
Achieving Speedups for Distributed Graph
Biconnectivity

Ian Bogle
Department of Computer Science

Rensselaer Polytechnic Institute
Troy, New York, USA

boglei@rpi.edu

George M. Slota
Department of Computer Science

Rensselaer Polytechnic Institute
Troy, New York, USA

slotag@rpi.edu

Abstract—As data scales continue to increase, studying the
porting and implementation of shared memory parallel algo-
rithms for distributed memory architectures becomes increas-
ingly important. We consider the problem of biconnectivity
for this current study, which identifies cut vertices and cut
edges in a graph. As part of our study, we implemented and
optimized a shared memory biconnectivity algorithm based on
color propagation within a distributed memory context. This
algorithm is neither work nor time efficient. However, when we
compare to distributed implementations of theoretically efficient
algorithms, we find that simple non-optimal algorithms can
greatly outperform time-efficient algorithms in practice when
implemented for real distributed-memory environments and real
data. Overall, our distributed implementation for computing
graph biconnectivity demonstrates an average strong scaling
speedup of 15× across 64 MPI ranks on a suite of irregular
real-world inputs. We also note an average of 11× and 7.3×
speedup relative to the optimal serial algorithm and fastest
shared-memory implementation for the biconnectivity problem,
respectively.

Index Terms—parallel algorithms, graph algorithms, biconnec-
tivity

I. INTRODUCTION

The large scale of modern datasets representing real-world
graphs and meshes for scientific computations often neces-
sitates the use of distributed memory processing. Likewise,
efficiently solving basic graph problems such as a graph bicon-
nectivity decomposition remains important to multiple applica-
tions, including climate modeling [1], network resilience [2],
social network analysis [3], and other scientific computing
applications [4]. However, many graph algorithms, including
biconnectivity, are not widely studied in distributed memory,
and many do not have in-practice performant distributed
implementations described in the existing literature.

Graph biconnectivity is often described as identifying cut
vertices in a connected graph – vertices that, when removed,
will disconnect the graph. This can be considered a specific
instance of a more general connectivity problem, k-vertex
connectivity, where k corresponds to the minimum number
of vertices that need to be removed from a graph in order to
disconnect it. We note that there exists time-efficient shared
memory algorithms for biconnectivity (i.e., 1-vertex connec-
tivity), but as the value of k increases, algorithm complexity
correspondingly does as well. Algorithms for general k-vertex

connectivity often use flow-based approaches [5], while more
specific algorithms for k ≤ 3 connectivity use a wide variety
of subroutines.

We restrict this current study to graph biconnectivity in
the context of two algorithms, both of which were originally
proposed for shared memory computation. First, we consider
the well-known time-optimal Tarjan and Vishkin algorithm [6]
and its Cong and Bader extension (TV-Filter) [7]. Other recent
work [8, 9], as well as our own substantial preliminary work,
has attempted to distribute the Tarjan-Vishkin algorithm. How-
ever, none of these attempts have produced an implementation
that offers much, if any, speedup relative to the serial algorithm
running on a single thread of a consumer laptop. As such,
we primarily consider the color-propagation algorithm (Color-
BiCC) of Slota and Madduri [10]. This algorithm was original
proposed as a “simple” alternative to Tarjan-Vishkin, and it
is neither time-optimal nor work-optimal. Regardless, as our
results will show, this simplicity can in practice result in a
scalable state-of-the-art distributed implementation.

This idea of tradeoffs in terms of implementation simplicity
versus theoretical optimality, as well as the general idea of
studying how to efficiently port an algorithm from shared to
distributed memory, are key motivators for this current work.

A. Our Contributions

Our primary contribution is the distributed implementation
of the Slota-Madduri Color-BiCC algorithm in distributed-
memory. In addition, we also implement the edge filtering
technique of Cheriyan and Thurimella [11] to greatly reduce
the necessary number of edges needed to determine cut ver-
tices and edges in some input graph. Our specific contributions
are noted below:

1) We port the Slota-Madduri Color-BiCC algorithm and
the Cheriyan-Thurimella edge filtering algorithms to
distributed memory. These are the first distributed-
memory implementations of these algorithms pre-
sented in the literature.

2) Overall, our distributed implementation of the Color-
BiCC algorithm demonstrates average speedups of 11×
and 7.3× relative to the optimal serial Hopcroft-Tarjan
algorithm [12] and the shared memory Color-BiCC

algorithm, respectively, on 64 MPI ranks. Our imple-
mentation is also the first to demonstrate consider-
able speedups relative to the serial algorithm for
distributed biconnectivity processing.

II. BACKGROUND

Here we will discuss general distributed graph processing,
explicitly define the graph biconnectivity problem, and present
several prior and relevant works.

A. Distributed Graph Processing

We consider a graph G = (V,E), where V is the vertex
set and E is the edge set. In our discussions, we will use
n = |V | and m = |E|. For our distributed implementa-
tion, we explicitly consider a 1-dimensional distributed graph
processing model, where our input graph G = (V,E) is
broken into some number of vertex-disjoint subgraphs G =
({V1, V2, . . . Vp}, {E1, E2, . . . Ep}) that are distributed to p
computational ranks. Each of these subgraphs contain a set of
owned vertices and all of their incident edges. Consequently,
these subgraphs also include all non-owned vertices (i.g.,
ghosted vertices) within the 1-hop neighborhood of owned
vertices. Each rank holds vertex state information for both
owned and ghosted vertices.

