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Abstract—This work is a preliminary validation on using
treelets in lieu of graphlets for the alignment of biological
interaction networks. There has been considerable prior work on
calculating alignments from vertex-based topological similarity
measures based on local subgraph (i.e., graphlet) counts. In
this work, we instead consider treelets, which are small acyclic
subgraphs. As tree subgraphs can be enumerated quite quickly
in parallel, we are able to consider larger subgraphs to better
capture topological similarities in graph regions. We demonstrate
that relative to the prior work using graphlets, our approach is
more scalable and outputs similar or higher quality alignments.

Index Terms—graph alignment; subgraph isomorphism;
treelets

I. INTRODUCTION

The network alignment problem can be loosely defined
as determining an injective vertex-to-vertex or edge-to-edge
mapping between two disparate networks that minimizes some
cost function [3]. The alignment problem can be considered
a variation of the graph or subgraph isomorphism problem.
Similar to the subgraph isomorphism problem, determining
alignments between networks can often reveal latent functional
similarities between the network structures, such as the func-
tional role of proteins [9], [10]. Network alignments can be
cheaper to calculate than exact subgraph matches (depending
on the algorithm and subgraph size), so determining align-
ments between two very large networks is feasible.

Many algorithms exist for the graph alignment problem [2],
[7], [9]. These generally calculate some local topologically-
based feature vector, which can then be used to compute
cost metrics between vertices and edges in disparate networks.
Algorithms then attempt to minimize such a cost over a full
pairwise alignment.

We specifically consider an alignment approach which
utilizes the relative frequency of graphlets rooted on each
vertex to define a similarity metric between vertices of separate
networks [6], [10], [11], [13]. Graphlets are formally defined
as all possible simple, undirected, and induced subgraphs from
2-5 vertices [16]. A vertex-to-vertex similarity score can be
calculated based on graphlet degree distributions, where the
graphlet degree of a vertex is the number of graphlet embed-
dings rooted at that vertex [15]. By taking a single vertex and
calculating all possible graphlet degrees rooted at that vertex,
a feature vector can be constructed (graphlet degree signature)
for pairwise vertex similarity comparisons [14]. By examining
the graphlet degree signatures for nodes within and between
two distinct networks, an alignment between the networks can
be determined.

The primary challenge of using graphlet counts is a com-
putational one: the subgraph enumeration problem requires
O(nk) work, where n is the graph order and k is the subgraph
order. Enumerating all graphlets up to k = 5 correspondingly
requires O(n5) for naı̈ve methods or O(n · d4) for optimized
ones [8] (d is the maximum vertex degree) – infeasible for
large-scale networks. In this work, we overcome this challenge
by instead considering only acyclic (tree) subgraphs. Using the
color-coding technique of Alon et al. [1], tree subgraphs can
be approximately (but with very low error [20]) enumerated
in O(ekm); i.e,. scaling linear in the size of a network (m) for
a fixed k. This allows us to consider a both a greater number
of subgraphs as well as subgraphs of a larger size when
calculating a graphlet degree feature vector. As color-coding
uses a dynamic programming approach, memory consumption
might be larger than graphlet enumeration methods. However,
this only becomes problematic on a typical HPC compute node
for graphs of billions of edges and subgraphs of a dozen or
mode vertices [20]; much larger than the current scale being
considered.

We utilize a fast parallel tree enumeration tool
(FASCIA [19], [20]) and our new parallel and scalable
implementations of various alignment methods [6], [10]
to calculate the feature vector and perform alignment. We
demonstrate that the use of tree subgraphs can have a noted
benefit on alignment quality, and that the use of tree subgraphs
can also enable future scalability of subgraph-based alignment
methods to network of considerably greater scale. We term
our new approach as FASTALIGN. 1

II. BACKGROUND

A. Graphlets

Graphlets are formally defined as small undirected induced
subgraphs between two and five vertices in size. Prior work
by Pržulj et al. [14]–[17] extensively studies graphlets in
the context of biological network analysis. Pržulj et al. also
identified all possible discrete orbits within each graphlet.
Orbits in this context refer to distinct automorphic vertices
in the subgraph; i.e., it can be useful to explicitly differentiate
between an embedding rooted on a vertex in the center of a
star versus a vertex on one of the leaves, while we don’t want
to differentiate between an embedding rooted on “different”
leaves. Solava et al. [23] extends this concept to edges,
where graphlet counts are rooted based on distinct edge orbits
instead.

