
Scalable Generation of Graphs for Benchmarking HPC
Community-Detection Algorithms

George M. Slota

slotag@rpi.edu

Rensselaer Polytechnic Institute

Jonathan W. Berry

jberry@sandia.gov

Sandia National Laboratories

Simon D. Hammond

sdhammo@sandia.gov

Sandia National Laboratories

Stephen L. Olivier

slolivi@sandia.gov

Sandia National Laboratories

Cynthia A. Phillips

caphill@sandia.gov

Sandia National Laboratories

Sivasankaran Rajamanickam

srajama@sandia.gov

Sandia National Laboratories

ABSTRACT

Community detection in graphs is a canonical social network anal-

ysis method. We consider the problem of generating suites of teras-

cale synthetic social networks to compare the solution quality of

parallel community-detectionmethods. The standardmethod, based

on the graph generator of Lancichinetti, Fortunato, and Radicchi

(LFR), has been used extensively for modest-scale graphs, but has

inherent scalability limitations.

We provide an alternative, based on the scalable Block Two-Level

Erdos-Renyi (BTER) graph generator, that enables HPC-scale eval-

uation of solution quality in the style of LFR. Our approach varies

community coherence, and retains other important properties. Our

methods can scale real-world networks, e.g., to create a version of

the Friendster network that is 512 times larger. With BTER’s inher-

ent scalability, we can generate a 15-terabyte graph (4.6B vertices,

925B edges) in just over one minute. We demonstrate our capability

by showing that label-propagation community-detection algorithm

can be strong-scaled with negligible solution-quality loss.

ACM Reference Format:

George M. Slota, JonathanW. Berry, Simon D. Hammond, Stephen L. Olivier,

Cynthia A. Phillips, and Sivasankaran Rajamanickam. 2019. Scalable Gener-

ation of Graphs for Benchmarking HPC Community-Detection Algorithms.

In The International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC ’19), November 17–22, 2019, Denver, CO, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3295500.3356206

1 INTRODUCTION

A community detection (CD) algorithm typically partitions the

vertex set of a graph into subsets of vertices called communities,

where nodes in the same community are more closely connected to

each other than to the rest of the graph. There are many variants

allowing community overlap, hierarchical communities, the local

community of a node, alternative definitions of communities, etc.

However, we focus on the basic problem of partitioning the vertex

set into subsets. Finding communities is a useful data mining step

in social networks. For example, Papadopoulos et. al. survey appli-

cations of CD in social media including recommendation systems

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor, or affiliate of the United States government. As such, the United States

government retains a nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for government purposes only.

SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00

https://doi.org/10.1145/3295500.3356206

and event detection [22]. With the increasing scale of social net-

work datasets, algorithm researchers are developing parallel CD

algorithms with an emphasis on scalability. Our work will enable

them to better assess changes to solution quality as they scale.

There are two primary methods for measuring solution qual-

ity in community detection. The first method, to date the only

alternative for HPC-level scalability studies, is to use optimization

objective functions such as modularity [21] or conductance
1
. When

comparing CD algorithms, the one that produces a community as-

signment with the highest objective value wins. This approach has

drawbacks. As the qualitative definition of communities implies,

there is still no universally accepted notion of a correct commu-

nity assignment based on an optimization objective function. The

popular modularity objective is a statistical measure: how many

more edges are inside communities than expected for a random

graph with the same communities and vertex degrees. However,

solutions that maximize modularity provably may not resolve com-

munities smaller than

√
m/2, wherem is the number of edges in the

graph [11]. Real human communities are much smaller than that.

Furthermore, an Erdős-Rényi (ER) random graph is conceptually

a single community. However, with small expected variations in

density, the maximum-modularity communities for an ER graph

will have more than one community. While variants of modularity

or measures related to conductance might improve upon straight

modularity, squeezing the last bit of objective quality out of an as-

signment is not consistently correlated with “better” communities.

The second method, based on suites of graphs in the style of LFR,

which we term VCCS-based (for Varying-Community-Coherence

Suites”), compares algorithm solutions to an engineered ground

truth. The seminal Lancicinetti, Fortunato, and Radicchi (lfr) graph

generator [18] was the first to enable this approach. lfr graphs

have a notional set of “ground truth” communities and a parameter

that determines their coherence or tightness (the ratio of external

[intra-community] edges to total edges). We note that these are not

truly ground truth communities and use the term “Engineered Ap-

proximate Solution” (EAS) to describe them. When comparing CD

algorithms, the one that produces a community assignment closest

to the EAS over a range of tightness values wins. One measure of

the similarity between two community assignments is normalized

mutual information (NMI), where higher values are closer matches.

A VCCS-based comparison between two CD algorithms plots NMI

1
The conductance of a community that is small compared to the whole graph is the

ratio: (number of edges with exactly one endpoint in the community)/(total degree of

all nodes in the community).

https://doi.org/10.1145/3295500.3356206
https://doi.org/10.1145/3295500.3356206

SC ’19, November 17–22, 2019, Denver, CO, USA Slota et al.

as a function of the EAS tightness parameter. If one algorithm is

consistently higher in NMI than the other, then it wins. Community

comparison is an active research area and NMI has some known

flaws [33]. Researchers can use other comparison methods, but NMI

is still one of the most frequently-used.

To date, VCCS-based evaluation has been limited to suites of

LFR graphs. In this paper, we demonstrate VCCS-based evalution

at HPC scale (terascale) with a different and more scalable graph

generation strategy.

The VCCS-based approach is much more resource-intensive than

modularity maximization. A VCCS-based study involves generating

many graphs, executing many CD algorithm runs, and comparing

the results of each to the EAS. No current graph generator supports

VCCS-based studies at the terabyte or greater scale. In Section 2,

we acknowledge previous works that generate large LFR graphs in

external memory, that generate truly huge graphs (lacking EAS) at

HPC-scale, or that generate scaled-up versions of existing graphs

(again lacking EAS). None of these options admit VCCS-based stud-

ies at scale.

We provide a scalable graph generator that enables VCCS-based

studies at HPC-scale. Our approach is based upon the Block Two-

Level Erdős-Rényi (bter) generator [28]. This generator accepts

two inputs: a degree distribution and a per-degree clustering coeffi-

cient distribution
2
. These distributions could be obtained from a

real graph, or could be synthetic. The bter generator groups ver-

tices into “affinity blocks,” forms an Erdős-Rényi graph [9] within

each block, and connects these blocks using the degree-biased ap-

proach of Chung and Lu [8]. See Section 3 for a more detailed

description. The bter authors [28] also prove a theorem stating

that a constant fraction of the edges in a real-life community are

contained in a dense Erdős-Rényi graph. The bter affinity blocks

model these community kernels. The bter generator is scalable to

HPC sizes [16], but it lacks a tunable tightness parameter to support

VCCS-based studies.

Our approach, a-bter (for Adapted bter), uses bter as a black

box, providing it with inputs that give us sets of graphs that enable

VCCS-based studies at any scale fitting into a supercomputer’s main

memory. For example, we can generate a-bter graphs with almost

a trillion edges in just over one minute on 512 nodes (14,336 cores)

of an ARM supercomputer. Thus we can generate a full test suite for

a VCCS-based study in a reasonable amount of time, and regenerate

if necessary without significant disruption to a CD algorithm study.

Contributions. Our main contributions are 1) The a-bter genera-

tion strategy, enabling VCCS-based algorithm studies at HPC-scale,

2) Methods for scaling the degree and clustering-coefficient dis-

tributions of real graph to much larger sizes, 3) Demonstration

of a VCCS-based study on two different CD algorithms, and 4) A

parallelO (n)-time algorithm to compute NMI to compare two com-

munity assignments on an n-vertex graph. Previous algorithms

might require Ω(n2) time.

2
A vertex v of degree dv could potentially be part of

(
dv
2

)
triangles. The clustering

coefficient of v is the fraction of possible triangles on v that are in the graph. The

per-degree clustering coefficient distribution of a graph gives the average clustering

coefficient over all nodes of degree d , for all d . The clustering coefficient of a graph is

the fraction of possible triangles in the whole graph, given the degree distribution.