For all of our implementations, we enforce a O(n+m
p)

memory bound. In other words, no single rank (assuming
p > 1) can view all vertex or edge information or states.
The assumption being, under this distributed model, we can
theoretically strong scale any input graph or process any input
of arbitrarily large scale given a sufficient number of compute
nodes. Note however, in practice with a 1D distribution, each
Vi, Vj and Ei, Ej are not going to be perfectly balanced, so
there is a practical limit.

B. Biconnectivity Definitions

We consider the general problems of k-connectivity and the
specific problem of biconnectivity. A graph G is said to be k-
connected if the minimum size of a vertex separator (a subset
of vertices S ⊆ V such that G − S is disconnected) is equal
to k; i.e., |S| = k. Most computational formulations for k-
connectivity seek to identify all such minimum separators.

Many graph biconnectivity algorithms are described as
performing a biconnectivity decomposition, which is an edge-
labeling of some connected G such that all maximal 2-
connected subgraphs have edges with the same label. Bicon-
nectivity algorithms often in practice simply seek to identify
all edges e such that G − e is disconnected (cut edges or
bridges) and all vertices v such that G − v is disconnected
(cut vertices or articulation vertices). With articulation vertices
and bridges denoted, producing the desired edge labeling is
relatively trivial.

C. Least Common Ancestor Traversal

Many connectivity algorithms, including one we implement
in this paper, use least (or lowest) common ancestors (LCA) of
a rooted spanning tree. Given two vertices u, v in a rooted tree,

the least common ancestor is the first vertex that is contained
within both of u and v’s paths to the root (the root itself could
be that ancestor). If u and v are joined by a tree-edge, then
the parent of the pair is the LCA.

D. Prior Biconnectivity Work

Due to their wide applicability across a broad number of
fields, biconnectivity algorithms have been studied for many
decades. Hopcroft and Tarjan provided the first optimal serial
algorithm [12], which is based on depth-first search and
requires a single traversal with work O(n+m).

Later, Tarjan and Vishkin [6] described the first time-
optimal parallel algorithm for biconnectivity. Their algorithm
runs in O(log n) time on O(n +m) processors, but includes
several non-trivial stages of computation, including spanning
tree construction, preorder labeling, subtree size enumeration,
and connectivity checking. Cong and Bader [7] incorporated
Cheriyan and Thurimella [11] edge filtering as a prepro-
cessing step to provide an optimized implementation of the
Tarjan-Vishkin algorithm, TV-Filter. Edge filtering identifies
which edges in some input graph are actually necessary to
identify the k-separators of the graph, and it can speedup
k-connectivity algorithms by eliminating processing of a
majority of edges. Cong and Bader showed their TV-Filter
implementation achieved a 2× speedup over an optimized
parallel implementation of baseline Tarjan-Vishkin.

Slota and Madduri [10] studied simple shared memory
approaches for biconnectivity by developing algorithms using
breadth-first search (BFS) and color propagation as primary
subroutines. These subroutines have been extensively studied
in practice. Among many other works in the literature, Buluç
et al. [13] examined BFS implementations for massive graphs
in distributed memory, while Stergiou et al. [14] considered
time-optimal distributed color propagation for connectivity1.
More recently, Chaitanya et al. [15] further developed the
Slota-Madduri biconnectivity ideas by using LCA traversals in
shared memory and a more complex parallelization scheme.

Distributed Algorithms: There have been a small number
of works that have considered the computation of graph
biconnectivity in a distributed memory setting. Ahmadi and
Stone [16] and Kazmierczak and Radhakrishnan [17] are two
such works, though their proposed algorithms run in linear
time. Bogle et al. [1] presented a specialized algorithm that
performed a decomposition similar to biconnectivity on ice
sheet meshes and then later [18] generalized that approach for
the actual biconnectivity problem. Another avenue of prior
work [8, 9] has considered algorithms for use within a vertex-
centric processing system, such as Pregel. These approaches
have considered optimized implementations of the Tarjan-
Vishkin algorithm as well as proposed algorithms that use
variations of ear decompositions. However, the common theme
with all of the current distributed biconnectivity implementa-
tions in the literature is that they lack consistent speedups
relative to the optimal serial algorithm.

1This is among many other works, as BFS and connectivity are possibly
the two most-studied problems in graph processing.

III. COLOR-BICC IMPLEMENTATION

As noted, our primary effort in this work was distributing
the Color-BiCC algorithm of Slota and Madduri [10]. We also
considered the Slota-Madduri BFS-based algorithm from the
same reference and the algorithm of Chaitanya and Kotha-
palli [15]. However, the Slota-Madduri BFS algorithm utilizes
many concurrent thread-owned traversals, which would be
costly to distribute, and the Chaitanya-Kothapalli algorithm
uses task-based parallelism, which also does not lend itself to
an easy distributed formulation.