1This work is an extension of that appearing in a prior dissertation [22].



1) Graphlet Degree Signature Similarity: The graphlet de-
gree signature similarity is a per-vertex score that allows
comparison between two disparate vertices in the same or
separate networks. This score is based on a feature vector
created with the counts for all possible graphlet orbits rooted
at a given vertex. It is described as capturing the local topology
and interconnectedness of the node in the context of its local
neighborhood [14]. A distance value between two vertices, u
and v, for graphlet orbit i with counts ui and vi is calculated
as follows:

Di(u, v) = 1− wi ×
| log(ui + 1)− log(vi + 1)|

log(max{ui, vi}+ 2)

In this equation, wi is a weighting given to each specific
orbit. These values are dependent on the number of isomor-
phisms of smaller graphlets rooted at at orbit i. The total
distance value between vertices is the sum of distance values
divided by the sum of the weightings for all orbits.

D(u, v) =

∑
iDi(u, v)∑

i wi

The similarity between two vertices is then S(u, v) =
1 − D(u, v). These above distance and similarity measures
can be directly applied to edge-based orbits. To calculate Di

and D for edges we would instead consider replacing vertices
(u, v) with edges (e, f) and consider the counts of ei to be
the number of times edge e has a rooted embedding of orbit
i.

B. Treelets

Treelets in the context of this work are formally defined as
all possible 3-7 vertex tree-structured non-induced subgraphs.
Previous work [21] has demonstrated the applicability of using
treelets in lieu of graphlets to benefit from the much lower
possible running time bounds. There have been sampling
methods introduced to improve time to solution for graphlets,
but these still do not improve upon the upper bound, can still
have relatively high cost, and have not yet been demonstrated
in practice as applicable for enumerating per-vertex counts,
only global counts.

It has been previously demonstrated [21] that treelet counts
are generally more computationally efficient to compute and
can take the place of graphlet counts for a number of the
proposed graphlet-based analytics [15], [17]. The primary
focus of this work is to demonstrate the possibility of using
a treelet degree signature vector, calculated using the above
equations, as a means to align biological networks.

III. METHODS

A. GRAAL

The GRAAL (GRAph ALignment) algorithm and its vari-
ants [10]–[13] constitute various approaches for the use of
graphlet degree signature similarity between vertices of differ-
ent networks to compute an alignment. A brief overview of the
baseline GRAAL algorithm implemented in this work is given

by Algorithm 1 (see [10] for more details). The algorithm
proceeds as follows. First, a cost matrix C is created between
all possible vertices v and u in between the two networks G
and H based on the following function:

C(u, v) = 2−
(
(1−α)× vd + ud

maxd(G) + maxd(H)
+α×S(u, v)

)
In this function, vd and ud are the degrees of vertex v and u,

maxd(G) and maxd(H) are the maximum degrees of graphs
G and H , S(v, u) is the graphlet degree signature similarity
between v and u, and α is a control parameter between [0, 1]
that varies the influence of the vertex degrees versus signature
similarity on the overall cost. An α value of 0 would specify
that only vertex degrees are to be utilized, while an α value
of 1 would result in only vertex counts being utilized.