2 RELATEDWORK

Several graph generators are capable of producing graphs at HPC

scale. The Graph-500 competition is based on R-MAT graphs [7],

but these were shown in [28] to have flat per-degree clustering

coefficient distributions, i.e., they have no communities. The award-

winning generator of Funke et. al. [12] can generate enormous

graphs based on random graph models like random geometric or

hyperbolic graphs. Such graphs may have communities, but there is

no engineered approximate solution. Sanders et. al. give Kronecker-
based generators that produce instances of arbitrary size and known

triangle (3-cycle) count [27]. This is useful for evaluating triangle

counting and enumeration algorithms, but does not admit VCCS-

based CD algorithm comparisons.

Significantly departing from these approaches in spirit, the Evo-

Graph generator of Park and Kim [23] directly produces scaled-up

versions of a given graph. Suppose that the original graph has an

engineered approximate solution (for example, it could be an LFR

or BTER instance). EvoGraph can produce a version of that graph

at huge scale while approximately preserving clustering-coefficient

distributions. However, we have noted a property of EvoGraph that

is undesireable for our application: each triangle in the scaled graph

has a representative triangle in the original graph and connects to

it in a structured way. This structure tends to produce sparser com-

munities at scale. There is no clear way to control the tightness of

communities, so we cannot directly use EvoGraph for VCCS-based

studies.

Hamann et. al. have the most efficient published methods to

exactly generate lfr graphs [14]. These are external-memory algo-

rithms. They can generate lfr graphs with 37 billion edges in 17

hours on a single multicore with 1TB of SSD. This is orders of mag-

nitude better than the original lfr generator. Their contribution is

the ability to generate huge graphs on workstations with SSD drives

via external-memory algorithms. This is modest hardware many

researchers own. However, we require a different graph-generation

method to support HPC-scale VCCS-based studies.

3 BACKGROUND

The lfr benchmark accepts the number of nodes n, a reference

degree distribution, a reference community-size distribution and a

desired community “tightness” parameter µ. The goal is to generate
a graph with the appropriate degree and community size distri-

butions (assumed to be power law) such that the average over all

vertices of the fraction of inter-community edges is approximately µ.
The lfr generator draws degrees for each node and creates a graph

using the configuration model. It draws community sizes from the

distribution, reducing the size of the last community if necessary so

the sum of the community sizes equals n. It assigns nodes randomly

to communities with the constraint that the community is large

enough to contain the desired number of intra-community edges.

There is some iterating and shuffling to maintain exact community

sizes. Finally, lfr performs rewiring to approximately reach the

desired community density µ. Rewiring swaps endpoints between

a pair of edges to preserve degrees while improving the average µ.
This rewiring requires many iterations, is the most expensive step,

and is not guaranteed to finish. The open-source LFR code performs

rewiring for some suitable time given a community assignment,

Scalable Generation of Graphs SC ’19, November 17–22, 2019, Denver, CO, USA

then gives up and tries another community assignment. Rewiring

swaps one pair of edge endpoints at a time, which can limit parallel

scalability. We are not aware of any LFR algorithms that rewire

multiple pairs simultaneously.

The typical way to use lfr to compare two community-detection

(CD) algorithms is to generate a set of graphs with varying values

of µ. Communities become quite ill-defined by µ = 0.7. Each CD

algorithm computes communities for these graphs and compares

its solution to the EAS. The algorithm with solutions closer to lfr

as µ grows is considered superior.

The comparison step is itself an active and unresolved research

area. Vinh, et al. survey several information-theoretic measures for

doing this comparison and assess their metric and normalization

properties, as well as corrections for chance [33]. It is not our goal

here to endorse any particular comparison method. We choose to

present our results using normalized mutual information (NMI) as

a representative method and scalable alternative, and we note that

other methods could be substituted.

The bter graph generator accepts a degree distribution and a per-

degree clustering coefficient distribution. The clustering coefficient

(CC) for a vertex is the fraction of its pairs of neighbors that close

into triangles. The per-degree CC, cd , for degree d is the average

CC over all nodes of degree d . This input to bter can come from

goal distributions or from real graphs. It tends to be high among

low-degree vertices for graphs with communities. Since bter does

not try to meet a goal µ, its edge-generation process is more direct,

simpler, and faster than LFR’s. bter creates affinity blocks, which
are groupings of vertices with similar degrees, usually d +1 vertices
of degree d . For an affinity block with minimum degree d (with goal

CC cd), bter adds each possible edge with probability p = 3

√
cd . It

then joins blocks with a Chung-Lu-style [8] process. The desired

degree of a node in this step is its remaining degree (original minus

its generated within-block edges). We treat affinity blocks as our

EAS.

bter was developed to generate many random graphs that ap-

proximately match a real graph’s degree and clustering-coefficient

distributions. We wish to alter these distributions to approximate

the lfr µ parameter or to vary the graph’s size. Given the degree

distribution nd , for n total nodes, and the per-degree clustering

coefficients, cd , we can compute a “native” µ for the graph bter

will generate. Assume the affinity blocks all have d + 1 nodes of
degree d , even though this is not generally true for the few larger

communities. The average fraction of inter-community edges is:

µ
BTER
=

∑
d ∈D nd (1 − 3

√
cd)∑

d ∈D nd
= 1 −

∑
d ∈D nd (3

√
cd)

n

where D = {d | nd > 0}. By adjusting the clustering-coefficient

distribution, we can alter the effective µ for the bter graph.

We consider two CD algorithms. Louvain [4] is the most popular

CD algorithm. It starts with all nodes in independent communities

and iteratively moves each vertex into the community of a neighbor

that maximizes modularity. However, it attempts to address the

resolution limit by using a hierarchy of nested communities. Label

propagation is a similar algorithm except that each node moves to

the community that the majority of its neighbors belong to. It is

easily parallelizable on our target architecture [29].

4 A-BTER FOR HPC-SCALE BENCHMARK

GRAPH GENERATION

We present a distributed lock-free approach called a-bter (Adapted

bter) that uses a distributed-memory version of the bter gener-

ator as a black box. Parallel edge generation separates the degree

of a vertex into its internal and external degree and produces inter-

community and intra-community graphs independently. We break

the process down into four stages: 1) Initialization of input dis-

tributions, 2) Vertex-to-community assignment, 3) Internal-edge

generation, 4) External-edge generation. We can avoid self-loops

and multi-edges without having to hold any edges in memory. Our

process also runs deterministically when serialized with a given

seed.

Each of t compute nodes is anMPI rank. There is a thread per core

within the nodes. Each compute node has a copy of the input degree

and CC distributions. For generating community assignments, we

partition the graph vertices evenly among the compute nodes based

on vertex ID.

4.1 Phase 1: Initializing Input Distributions

The two inputs to bter are a degree distribution and a clustering-

coefficient (CC) distribution. By modifying the CC distribution

input to bter, we can control the relative number of intra-block to

inter-block edges, mimicking the LFR mixing parameter (µ) when
considering affinity blocks as communities. We use a linear program

(LP) to do this. The LP minimizes the change in the input clustering

coefficient distribution such that the output graph has a desired

goal µ. Recall that µ is the proportion of inter-community edges for

a vertex, averaged over all vertices. This definition is given as the

primary constraint for our LP:

µ =
1

n

∑
d

(
nd ∗

id
d

)

Here, n is the number of vertices, nd is the number of vertices of

degree d , and id is the expected number of inter-community edges

for vertices of degree d as determined by the clustering coefficient

distribution:

pd = 3

√
cd

id = d ∗ (1 − pd)

The Erdős-Rényi (ER) probabilities pd for degree d for bter’s

first stage are derived from cd , the clustering coefficient for vertices

of degree d . Due to the cubic relationship between clustering coef-

ficients and bter’s ER probabilities (and our primary constraints),

we cannot create an LP that directly minimizes the shift in clus-

tering coefficients. Instead, we minimize the absolute shift in the

probabilities. Let µд be our goal community coherence. The full LP

to compute the new ER probabilities p̂d is:

SC ’19, November 17–22, 2019, Denver, CO, USA Slota et al.

minimize

∑
d

|p̂d − pd |

subject to

∑
d

nd p̂d = n(1 − µд)

0 ≤ p̂d ≤ 1

|p̂d − pd | ≥ |p̂d+1 − pd+1 |

|p̂d − p̂d+1 | ≤ 0.01

output ĉd = p̂
3

d

We include two additional smoothing constraints. One restricts
the change in p̂d from pd to decrease with increasing degree. The

other restricts the absolute magnitude of change in output proba-

bilities from p̂d to p̂d+1. This is designed to eliminate large jumps

in the resulting CC distribution, especially for low µ, occurring at
lower degrees (large CC values aren’t typically observed at high de-

grees). Large shifts away from a graph’s native µ can still drastically

change the shape of the distribution.

