize \boldsymbol{p} random partitions

Execute 3 iterations degree-weighted label propagation (LP)

for $k_1 = 1$ iterations do

for $k_2 = 3$ iterations do

Balance partitions with 5 LP iterations to satisfy constraint 1 Refine partitions with 10 FM iterations to minimize objective 1

for $k_3 = 3$ iterations do

Balance partitions with 2 LP iterations to satisfy constraint 2 and minimize objective 2 with 5 FM iterations

Refine partitions with 10 FM iterations to minimize objective 1

Initialize p random partitions

Execute degree-weighted label propagation (LP)

for k_1 iterations do

for k_2 iterations \mbox{do}

Balance partitions with LP to satisfy vertex constraint

Refine partitions with FM to minimize edge cut

for k_{3} iterations \mbox{do}

Balance partitions with LP to satisfy edge constraint and minimize max per-part cut

Refine partitions with FM to minimize edge cut

Randomly initialize p partitions (p = 4)

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

14/37

 After random initialization, we then perform label propagation to create partitions

Initial Observations:

- Partitions are unbalanced, for high *p*, some partitions end up empty
- Edge cut is good, but can be better
- PuLP Solutions:
 - Impose loose balance constraints, explicitly refine later
 - Degree weightings cluster around high degree vertices, let low degree vertices form boundary between partitions

Initialize p random partitions

Execute degree-weighted label propagation (LP)

for k_1 iterations do

for k_2 iterations do

Balance partitions with LP to satisfy vertex constraint

Refine partitions with FM to minimize edge cut

for k_3 iterations do

Balance partitions with LP to satisfy edge constraint and minimize max per-part cut

Refine partitions with FM to minimize edge cut

Part assignment after random initialization.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

э

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

18 / 37

э

 After label propagation, we balance vertices among partitions and minimize edge cut (baseline PULP ends here)

Observations:

- Partitions are still unbalanced in terms of edges
- Edge cut is good, max per-part cut isn't necessarily
- PuLP-M and PuLP-MM Solutions:
 - Maintain vertex balance while explicitly balancing edges
 - Alternate between minimizing total edge cut and max per-part cut (for PuLP-MM, PuLP-M only minimizes total edge cut)

Initialize p random partitions Execute degree-weighted label propagation (LP) for k_1 iterations do for k_2 iterations do Balance partitions with LP to satisfy vertex constraint Refine partitions with FM to minimize edge cut for k_3 iterations do Balance partitions with LP to satisfy edge constraint and minimize max per-part cut Refine partitions with FM to minimize edge cut

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

э

Part assignment after balancing for vertices and minimizing edge cut.

22 / 37

Initialize p random partitions Execute degree-weighted label propagation (LP) for k_1 iterations do for k_2 iterations do Balance partitions with LP to satisfy vertex constraint

Refine partitions with FM to minimize edge cut

for k_3 iterations do

Balance partitions with LP to satisfy edge constraint and minimize max per-part cut Refine partitions with FM to minimize edge cut

Part assignment after balancing for vertices and minimizing edge cut.

24 / 37

Part assignment after balancing for edges and minimizing total edge cut and max per-part edge cut

25 / 37

Results Test Environment and Graphs

- Test system: *Compton*
 - Intel Xeon E5-2670 (Sandy Bridge), dual-socket, 16 cores, 64 GB memory.
- Test graphs:
 - LAW graphs from UF Sparse Matrix, SNAP, MPI, Koblenz
 - Real (one R-MAT), small-world, 60 K–70 M vertices, 275 K–2 B edges
- Test Algorithms:
 - **METIS** single constraint single objective
 - METIS-M multi constraint single objective
 - ParMETIS METIS-M running in parallel
 - KaFFPa single constraint single objective
 - PuLP single constraint single objective
 - **PuLP-M** multi constraint single objective
 - PuLP-MM multi constraint multi objective
- Metrics: 2–128 partitions, serial and parallel running times, memory utilization, edge cut, max per-partition edge cut

Results Running Times - Serial (top), Parallel (bottom)

 \blacksquare In serial, $\mathrm{PuLP}\text{-}\mathsf{MM}$ runs 1.7× faster (geometric mean) than next fastest

 In parallel, PULP-MM runs 14.5× faster (geometric mean) than next fastest (ParMETIS times are fastest of 1 to 256 cores)