Algorithm 1 GRAAL Alignment Algorithm
procedure GRAAL(G,H)

C ← allCosts(G,H) in parallel
A← ∅
p← 1
while G,H not fully aligned do

(u, v)← findSeed(Gp, Hp) in parallel
A← (u, v)
r ← 1
repeat

RG ← getRadius(Gp, u, r) in parallel
RH ← getRadius(Hp, v, r) in parallel
A← align(RG, RH , C)
r ← r + 1

until RG or RH = ∅
if r ≥ 3 and p < 3 then

p← p+ 1
return A

Using the cost matrix, an initial seed is selected as the
minimal value pair in C and added to the alignment A. The
networks are then iteratively and greedily aligned (based on
minimal cost) outward from this pair of vertices on a per-
radius basis (e.g. 1 hop from u and v, 2 hops, 3 hops, etc.)
until no more vertices are available for alignment in one of
the graphs at a given radius.

If the resultant radius is greater than or equal to 3, the graphs
are taken to the next power. In this instance, power refers to a
graph that is created by adding edges to the graph between all
vertices having some shortest paths length between them up to
some value in the original graph. For example, a power 1 graph
would just be the original graph (i.e. G1 = G), while a power
2 graph would have additional edges between all vertices that
are at most 2 hops away from each other on the original graph.
This allows for inexactness in the alignment, similar to how
additions or deletions function in sequence alignment.

New seeds are selected and the iterative alignment pro-
cedure is again performed for each radius. This continues
with new seeds being selected and the graphs incremented as
necessary up to a power as 3 (G3) until all possible vertices
in the smaller of G and H have been fully aligned.



B. GREAT

The GREAT (GRaphlet Edge-based AlignmenT) algo-
rithm [6] uses edge-based similarity measures in addition to
the vertex-based measures as used in GRAAL. It first considers
defining alignment score based on edge orbits as:

Ce(e, f) = (1− α)× ed + fd
maxd(G) + maxd(H)

+ α× Se(e, f)

where ed is a measure of edge degree centrality (ed =∑
i wi × log(ei + 1), for graphlets i with weight wi and

count per edge ei, similar as before), Se is the edge-based
graphlet degree signature similarity noted in Section II-A1,
and maxd(G) refers to the maximum edge degree centrality
over all edges in G. GREAT then uses these costs to calculate
a greedy edge-to-edge pairwise alignment between G and
H . This alignment is then used to create pairwise vertex
similarities sim(u, v) by summing up the alignment scores
of all edges aligned in both of the neighborhoods of u and v.
These scores can then be directly input into a vertex aligner
such as GRAAL.

C. Parallelization

We provide novel parallelization for a number of subrou-
tines within GRAAL and GREAT. Within GRAAL, we use
OpenMP to parallelize creation of the cost matrix, seed search,
as well as the graphs and subgraphs created when increasing
the graph power and determining the local radius. We also
parallelize the creation of the cost matrix for GREAT and can
parallelize the determination of the minimum cost edge pairs
when doing the greedy alignment. Alignment itself is non-
trivial to parallelize due to strong dependencies, but exploring
techniques to enable parallelization is an interesting avenue
for future work.

D. Treelet and Graphlet Counting

We use the FASCIA [20] parallel treelet counting tool to
extract per-vertex treelet counts. We modify the program to
enable the output of vertex-based counts for GRAAL and
edge-based counts for use with GREAT. We retrieve graphlet
counts using Orca [8]. A number of other graphlet counting
tools exist, however, Orca was the fastest such tool we could
find that counted up to 5-vertex graphlets and output the per-
vertex counts we need to compute similarity measures.

E. Alignment Evaluation

There are four metrics commonly used to evaluate the
quality of alignment between two biological networks. These
are edge correctness, symmetric substructure score (S3), node
correctness and interaction correctness. Given an alignment in
terms of a mapping function M from vertex sets VG ∈ G to
VH ∈ H , we can define symmetric substructure score as the
following:

|EG ∩ EH | = |(u, v) ∈ EG : (M(u),M(v)) ∈ EH |

S3 =
|EG ∩ EH |

|EH |+ |EG| − |EG ∩ EH |

where EG and EH are the edge sets of G and H , respectively,
and M(u) defines the vertex that v is mapped to in H . This
metric can be simply stated as the ratio of the number of
edges that exist in G that equivalently end up mapped to an
existing edge in H over the total number of edges in G and H
minus the number mapped. Edge correctness is similar to the
S3 score, but is known to have certain drawbacks [6]. Node
correctness and interaction correctness can evaluate alignments
on labeled protein interaction datasets, where protein labels
and interactions are known. We only consider unlabeled data
in this exploratory work.