The number of variables and constraints grows linearly with

length of the distributions, i.e., the maximum degreedmax. However,

real-world distributions are usually quite sparse, and we only need

to solve for degree values with a nonzero number of vertices. We

also use a binning-based degree-averaging approach that can reduce

variables and constraints by a log factor. Our code will be available

in the github HPCGraph3 codebase in order to expose such details.

See Section 6 for our software dependencies. All of these are open-

source, and they proved adequate for the studies in this paper. As

we show in Section 8, the LP solves were not a bottleneck, taking

between 5% and 25% of the total generation time. This translates to

no more than a minute in the terascale studies.

4.1.1 Scaling Distributions. Static datasets such as SNAP [19] have

proved extremely useful in non-HPC settings. The largest instances,

such as Friendster [24] with its 1.8 billion edges, fit in RAM on

large workstations. We just showed how to generate clustering-

coefficient distributions to enable VCCS-based studies based on any

graph. We use the graph’s degree distribution for all values of µд .
In this section, we extend this result by showing how to generate

such suites at much greater (or smaller) scale. Now we must also

alter the degree distribution. Section 8 includes results from graphs

mimicking Friendster’s degree and clustering-coefficient properties,

but 512× its size (roughly a trillion edges).

We describe an empirical method for scaling degree and clustering-

coefficient distributions. Other work [31] has considered scaling

real graphs by using their input characteristics to adjust input pa-

rameters of random graph generators such as lfr and bter. Our

approach is similar, but generally more lightweight, as our goal

is to replicate distribution properties rather than more complex

graph properties. We do not attempt to infer and extend an explicit

growth process.

We take original degree and clustering-coefficient distributions

of a graph with n vertices,m edges, maximum degree dmax, aver-

age and maximum CC of c , cmax, and generate new distributions

representing a graph of n′ vertices, m′ edges, d ′max max degree,

and average and maximum CC c ′ and c ′max. As the distributions by

3
https://github.com/HPCGraphAnalysis/

themselves capture limited structural characteristics of the under-

lying graph, the metric we consider for evaluation is the inherent

shape of each distribution. Our current method is heuristic. It could

be replaced by more statistically rigorous methods in the future if

necessary. However, empirical results suggest that our heuristic is

effective (see Figure 9 in Section 8.7). Algorithm 1 gives pseudocode

for scaling degree distributions. Scaling CC distributions is similar.

Algorithm 1 Scaling method for degree distributions.

1: procedure ScaleDist(D,n′,d ′max,α)
2: ▷ Degree distribution D is a dense array where D (d) = nd and

α is a small bias factor

3: dmax ← |D |

4: n ←
∑dmax
i=1 D (i)

5: P ← PrefixSums(D)/n ▷ Initial probability distribution

6: l ← (dmax − 1)/(d
′
max − 1) ▷ Step length for interpolation

7: s ← 1 ▷ Current step for new distribution

8: for d = 1 . . .d ′max do
9: s ← s + l
10: x ← Floor(s)
11: y ← Ceil(s)
12: Pi (d) ← P (x) + (P (y) − P (x)) ∗ (s − x)
13: Pi (d) ← Pi (d) × d

α

14: for d = 2 . . .d ′max − 1 do
15: P ′(d) ← (Pi (d − 1) + Pi (d) + Pi (d + 1))/3 ▷ Smooth

16: P ′ ← PrefixSums(P ′)/
∑d ′max
i=1 P ′(i)

17: D ′ ← {0, 0, . . . , 0} ▷ New degree distribution

18: for i = 1 . . .n′ do
19: r ← Rand(0, 1)
20: d ← BinarySearch(r , P ′) + 1
21: D ′(d) ← D ′(d) + 1

22: return D ′

We first transform a given degree or clustering-coefficient curve

into a probability distribution P . We then interpolate points along

the curve P to translate dmax → d ′max and create a new curve Pi . To

change the expected average degree, or
2m′
n′ , we can introduce a very

small positive or negative exponential bias (α) versus degree for the
interpolation, such that the distance of the interpolated points can

increase or decrease with degree along the curve. To hit a desired

target average degree, we can use gradient descent or simply a

brute force search iteratively calling the scaling algorithm. In our

current code, we perform a binary search of potential α values. We

perform a final smoothing step before scaling P ′ to create a new

scaled probability distribution. We perform n′ samples on P ′, which
gives degrees for all new n′ vertices for our new distribution. We

use a similar approach for generating a new clustering coefficient

distribution curve, with an additional final scaling step to some

target c ′max. To modify the expected average clustering coefficient,

we can again bias the interpolation on the original. We have also

consideredmethods for fitting power-law or generalized log-normal

parameters and generating synthetic instances; while such methods

are good for matching e.g. a distribution’s Gini Coefficient, unique

characteristics of the distribution are lost.

https://github.com/HPCGraphAnalysis/

Scalable Generation of Graphs SC ’19, November 17–22, 2019, Denver, CO, USA

4.2 Phase 2: Community Assignment

We use the native degree-ordered assignment method of bter.

Recall that vertex identifiers are ordered by degree. Neighbors

within the same affinity block have consecutive vertex IDs. Thus

the vertices for each affinity block are assigned to the same node,

or are split across at most two nodes. During pre-processing, bter

creates and tracks the boundaries for each group of affinity blocks

(affinity blocks with the same number of vertices). The boundary

is the vertex ID where the affinity block type changes. Since each

compute node knows the degree distribution, it knows the total

number of groups, affinity blocks per group, and vertices per block.

So each node can assign its vertices to communities. Nodes can

output this (vid → commid) information in parallel to create a

single file if desired. We can also use binary search on the group

boundaries to get some vertex’s block assignment. We do this to

avoid explicit multi-edge generation in Phase 4.

4.3 Phase 3: Internal Edge Creation

Due to the Coupon Collector’s Problem, the original bter imple-

mentation as described by Kolda et al. [28] requires generation of

multi-edges to fill each Erdős-Rényi affinity block to the desired

amount. While this is not problematic for many native graph dis-

tributions, for CC distributions generated for low values of µ the

factor of erroneous edges could be in the dozens ofm. Additionally,

removing multi-edges in distributed memory is non-trivial.

Therefore, we implement the edge-skipping technique, which

can efficiently generate Erdős-Rényi [3] and Chung-Lu [20] graphs.

There is a recent parallel version [1] for these random graph mod-

els that applies directly to bter. This allows us to implement a

parallel work- and memory-efficient Erdős-Rényi internal edge

generation phase (described below). Per-node work complexity is

O (minternal
t), or simply linear in the number of edges generated. With

edge-skipping, we also do not need to hold edges in memory to

avoid multi-edges, so we could immediately write out generated

edges to achieve a O (dmax) memory complexity. However, in our

experiments, we generally retain the edge list in memory.

The baseline methods for generating an Erdős-Rényi graph per-

form some number of random samples over the entire space of

possible edges. We’ll consider this entire space as X , where X ←
{(u,v) ∈ V × V | u , v} – i.e., all possible unique vertex pairs.

Now consider generatingm edges. Baseline methods will generate

these edges by performingm random draws from all of X . With

edge-skipping, we create an explicit ordering for X and sample

approximatelym skip lengths, with the average skip length about

|X |
m . We start at the ordered beginning of X , move through the

space of X by our sampled skip length, and select where we land

as our next sampled edge. This gives us approximatelym unique

draws from X . Note that we don’t need to explicitly hold X itself

in memory. We can compute a current (u,v) pair using the current

offset within X .

For parallelization, we can partition the total space of X and do

independent skip-length generation on each subspace to perform

edge-skipping in parallel. This is the general parallel approach

from [1] we use for Erdős-Rényi edge generation within a bter

framework. Because we’re generating graphs orders of magnitude

larger than [1] and other prior edge-skipping implementations,

we had to handle certain numerical conditions. For example, if

probabilities where small enough that the expected number of

edges was sufficiently close to zero, naïve skip length calculations

would return infinity. For more detail into the specifics of how the

ordering, skip length, offset calculations, and parallelizations are

performed, see [1, 3, 20].