Results Memory utilization for 128 partitions

- PULP utilizes minimal memory, O(n), 8-39× less than other partitioners
- Savings are mostly from avoiding a multilevel approach

Network	METIS-M	Memory KaFFPa	/ Utilization PuLP-MM	Graph Size	Improv.
LiveJournal Orkut R-MAT DBpedia WikiLinks sk-2005 Twitter	7.2 GB 21 GB 42 GB 46 GB 103 GB 121 GB 487 GB	5.0 GB 13 GB - 42 GB -	0.44 GB 0.99 GB 1.2 GB 2.8 GB 5.3 GB 16 GB 14 GB	0.33 GB 0.88 GB 1.02 GB 1.6 GB 4.1 GB 13.7 GB 12.2 GB	21× 23× 35× 28× 25× 8× 39×

28 / 37

- \blacksquare $\operatorname{PuLP-M}$ produces better edge cut than METIS-M over most graphs
- \blacksquare $\mathrm{PuLP}\text{-}\mathsf{MM}$ produces better max edge cut than METIS-M over most graphs

Results Balanced communication

- uk-2005 graph from LAW, METIS-M (left) vs. PuLP-MM (right)
- Blue: low comm; White: avg comm; Red: High comm
- PuLP reduces max inter-part communication requirements and balances total communication load through all tasks

^{30 / 37}

Future Work

- Explore techniques for avoiding local minima, such as simulated annealing, etc.
- Further parallelization in distributed environment for massive-scale graphs
- Demonstrate performance of PuLP partitions with graph analytics
- Explore tradeoff and interactions in various parameters and iteration counts

Conclusions

- We presented PULP, a multi-constraint multi-objective partitioner designed for small-world graphs
- Shared-memory parallelism
- PULP demonstrates an average speedup of 14.5× relative to state-of-the-art partitioners
- PULP requires 8-39× less memory than state-of-the-art partitioners
- PULP produces partitions with comparable or better quality than METIS/ParMETIS for small-world graphs

Conclusions

- We presented PULP, a multi-constraint multi-objective partitioner designed for small-world graphs
- Shared-memory parallelism
- PULP demonstrates an average speedup of 14.5× relative to state-of-the-art partitioners
- PULP requires 8-39× less memory than state-of-the-art partitioners
- PULP produces partitions with comparable or better quality than METIS/ParMETIS for small-world graphs
- Questions?

Acknowledgments

- DOE Office of Science through the FASTMath SciDAC Institute
 - Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
- NSF grant ACI-1253881, OCI-0821527
- Used NERSC hardware for generating partitionings supported by the Office of Science of the U.S.
 Department of Energy under Contract No.
 DE-AC02-05CH11231

Backup slides

Results Running Times - Serial (top), Parallel (bottom)

PULP faster than others over most tests in serial
In parallel, PULP always faster than other

■ In parallel, PULP runs 14.5× faster (geometric mean)

4 (1) > 4 (2) > 4 (2) >

Results Memory utilization for 128 partitions

- PULP utilizes minimal memory O(n)
- Savings are mostly from avoiding a multilevel approach

Network		Improv.			
Network	METIS-M	KaFFPa	PuLP-MM	Graph Size	-
LiveJournal	7.2 GB	5.0 GB	0.44 GB	0.33 GB	$21 \times$
Orkut	21 GB	13 GB	0.99 GB	0.88 GB	$23 \times$
R-MAT	42 GB	-	1.2 GB	1.02 GB	$35 \times$
DBpedia	46 GB	-	2.8 GB	1.6 GB	$28 \times$
WikiLinks	103 GB	42 GB	5.3 GB	4.1 GB	$25 \times$
sk-2005	121 GB	-	16 GB	13.7 GB	8×
Twitter	487 GB	-	14 GB	12.2 GB	39 ×

- PULP-M produces better edge cut than METIS-M over most graphs
- PuLP-MM produces better max edge cut than METIS-M over most graphs
- Taken together, these demonstrate the tradeoff for multi objective

- PULP-M produces better edge cut than METIS-M over most graphs
- PuLP-MM produces better max edge cut than METIS-M over most graphs
- Taken together, these demonstrate the tradeoff for multi objective
- Across all Lab for Web Algorithmics graphs

- PULP-M produces better edge cut than METIS-M over most graphs
- PuLP-MM produces better max edge cut than METIS-M over most graphs
- Taken together, these demonstrate the tradeoff for multi objective
- Across all Lab for Web Algorithmics graphs