IV. RESULTS

Experiments were performed on dual socket Xeon(R) Plat-
inum 8160 CPU node with 196 GB DDR. We use biological
interaction networks for testing, with the datasets retrieved
from several sources [4], [5], [24]. We use protein interac-
tion networks for humans and yeast, and we include a C.
elegans gene interaction network for larger scale performance
tests. We compare three alignment methods: a baseline with
GRAAL using graphlet counts (Graphlets), GRAAL using
treelet counts (Treelets), and GREAT using treelet edge counts
(TreeletEdges). We run with 100 iterations of FASCIA in all
tests, unless otherwise noted.

A. Alignment Quality

We first compare alignment quality, given in Figure 1. We
run on the Yeast network, with 5%, 10%, 15%, and 20%
edges rewired, and we compare the S3 alignment score versus
varying α. On average, the use of treelets improves alignment
quality by 3.1% over graphlets, while the use of the additional
edge alignment information improves quality by 9.2% on
average over the baseline.
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Fig. 1. S3 score versus α for our three tested alignment methods.

We also consider the effects of iteration counts for FASCIA
in determining alignment quality. We run on 1 to 10,000
iterations using just GRAAL and align the Human network
and the Yeast network, with the results versus α given in
Figure 2. We note that even when using a low number of
iterations, alignment quality is minimally effected. For our
experiments in Figures 1 and 2, we used 100 iterations, though
this could very easily have been lowered while still retaining
good accuracy.
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Fig. 2. S3 score versus α and number of iterations of FASCIA.

TABLE I
GRAPHLET/TREELET COUNTING TIMES FOR THE TEST NETWORKS.

Network n m Orca FASCIA Source

Yeast 5.1 K 22 K 4.1s 11s [24]
Human 9.1 K 41 K 9.1s 18s [18]
C.elegans 15 K 246 K 777s 51s [4]

B. Subgraph Count Execution Times

We finally compare the execution time for counting Treelets
and Graphlets in Figure I. As noted, we use 100 iterations for
FASCIA (Treelets) and compare to Orca (Graphlets) on the
three considered networks. The difference in the alignment
phase computational costs is minimal between the two meth-
ods, as the only difference is in initializing the cost matrix.

We note that the difference in compute time becomes con-
siderable as the graphs increase in scale. The time for FASCIA
are also relatively conservative, as we can likely decrease the
iteration count by an order-of-magnitude without much impact
on alignment quality. The performance difference we show
here between graphlets and treelets is a key consideration if
applying subgraph-based alignments to larger-scale networks
than considered in this paper, as the scaling behavior of Treelet
counting is considerably more favorable.

V. DISCUSSION

This paper considered a preliminary application of treelets
in lieu of graphlets for the purpose of biological network align-
ment. We implemented and parallelized the GRAAL subgraph-
based graph alignment algorithm, and demonstrated that use
of treelets has the potential to enable considerable scalability
for subgraph-based alignments with an additional noted benefit
to alignment quality. The improvements in alignment quality
might be explained by the usage of larger-sized treelets, which
can capture the topological signature of an extended per-
vertex neighborhood relative to graphlets. We also extend our
preliminary work by considering edge-alignment via GREAT,
and we observe additional improvement to alignment quality
over our baseline. Future work will further investigate the
scaling of these techniques to larger graphs, incorporating
techniques from the multitude of other subgraph-based align-
ment strategies [11], [13] to improve overall alignment quality,
and comparing against other general alignment methods [2].
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[11] O. Kuchaiev and N. Pržulj, “Integrative network alignment reveals large
regions of global network similarity in yeast and human,” Bioinformat-
ics, 2011.
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