4.4 Phase 4: External Edge Creation

As with Phase 3, we use an edge-skipping Chung-Lu generator

based on the parallelization scheme as described in [1] to create

external edges. For edge-skipping with Chung-Lu graphs specifi-

cally, the key consideration in contrast with Phase 3 Erdős-Rényi

generation is that edge probabilities are non-uniform with respect

to vertices of differing degree. Therefore, we can define our space

X of possible edges as a superset of Erdős-Rényi graph spaces for

vertices of the same degree and bipartite Erdős-Rényi graph spaces

for vertices of differing degrees. E.g., we define X as

X = {X (1,1) ,X (1,2) , . . . ,X (dmax−1,dmax) ,X (dmax,dmax) }

where X (di ,di) is an Erdős-Rényi graph generated with edge skip-

ping among all vertices of degree di . X (di ,dj) is a bipartite Erdős-

Rényi graph generated among all vertices of degreedi anddj , where
one bipartite set contains all vertices of degree di and the other

bipartite set contains all vertices of degree dj . The skip lengths

for X (di ,dj) are based on the specific Chung-Lu edge probability

calculated between degrees di and dj and our total desired external
edgesmexternal.

To avoid multi-edge generation between Phase 3 and Phase 4,

we compute the community assignments of u andv from generated

edge (u,v) and discard edges internal to the same block; this can be

done exactly for one edge in time O (log(dmax)) without increasing
memory complexity by using bter block offset arrays. We however

use an approximateO (1) per-edge scheme, where we discard edges

if their vertex identifiers are closer in value than the minimum

degree of the pair plus one – this is the maximum difference within

bter such that two vertices could be in the same block. In prac-

tice, we observe few erroneous edge discards. Our total Phase 4

generation time complexity is therefore linear in external edges as

O (mexternal
t). As with Phase 3, it is not necessary to hold the edge list

in memory, giving us a memory complexity for Phase 4 ofO (dmax).

5 EVALUATION AND PARALLEL NMI

In Section 8, we evaluate our method’s scalability and accuracy in

achieving a target µ and matching input distributions. We also com-

pare them to lfr for evaluating community detection algorithms.

We compare to EAS using the standard metric normalized mutual

information (nmi). Consider some set of community assignments

U and V each of length n and having r and c unique cluster labels,
respectively. In practice,U might be the assignments output from a

community detection algorithm andV the assignments given by an

EAS. Additionally, consider |Ui | and |Vj | as the number of vertices

assigned to cluster i within U and cluster j within V ; |Ui ∩Vj | is
the number of vertices assigned to both i inU and j inV . We define

entropies HU and HV , joint entropy HU ,V , and our normalized

mutual information NMI as

SC ’19, November 17–22, 2019, Denver, CO, USA Slota et al.

HU = −

r∑
i=1

|Ui |

n
log

|Ui |

n

HV = −

c∑
j=1

|Vj |

n
log

|Vj |

n

HU ,V = −

r∑
i=1

c∑
j=1

|Ui ∩Vj |

n
log

|Ui ∩Vj |

n

NMI =
HU + HV − HU ,V

max(HU ,HV)

As recently as 2018 [26], researchers have claimed that comput-

ing nmi has complexity quadratic in the number of communities.

While we are surprised that this technique is apparently not well

known (or at least not published), we have exploited sparsity to

implement an embarrasingly-parallel calculation with complexity

O (n), linear in the number of vertices. We validate our parallel

method against the calculations given by [18]
4
and obtain equiva-

lent outputs. Our method experimentally scales linearly as expected.

We can compute nmi for tens of millions of vertices and hundreds

of thousands of unique clusters in seconds on an Intel Knights

Landing (KNL) node.

Algorithm 2 Parallel Calculation of NMI.

1: procedure CalcNMI(n,U ,V)

2: r ← NumUniqueValues(U)
3: c ← NumUniqueValues(V)
4: T ← ∅ ▷ Thread-safe hash table

5: A(1 . . . r) ← (0 . . . 0) ▷ Community sizes inU
6: B (1 . . . c) ← (0 . . . 0) ▷ Community sizes in V
7: for i = 1 . . .n do in parallel

8: x ← U (i) ▷ Vertex i’s community inU
9: y ← V (i) ▷ Vertex i’s community in V
10: T ← AtomicIncrement(T ,x ,y)
11: A(x) ← A(x) + 1
12: B (y) ← B (y) + 1

13: HU ,V ← 0.0
14: for i = 1 . . .n do in parallel

15: x ← U (i)
16: y ← V (i)
17: nxy = AtomicFetchReset(T ,x ,y)
18: if nxy > 0 then

19: HU ,V = HU ,V −
nxy
n log

nxy
n

20: HU ← 0.0
21: HV ← 0.0
22: for i = 1 . . . r do in parallel

23: HU ← HU −
A(i)
n log

A(i)
n

24: for i = 1 . . . c do in parallel

25: HV ← HV −
B (i)
n log

B (i)
n

26: NMI = HU +HV −HU ,V
max(HU ,HV)

27: return NMI

Given community assignmentsU and V as defined before, Algo-

rithm 2 determines the marginal entropies HU and HV as well as

4
https://sites.google.com/site/andrealancichinetti/files

the joint entropy HU ,V to compute the final NMI value. In the con-

fusion matrix/contingency table used for calculating joint entropy

(tabulating which clusterings overlap and with what frequency)

there can be at most n nonzeros. We replace an explicit matrix or

equivalent data structure with an efficient thread-safe hash table

T , which has inserted into it as a key the cluster assignments x
and y for vertex i . We use an unsigned 64-bit integer to store the

key, where we can pack both x and y to create a unique value

(key = (x << 32 | y)), assuming x ,y < 2
32
. These x ,y values would

refer to row, column indices in the contingency table. Upon initial

insertion into T , the key sets a value of 1. If the key already exists

in the table, the stored value is incremented. For calculating the

joint entropy, we effectively go through all unique keys in the hash

table and retrieve their stored value. In lieu of explicitly tracking

a list of unique x ,y keys, which would require a more complex

insertion procedure, we atomically reset to 0 the value of a key on

the first encounter. The marginal entropies are trivial to calculate

and parallelize.

6 IMPLEMENTATION DETAILS

We use C++. For a-bter, we directly follow Kolda et. al.’s descrip-

tions [16, 28] for creating block and group data, and generate edges

with edge skipping. For Erdős-Rényi and Chung-Lu edge skipping,

we follow the implementation details in [1]. We perform thread-

based parallelism using OpenMP and distributed parallelism with

MPI as opposed to the MapReduce approach taken by [16]. Our fo-

cus is HPC performance. Utilizing modern HPC hardware and not

bounded byMapReduce overhead, our generation times are roughly

100 times faster than those presented in [16] (e.g. ∼8s for 7B edges

on 32 ARM nodes vs. ∼900s for 4B edges on 32 Intel i7 930 nodes).

We positively validate our parallel outputs against the open-source

serial MATLAB code5 for bter, and our own serial code for our other

methods. We implement the LP for a-bter using Pyomo [15] and

solve it with CBC [10], both open source. We intend to make all

codes publicly available at https://github.com/HPCGraphAnalysis/.

7 EXPERIMENTAL SETUP

Table 1: Test graph characteristics. # Vertices (n), # Edges (m),

average (davg) and max (dmax) vertex degrees, average (cavg)
and maximum (cmax) clustering coefficient, and source. B =
×109,M = ×106, K = ×103.

Network n m davg dmax cavg cmax Source

LiveJournal 2.1 M 25 M 24 2.0 K 0.27 0.39 [19]

Wikilinks 1.9 M 21 M 21 8.6 K 0.12 0.18 [17]

R-MAT26 63 M 1.1 B 33 6.7 K 0.00 0.00 [2, 7]

Friendster 40 M 1.8 B 90 5.2 K 0.13 0.33 [19]

Twitter 39 M 1.4 B 73 56 K 0.07 0.49 [6]

uk-2007 81 M 3.3 B 80 82 K 0.78 0.99 [5]

Two of our experimental systems are Cray XC machines with

KNL processors and Aries interconnects: a 96-node testbed cluster

for small-scale experiments (Mutrino) and a large scale system of

over 9800 nodes (Trinity). Each node of Trinity and Mutrino has

5
https://www.sandia.gov/~tgkolda/bter_supplement/

https://sites.google.com/site/andrealancichinetti/files
https://github.com/HPCGraphAnalysis/
https://www.sandia.gov/~tgkolda/bter_supplement/

Scalable Generation of Graphs SC ’19, November 17–22, 2019, Denver, CO, USA

1024_16 1024_24 1024_32

4096_16 4096_24 4096_32

16384_16 16384_24 16384_32

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

Target mu

N
M

I
(L

F
R

)

Louvain LabelPropagation

1024_16 1024_24 1024_32

4096_16 4096_24 4096_32

16384_16 16384_24 16384_32

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

Target mu

N
M

I
(A

−
B

T
E

R
)

Louvain LabelPropagation

Figure 1: Comparisons of the solution quality of two algorithms, based on LFR instances (left), and a-bter instances (right).

Each pane compares runs of both Louvain and Label Propgation on a varying-density suite of graph instances. We plot NMI

(higher is better), and for each pane on the left, the corresponding pane on the right consistently shows a similar trend as µ
(the community coherence) changes. These results suggest that a-bter is usable as a replacement for LFR when comparing

CD algorithms. A plot title n_davg indicates a graph with n vertices and average degree davg.

96 GB DDR and 16 GB MCDRAM HBM and a KNL processor with

68 cores. On these systems, we used Cray MPICH 7.7.4 and the Intel

18.0.5 compiler with ‘-fopenmp -xMIC-AVX512 -O3 -std=c++11’

flags. The third system is a cluster comprising over 2500 nodes

with ARM processors and an HDR InfiniBand interconnect (Astra).
Each Astra node has 128 GB DDR and two Marvel ThunderX2 ARM

processors with 28 cores per processor. On this system we used

OpenMPI 3.1.3 and the ARM HPC 19.1 compiler with ‘-fopenmp

-mcpu=thunderx2t99 -mtune=thunderx2t99 -O3 -std=c++11’ flags.

We selected well-known large-scale graph data from a number

of sources to generate degree and clustering coefficient distribu-

tions. The graph properties and sources are listed in Table 1. To

demonstrate the efficacy of our methods for any arbitrary distri-

bution, we also generate a scale-26 R-MAT graph with GTGraph.

We made directed graphs undirected before computing distribu-

tion properties. To make our distributions less noisy and more

amenable to defined community generation, we considered only

degrees d = 5 . . .
√
n logn. This pre-processing is not necessary for

our methods to work. The properties after processing are listed in

Table 1. To validate our generator performance in terms of commu-

nity detection algorithm output, we use scalable implementations

of Label Propagation [25, 30] and Louvain [4, 13].

8 RESULTS

8.1 Comparison to lfr Benchmark

For our first set of experiments, we demonstrate the close equiva-

lence of a community detection benchmarking comparison between

a-bter and lfr. Figure 1 shows such an lfr-style comparison in

terms of nmi on output by the Louvain and Label Propagation com-

munity detection algorithms. We show outputs from lfr graphs

(left) and a-bter (right). We run label propagation to convergence

and a single level of Louvain to convergence. The title for each

graph should be read as {number of vertices}_{average degree}.

0.1

0.3

0.5

0.7

0.9

0.
1

0.
3

0.
5

0.
7

0.
9

Target mu

A
v
g
.
m

u
 (

L
F

R
 d

is
tr

ib
u
ti
o
n
s
)

A−BTER LFR

0.1

0.3

0.5

0.7

0.9

0.
1

0.
3

0.
5

0.
7

0.
9

Target mu
A

−
B

T
E

R
 m

u
 (

re
a
l
g
ra

p
h
 d

is
ts

.)

LiveJournal

WikiLinks

Friendster

R−MAT_26

Twitter

uk−2007

Figure 2: Average achieved µ versus target µ. We show

achieved µ for lfr and a-bter averaged over all lfr-style

graphs (left) and achieved µ for a-bter for generating

graphs from real distributions (right).

To generate the lfr graphs for these experiments, we vary the

number of vertices as n = 1024, 4096, 16384, the average degree

as k = 16, 24, 32, the mixing parameter as µ = 0.1, 0.2, . . . , 0.9;

we set the maximum degree as maxk =
√
n logn, the maximum

community size as maxc = maxk + 1, the minimum community

size asminc = 6, the degree distribution exponent as t1 = 2, and

the community size distribution exponent as t2 = 1. To generate

a-bter, we use as input the degree and clustering-coefficient dis-

tributions of lfr graphs. Note that the qualitative assessment of

the two CD algorithms is very similar: Louvain is the prefered al-

gorithm, and a distinct drop-off in label propagation is exposed.

nmi-scored detection performance thus correlates well (modulo

randomness in generation) between lfr and a-bter. The drop-off

in detection quality for label propagation is the result of a single

label dominating the graph, a well known occurrence when label

propagation is run on dense and small-diameter graphs with an

ill-defined community structure.

Benchmark Generation Time. Though we closely match bench-

mark outputs from lfr at the small scale, the greatest benefit of

SC ’19, November 17–22, 2019, Denver, CO, USA Slota et al.

our method is speed and scalability. To generate all 81 graphs rep-

resented in Figure 1 on a Core i5 laptop with one thread, lfr took

21 minutes and a-bter took 60.5 seconds (54s for LP solutions,

6.5s for generation). This represents a 21× speedup relative to lfr

for a-bter, and this relative speedup quickly increases with graph

scale.

8.2 Generation Accuracy

We examine our accuracy in hitting the target mixing parameter

and target degree distribution. Figure 2 plots the average target

versus achieved mixing parameter µ for the lfr graphs and lfr

and a-bter generator (left) and our six test distributions (right) for

a-bter. Overall, we hit our target mixing parameters accurately.

Random deviations are a natural consequence of our bter-style

distributed edge generation, and the fact that Chung-Lu probabili-

ties are inexact for simple graph generation [34]. We also validate

our a-bter outputs in terms of the resulting degree and clustering

coefficient distributions, and we note our quality is equivalent to

the performance of the baseline bter generator; i.e., quite good.

Figure 3: Achieved versus exact degree distributions (top)

and clustering coefficient (bottom) for all six test distribu-

tions and the a-bter generator.

Figure 3 shows how well our a-bter matches a target degree

and clustering coefficient distribution. Due to probabilistic genera-

tion, there is a slight dropoff below the minimum-degree threshold.

However, the number of such vertices is small relative to the total

number, and the rest of the distributions generally align well. We

also note that in the clustering coefficient plots for e.g., Twitter and

R-MAT_26 we don’t perfectly achieve the extremes in the tail of the

distributions; again, this is due to probabilistic generation, where a

general smoothing results as vertices don’t fall directly into their

target degree bucket.

8.3 Scaling of a-bter

In Figure 4, we show strong-scaling performance for a-bter when

processing all six test distributions on 1 to 16 nodes of Mutrino.
Again, we report the total time to generate all instances varying the

mixing parameter. Our reported times include initial I/O, prepro-

cessing, and the explicit handling of community assignments, not

just the edge generation phase. However, we don’t include output

I/O.

LiveJournal WikiLinks Friendster

R−MAT_26 Twitter uk−2007

0

2

4

6

0

5

10

15

0

50

100

150

200

250

0

50

100

150

200

0

100

200

0

200

400

600

12 4 8 16 12 4 8 16 12 4 8 16

Number of KNL Nodes (68 cores per node)

S
u

m
 G

en
.

T
im

e
(s

)

Figure 4: Distributed memory strong scaling of the a-bter

generator on 1-16 KNL nodes using all six test distributions.

Times given are the sum to generate all nine benchmark

graphs for µ = 0.1, 0.2, . . . , 0.9.

Overall, the strong scaling behavior is relatively good, with an

average speedup of 5.8× for a-bter when scaling from 1 to 16

nodes. We note better speedup numbers as the graphs increase in

scale. There is almost a 100× difference in edges generated between

LiveJournal and uk-2007, and their speedups (1.6× vs. 6×) reflect

that difference.

Table 2: Test graph characteristics for distribution scaling ex-

periments given as the minimum (2×) and maximum (16×)

edges (m), # vertices (n), max degree (dmax), and per-node

edge generation rate (R) in millions of edges per second for

2× to 16× scale.

Network n2× n16× m2× m16× dmax2× dmax16× R2× R16×

LiveJournal 3.6 M 16 M 50 M 405 M 3.0 K 6.3 K 27 21

Wikilinks 3.5 M 17 M 40 M 325 M 45 K 106 K 11 3

R-MAT26 101 M 437 M 2.1 B 16 B 9.8 K 20 K 37 30

Friendster 108 M 260 M 3.6 B 29 B 7.8 K 15 K 63 53

Twitter 74 M 315 M 2.9 B 22 B 96 K 150 K 51 26

uk-2007 145 M 620 M 6.6 B 52 B 98 K 220 K 50 23

Figure 5 shows additional scaling performance from 2 to 16

Mutrino KNL nodes for a-bter. We use our distribution scaling

Scalable Generation of Graphs SC ’19, November 17–22, 2019, Denver, CO, USA

LiveJournal_scaled WikiLinks_scaled Friendster_scaled

R−MAT_26_scaled Twitter_scaled uk−2007_scaled

0

3

6

9

0

20

40

60

0

100

200

300

0

100

200

300

0

100

200

300

400

500

0

500

1000

2 4 8 16 2 4 8 16 2 4 8 16

Number of KNL Nodes (68 cores per node)

S
u

m
 G

en
.

T
im

e
(s

)

Figure 5: Distributed memory scaling of the a-bter gen-

erator on 2-16 KNL nodes using all six test distributions

with our distribution scaling methods. Each point is the to-

tal time to generate all nine benchmark graphs for µ =
0.1, 0.2, . . . , 0.9. The amount of work per node increases

super-linearly as the distributions scale, thus the plots are

not perfectly horizontal. With x nodes we generate scaled

versions of the real world graphs that are x-times larger.

method to generate the distributions for these tests, and we approx-

imately hold constant the ratio of generated edges to nodes. Note

that the ratio of vertices to node decreases due to our deletion of

vertices with degree less than 5. However, this has minimal impact

on the total number of edges, as n << m in general and the vast

majority of edges are attached to vertices of degree five and greater.

The plot does not present pure weak scaling since the work more

than doubles when we double the graph size, as our distribution

scaling method also intrinsically increases the maximum degree

by an approximately logarithmic factor. This contributes to the

observed logarithmic increase in timing for successive runs, as our

generation methods are dependent both on the number of edges

as well as the graph’s maximum degree. Our method has minimal

work dependence on the number of vertices. Our performance is

quite good considering this, as the ratio of our performance dif-

ference between 2× and 16× is consistently less than the ratio of

increase in dmax. As with prior results, we show the aggregate time

to generate all nine graphs with varying µ. Table 2 summarizes

graph characteristics of 2× and 16× scaled graphs for the six dis-

tributions along with a performance rate of edges generated per

second per node as we scale (in millions of edges).

8.4 a-bter Terascale Runs

To further stress the scaling of our generation method, we ran

additional scaling experiments on Astra and Trinity. We used the

baseline Friendster distribution to generate tests for up to 512 com-

pute nodes, representing a graph with close to 1 trillion edges

and an edge list consuming 15 terabytes of memory. This repre-

sents a graph approximately 20× larger than the largest lfr-style

graphs generated to date [14], and an increase of several orders-
of-magnitude for the largest instances generated in memory. We

create a single set of degree distributions and clustering-coefficient

distributions for each node count, with a µ held equal to Friendster’s

native µ (∼0.67) as we scale. Table 3 shows the graph characteristics

and scaling of graph generation time.

Table 3: Test graph characteristics and results for terascale

graph generation experiments given as # edges (m), # ver-

tices (n), and max degree (dmax) for Friendster at 1× to 512×

scale, run time (T) in seconds and per-node edge generation

rate (R) in millions of edges per second for the KNL (Trinity)
andARM (Astra) systems. Results that are x-times larger are

generated with x nodes.

Scale m n dmax Memory TKNL TARM RKNL RARM

1× 1.8 B 40 M 5.2 K 29 GB 33 22 55 82

4× 7.2 B 93 M 10 K 115 GB 35 28 52 64

16× 29 B 260 M 15 K 459 GB 35 29 50 61

64× 115 B 786 M 20 K 1.8 TB 55 32 33 56

256× 464 B 2.5 B 26 K 7.4 TB 102 69 18 26

512× 925 B 4.6 B 30 K 15 TB 134 76 14 24

We observe no crippling bottlenecks in our largest tests, with a

difference in timing of only about 4× from 1 to 512 nodes, or from

1.8 billion to 925 billion edges. Our largest tests give a total edge

generation rate of close to 7 billion edges per second on KNL and

12 billion edges per second on ARM.

8.5 Timing Breakdown

In Figure 6 we demonstrate a breakdown of timing for each phase

of graph generation for a-bter on 8 nodes. “CommAssign” refers

to all pre-processing associated with vertex ID to group and block

mapping for a-bter. The portion for “Dist” refers to the parallel

overheads associated with work partitioning and distribution of

edge skipping. “IntGen” and “ExtGen” refer to the intra-community

and inter-community edge generation, respectively. These propor-

tions are averaged over all ranks. We show the results for all six

graphs with a mixing parameter of µ = 0.5. This parameter value is

selected as it will result in approximately the same number of edges

being generated for the internal and external stages. A larger µ
would increase the relative portion in external edge generation, and

conversely, a smaller µ would increase the relative portion of inter-

nal edge generation. µ has little impact on community assignment

times and the relative parallel overheads.

We note that external edge generation on average requires the

largest proportion of time. This is expected, as while on average

the number of internal and external edges generated is equivalent,

edge-skipping for Chung-Lu graphs can be more expensive. This is

because inter-degree probabilities vary for each degree pair while

there’s only a single edge probability among all vertices in an Erdős-

Rényi graph. Parallel overheads are proportional to the maximum

degree and general skew of the degree distribution. As prior work

alluded [1], perfectly balancing parallel edge-skipping for edge

generation is a challenge, requiring a fine-grained partitioning of

expected work. We observe similar challenges, particularly as we

scale to an order-of-magnitude more edges on almost two orders-

of-magnitude more threads. Improving on these parallelization

schemes is a promising future direction.

SC ’19, November 17–22, 2019, Denver, CO, USA Slota et al.

0.00

0.25

0.50

0.75

1.00

Live
Jo

urn
al

W
ik

iL
in

ks

Frie
ndst

er

R−
M

AT_
26

Twitt
er

uk−
20

07

Graph

E
xe

cu
ti

o
n

 T
im

e
P

ro
p

or
ti

o
n

Phase CommAssign IntGen ExtGen Dist

Figure 6: Timing Breakdown for the Phases of a-bter.

8.6 Large Scale Community Detection

Benchmarking

To demonstrate the efficacy of using our methods for large-scale

community detection benchmarking, we ran Label Propagation [30]

and Louvain [13] on all six test distributions and calculated the

resultant nmi across a range of µ. Due to the large scale of these

tests, we restricted Louvain to one level of 5 iterations and Label

Propagation to 10 iterations
6
. We ran these set of tests on a single

KNL node. We plot these outputs in Figure 7.

LiveJournal WikiLinks Friendster

R−MAT_26 Twitter uk−2007

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

Target mu

N
M

I

Louvain LabelPropagation

Figure 7: NMI comparisons on a varying-density suite of

graph instances generated from the six test distributions.

We compare Louvain and Label Propagation.

At this scale and for the iteration count, Louvain appears more

capable at resolving communities across a wide range of mixing pa-

rameters. In particular, Label Propagation fails on several graphs to

resolve communities for µ ≥ 0.5. We noted this similar observation

at the smaller scale with baseline lfr generator. The one exception

is the R-MAT graph, which is likely due to its relatively skewed

6
The authors of [29] observed that on graphs of this scale Label Propagation can

compute for 1000s of iterations over many hours

power-law distribution, which results in a correspondingly large

number of small communities that label propagation can readily

resolve.

16x

0

0.2

0.4

0.6

0.8

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Target mu

N
M

I

16 32 64

256x

0

0.2

0.4

0.6

0.8

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Target mu

N
M

I

512 1024 2048

16x

0

100

200

300

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Target mu

E
xe

c
u
ti
o
n
 T

im
e
 (

s
)

16 32 64

256x

0

100

200

300

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Target mu

E
xe

c
u
ti
o
n
 T

im
e
 (

s
)

512 1024 2048

Figure 8: VCCS-based study on the 16× (0.5 TB) and 256×

Friendster (7.4 TB) graphs (top) comparing Label Propaga-

tion at different node counts. Execution time for each node

count vs. µ is shown on the bottom. We run on both KNL

(16×) and ARM (256×) systems. Our capability provides evi-

dence that we can strong scale this distributed computation

without a penalty in solution quality.

We also used our generation methods to test the impact of strong

scaling on community-detection algorithms in terms of the resul-

tant output quality. We show in Figure 8 an lfr-style study on the

16× and 256× scaled Friendster distributions, with a-bter generat-

ing graphs at µ = 0.1, . . . , 0.7. At this scale, the only community

detection algorithm we have been able to successfully run is La-

bel Propagation. So instead of comparing the impact on quality in

terms of NMI between differing algorithms, we instead examine the

impact on quality of decreasing the time to solution by increasing

the node count. We run the 16× tests onMutrino and the 256× tests

on Astra.
We note two primary results. First, there is a large hit to solution

quality in terms of NMI when moving from shared memory to

distributed memory. We observe a maximum NMI of only about

0.8 on these tests, and in other similar tests we have noted similar

observations about such a decrease when running label propagation

in distributed versus shared memory. Implementations of label

propagation or similar algorithms should seek to mitigate these

effects. More interestingly, we observe minimal further impact on

solution quality in terms of NMI as we increase the node count.

This suggests that further increasing the number of processors

in distributed memory might be a viable way to improve time to

solution without severely impacting solution quality.

Scalable Generation of Graphs SC ’19, November 17–22, 2019, Denver, CO, USA

We note that these preliminary observations warrant further

study, and a-bter is a viable tool to enable such studies and future

insights.

8.7 Distribution Scaling

Figure 9: Distribution scaling on the uk test graphs. Plotted

are the degree distributions (left) and clustering coefficient

distributions (right) of uk-2002 being scaled tomatch the pa-

rameters of the uk-2005 (top) and uk-2005 being scaled to

match the parameters of uk-2007 (bottom). Note that as the

real UK graphs evolve, their clustering coefficients tend to

increase. We match this trend; the EvoGraph distributions

tend to decrease.

We empirically demonstrate our distribution scaling method in

Figure 9. Here, our comparison is to the natural growth of the .uk
domain web graph from 2002 to 2005 and from 2005 to 2007. Due

to the limited availability of large-scale temporal networks, we are

restricted in our testing to these specific crawls.

We generate our distributions using the described method with

the observed scaling factors for the number of vertices and edges

for both growth periods. While we acknowledge that accurately

modeling future growth of a specific network distribution would

be impossible without knowing the growth factors a priori, the pur-

pose of these tests is to evaluate how well, given these parameters,

our scaling method compares to the real growth. We also include

the distributions resulting from growth simulated by EvoGraph [23]

for comparison, the current state-of-the-art. We select as a scaling

factor for EvoGraph the nearest integer to the edge ratio. We em-

phasize that we don’t explicitly grow the graph topology itself like

EvoGraph, as our method is tailored for creating input distributions

for our graph generators.

Figure 9 demonstrates a comparison in scaling the uk-2002 crawl

to the uk-2005 crawl and from the uk-2005 crawl to the uk-2007

crawl. The degree distributions are shown on the left and the clus-

tering coefficient distributions are shown on the right. We note that

both our method and EvoGraph overlap quite well with observed

growth, modulo random noise, in terms of the degree distribution.

In these instances, we observe that the average clustering coeffi-

cient of the .uk domain increases over time. However, it appears

that EvoGraph understates this clustering while we slightly over-

state it; we observe similar results when calculating the changes to

the distributions’ native µ.
Obvious future work would be to better understand network

growth, specifically in terms of how the average clustering coeffi-

cient and clustering coefficient distribution evolve.

8.8 Performance Comparisons with Other

Methods

We know of two other works that generate lfr or lfr-like graphs.

NetworKit [32] implements an lfr generator as one of their many

graph generation routines. Their generator closely follows the orig-

inal lfr code in output and performance. Recently, scalable parallel

lfr generator variants have been proposed [14]. They show scal-

ability to over 50 billion edges and can generate a 10 billion edge

graph in 17 hours
7
. Our 512× scale Friendster graph has ∼920 bil-

lion edges, and we can generate it in 134 seconds with a-bter on

512 KNL nodes. However, we don’t claim to exactly match the in-

put distribution or target mixing parameter, and we don’t include

I/O times for outputting the edge list. We do claim that a-bter is

a similarly useful but much more scalable means to benchmark

HPC-scale community detection algorithms.

There has been recent work on massive-scale graph generation

of Erdős-Rényi, random geometric, random hyperbolic, random

Delaunay graphs [12]. They report for Erdős-Rényi generation on

2
15

Sandy Bridge cores a time of about 25 seconds to generate about

275 billion edges. In our terascale experiments, we generate a a-

bter instance of 460 billion edges graph on about 2
14

KNL cores

in 100 seconds, giving an approximately equivalent edges-per-core

generation rate (∼300 K edges per core per second). Other recent

work exploring the parallelization of edge-skipping methods [1]

implements the Erdős-Rényi,Chung-Lu, and bter generation and

gives a generation rate of approximately 12 billion edges per second

on 1024 Sandy Bridge cores for a web crawl similar to but slightly

larger than uk-2007 with a variant of bter. Our bter generator

rates are not directly comparable due to various design decisions

targeting terascale and involving duplicate edge removal (we do

not allow duplicates), but we match the edge generation rate of 12

billion edges per second on 15TB variants of the Friendster network

(see Table 3). Furthermore, since we treat bter as a black box our

a-bter process could absorb and benefit from advances in bter

generation such as those in [1].

9 DISCUSSION

We briefly discuss two related topics that represent interesting

future work. First, consider an adversarial situation in which an

algorithm designer wishes to “game” the VCCS-based method to

give an unfair advantage to his/her algorithm. Explicitly addressing

this situation is beyond the scope of this paper. However, we note

that the engineered algorithmic solutions produced by both a-bter

and LFR are based upon random graphs. Furthermore, LFR performs

a rewiring step which would perhaps make formulating arguments

7
The authors of [14] expect improvements from applying the Global Undirected Curve-

ball methods presented at ESA 2018.

SC ’19, November 17–22, 2019, Denver, CO, USA Slota et al.

about robustness against attack more difficult. The affinity blocks

with BTER are simply Erdös-Rényi random graphs, which have

been analyzed for decades.

Secondly, we consider other ways one might support VCCS-

based experiments at varying scale. We are developing generators

of graphs more similar to LFR instances. However, while these

generators enable VCCS-based studies and outperform published

LFR variants, they are not yet as scalable as a-bter.

EvoGraph approximately preserves per-degree clustering coeffi-

cient distributions at scale. This is a valuable property, and it might

be possible to support VCCS-based studies as follows: use EvoGraph

to scale up a graph with engineered approximate solution, obtain

the scaled graph’s degree and clustering coefficient distributions,

use them as BTER inputs, and use our a-bter process to produce

a suite of graphs with varying community tightness. While such

an approach might work, our approach is more direct and more

scalable in test runs.

10 CONCLUSIONS

We have introduced a capability for evaluating and comparing the

solution quality of community detection algorithms at HPC-scale

via the generation of suites of graphs with varying community

coherence. Our method, termed a-bter, uses a specially-designed

bter graph generator along with pre-processing methods for input

degree and clustering coefficient distributions. Our pre-processing

can both modify the community coherence output by bter as well

as generate graphs at a scale multiple times larger than the baseline

inputs. We note that our methods are quite efficient, generating

graphs with almost a trillion edges in minutes on HPC systems.

Future users of our software will be able to base algorithm compar-

ison studies on scaled-up models of real graphs, enabling research

into the effects of large-scale processing on community detection

performance.

Acknowledgements:

We thank the ASC Advanced Architectures test-bed team at Sandia Na-

tional Laboratories for supplying and supporting the systems used in this

paper. The Trinity platform is operated by Los Alamos National Labora-

tory on behalf of the Advanced Simulation and Computing (ASC) Stockpile

Stewardship program. Access to the Astra system is provided by Sandia

National Laboratories for the ASC Vanguard program, a sequence of proto-

type hardware deployments to evaluate technology for future NNSA and

DOE missions. Sandia National Laboratories is a multimission laboratory

managed and operated by National Technology and Engineering Solutions

of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,

for the U.S. Department of Energy’s National Nuclear Security Administra-

tion under contract DE-NA-0003525. This research was funded through the

Laboratory Directed Research and Development (LDRD) program at Sandia.

We thank Tamara Kolda for discussions helpful in refining the abstract.

REFERENCES

[1] Maksudul Alam, Maleq Khan, Anil Vullikanti, and Madhav Marathe. 2016. An effi-

cient and scalable algorithmic method for generating large: scale random graphs.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 32.

[2] David A Bader and KameshMadduri. 2006. GTgraph: A synthetic graph generator

suite. (2006).

[3] Vladimir Batagelj and Ulrik Brandes. 2005. Efficient generation of large random

networks. Physical Review E 71, 3 (2005), 036113.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment 2008, 10 (2008), P10008. http:

//stacks.iop.org/1742-5468/2008/i=10/a=P10008

[5] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-

pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[6] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. 2010. Measuring User

Influence in Twitter: The Million Follower Fallacy. In Proc. Int’l. Conf. on Weblogs
and Social Media (ICWSM).

[7] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[8] Fan Chung and Linyuan Lu. 2002. Connected components in random graphs with

given expected degree sequences. Annals of combinatorics 6, 2 (2002), 125–145.
[9] Paul Erdős and Alfréd Rényi. 1960. On the evolution of random graphs. Publ.

Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17–60.
[10] John Forrest, Ted Ralphs, Stefan Vigerske, LouHafer, Bjarni Kristjansson, jpfasano,

EdwinStraver, Miles Lubin, Haroldo Gambini Santos, rlougee, and Matthew

Saltzman. 2018. (COIN-OR/Cbc): Version 2.9.9. https://doi.org/10.5281/zenodo.

1317566

[11] S. Fortunato and M. Barthélemy. 2007. Resolution Limit in Community Detection.

PNAS 104, 1 (2007), 36–41.
[12] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schultz, Darren Strash,

and Mortiz von Looz. 2018. Communication-Free Massively Distributed Graph

Generation. In International Parallel & Distributed Processing Symposium (IPDPS).
[13] Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth Kalyanara-

man, Hao Lu, Daniel Chavarria-Miranda, Arif Khan, and Assefaw Gebremedhin.

2018. Distributed louvain algorithm for graph community detection. In 2018
IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
885–895.

[14] Michael Hamann, Ulrich Meyer, Manuel Penschuck, Hung Tran, and Dorothea

Wagner. 2018. I/O-Efficient Generation of Massive Graphs Following the LFR

Benchmark. J. Exp. Algorithmics 23, 1, Article 2.5 (Aug. 2018), 33 pages. https:

//doi.org/10.1145/3230743

[15] William EHart, Jean-PaulWatson, and David LWoodruff. 2011. Pyomo: modeling

and solving mathematical programs in Python. Mathematical Programming
Computation 3, 3 (2011), 219–260.

[16] Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C Seshadhri. 2014. A scalable

generative graph model with community structure. SIAM Journal on Scientific
Computing 36, 5 (2014), C424–C452.

[17] Jérôme Kunegis. 2013. KONECT – The Koblenz Network Collection. In Proc. Int.
Conf. on World Wide Web Companion. 1343–1350.

[18] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark

graphs for testing community detection algorithms. Physical Review E 78, 4 (Oct.

2008), 1–5. https://doi.org/10.1103/PhysRevE.78.046110

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[20] Joel C Miller and Aric Hagberg. 2011. Efficient generation of networks with

given expected degrees. In International Workshop on Algorithms and Models for
the Web-Graph. Springer, 115–126.

[21] M. E. J. Newman and M. Girvan. 2004. Finding and evaluating community

structure in networks. Phys. Rev. E 69 (Feb 2004), 026113. Issue 2. https://doi.

org/10.1103/PhysRevE.69.026113

[22] Symeon Papdopoulos, Yiannis Kompatsiaris, Athena Vakali, and Ploutarchos

Spyridonos. 2012. Community detection in Social Media: Performance and

application considerations. Data Mining and Knowledge Discovery 24, 3 (2012),

515–554.

[23] Himchan Park and Min-Soo Kim. 2018. EvoGraph: an effective and efficient graph

upscaling method for preserving graph properties. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM,

2051–2059.

[24] Web Archive Project. [n. d.]. Friendster social network dataset: friends. https:

//archive.org/details/friendster-dataset-201107.

[25] U. N. Raghavan, R. Albert, and S. Kumara. 2007. Near linear time algorithm to

detect community structures in large-scale networks. Physical Review E 76, 3

(2007), 036106.

[26] Giulio Rossetti and Rémy Cazabet. 2018. Community Discovery in Dynamic

Networks: A Survey. ACM Comput. Surv. 51, 2, Article 35 (Feb. 2018), 37 pages.
https://doi.org/10.1145/3172867

[27] Geoffrey Sanders, Roger Pearce, Timothy La Fond, and Jeremy Kepner. 2018. On

large-scale graph generation with validation of diverse triangle statistics at edges

and vertices. arXiv preprint arXiv:1803.09021 (2018).
[28] Comandur Seshadhri, Tamara G Kolda, and Ali Pinar. 2012. Community structure

and scale-free collections of Erdős-Rényi graphs. Physical Review E 85, 5 (2012),

056109.

[29] G. M. Slota and S. Rajamanickam. 2018. Experimental Design of Work Chunking

for Graph Algorithms on High BandwidthMemory Architectures. In International
Parallel & Distributed Processing Symposium (IPDPS).

[30] G. M. Slota, S. Rajamanickam, and K. Madduri. 2016. A Case Study of Complex

Graph Analysis in Distributed Memory: Implementation and Optimization. In

International Parallel & Distributed Processing Symposium (IPDPS).

http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
https://doi.org/10.5281/zenodo.1317566
https://doi.org/10.5281/zenodo.1317566
https://doi.org/10.1145/3230743
https://doi.org/10.1145/3230743
https://doi.org/10.1103/PhysRevE.78.046110
http://snap.stanford.edu/data
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://archive.org/details/friendster-dataset-201107
https://archive.org/details/friendster-dataset-201107
https://doi.org/10.1145/3172867

Scalable Generation of Graphs SC ’19, November 17–22, 2019, Denver, CO, USA

[31] Christian L Staudt, Michael Hamann, Ilya Safro, Alexander Gutfraind, and Hen-

ning Meyerhenke. 2016. Generating scaled replicas of real-world complex net-

works. In International Workshop on Complex Networks and their Applications.
Springer, 17–28.

[32] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2016. Net-

worKit: A tool suite for large-scale complex network analysis. Network Science 4,
4 (2016), 508–530. https://doi.org/10.1017/nws.2016.20

[33] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2010. Information theoretic

measures for clusterings comparison: Variants, properties, normalization and

correction for chance. Journal of Machine Learning Research 11, Oct (2010),

2837–2854.

[34] M Winlaw, H DeSterck, and G Sanders. 2015. An In-Depth Analysis of the Chung-
Lu Model. Technical Report LLNL-TR-678729. Lawrence Livermore National

Laboratory.

https://doi.org/10.1017/nws.2016.20

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 a-bter for HPC-Scale Benchmark Graph Generation
	4.1 Phase 1: Initializing Input Distributions
	4.2 Phase 2: Community Assignment
	4.3 Phase 3: Internal Edge Creation
	4.4 Phase 4: External Edge Creation

	5 Evaluation and Parallel nmi
	6 Implementation Details
	7 Experimental Setup
	8 Results
	8.1 Comparison to lfr Benchmark
	8.2 Generation Accuracy
	8.3 Scaling of a-bter
	8.4 a-bter Terascale Runs
	8.5 Timing Breakdown
	8.6 Large Scale Community Detection Benchmarking
	8.7 Distribution Scaling
	8.8 Performance Comparisons with Other Methods

	9 Discussion
	10 Conclusions
	References