Algorithm 1 Slota-Madduri Color-BiCC Algorithm
procedure COLOR-BICC(G = (V,E))

T = BFS(G) . Compute spanning tree via BFS
High,Low = LCA(G,T) . Initialize labels
A = Color(G,High,Low , T) . Propagate labels
B = LabelEdges(G,A)
return B

Given in Algorithm 1, the Color-BiCC algorithm has three
primary phases. The first phase computes a rooted spanning
tree. The second phase initializes per-vertex High and Low
label values using LCA traversals of the tree. The final
phase propagates these labels such that, at the conclusion of
propagation, each vertex v will have a High label with a value
of the nearest articulation vertex that will disconnect v from
the root (or, the label of the root itself). The algorithm uses
these labels to determine and then return a set of articulation
vertices A. These articulation vertices are then used to label
the edges of G for a biconnectivity decomposition.

A. BFS and LCA Implementations

We use an efficient BFS implementation modified and
updated from our prior work [19] to get the rooted spanning
tree T . T is implicitly created via Parents and Levels arrays
that defines each vertex’s parent and its distance from the root.
The LCA phase uses these along with traversals up the tree to
initialize High and Low values. Specifically, each vertex will
have their High value initialized to the lowest-level ancestor
that it has in common with one of its non-tree neighbors. Here,
“lowest level” refers to being closer to the root. Low values
for each vertex are set to the lowest numeric vertex identifier
among that vertex and all of its non-tree neighbors.

Our distributed LCA implementation is given in Algo-
rithm 2. We use a distributed queue-based approach for
communication. This queue is comprised of packages that
contain the two vertices that the LCA traversal originated from
(u and v) and the current location of this traversal (stored
as high and low along with the current levels). During each
superstep, packages are processed with traversals progressing
by following the values in Parents arrays. When high and
low are equal, it indicates a least common ancestor has been
found. High(u) and High(v) can then be updated to these
values if the current level for high is closer to the root than
current vertices indicated in High(u), High(v). This update
can happen immediately if u, v are local to the processing

Algorithm 2 Distributed Memory LCA Phase of Color-BiCC
1: procedure LCA(G,T = (Parents,Levels))
2: Q← ∅, Qn ← ∅ . Traversal queues
3: for all (v, u) /∈ T do in parallel . Non-tree edges
4: Q← {Parents(u), u,Levels(u),Parents(v), v,Levels(v)}
5: for all v ∈ V (G) do in parallel
6: High(v)← Parents(v)
7: Low(v)← lowest ID u ∈ N(v),where(v, u) /∈ T

8: while Q is not empty on some process do
9: for all package ∈ Q do in parallel

10: high ← higher level Parents in package
11: low ← lower or equal level Parents in package
12: u, v ← vertices in package
13: levelu, levelv ← levels in package
14: if levelu = null then . Received final value
15: Update High(u)
16: else if low = high then . Common ancestor found
17: if rank(u) 6= this rank then
18: package ← {u, high,null , . . .}
19: Qn .insert(package)
20: else . Can set final value without comm.
21: Update High(u)

22: if rank(v) 6= this rank then
23: package ← {v, high,null , . . .}
24: Qn .insert(package)
25: else
26: Update High(v)

27: else . Take next step in traversal
28: package ← {Parents(high), u, levelu − 1,
29: Parents(low), v, levelv − 1}
30: Qn .insert(package)
31: Exchange Qn

32: Swap(Q,Qn), Qn ← ∅
33: return High, Low

rank; otherwise, a final communication occurs to transmit the
result to the owning ranks.

B. Color Propagation Implementation

The final phase of Color-BiCC is the iterative propagation
of High and Low values following a set of propagation rules,
demonstrated in Algorithm 3. We slightly modify the original
implementation of Color-BiCC, which utilized a “push” style
of propagation, where vertex v would modify its neighbor
u’s values. Within a distributed context and having much
wider parallelism, we use a “pull” style of propagation, where
vertex v only modifies its own values based on its neighbors
values. Otherwise, our propagation rules are consistent with
the original algorithm.

We utilize a queue-based strategy with a boundary exchange
on each iteration for communication of label values. We track
which vertices are currently in the queue to avoid adding the
same vertex multiple times. For our boundary exchange, we
pass each owned vertex v along with High(v) and Low(v).
The receiving ranks of v will have v as a ghost vertex. In
addition to updating their local values for v, the receiving
rank will also place all owned neighbors of v in the queue for
processing. As such, the active set of vertices for processing
in a given iteration are only the vertices who have had some

Algorithm 3 Distributed Memory Coloring Phase of Color-
BiCC

1: procedure COLOR(G,High,Low , T = (Parents,Levels))
2: Q← V (G), Qn ← ∅
3: while Q is not empty on some process do
4: for all v ∈ Q do in parallel
5: for all (v, u) ∈ E(G) do
6: if High(v) = v then
7: continue
8: if Levels(High(u)) > Levels(High(v)) then
9: High(v)← High(u)

10: if Levels(High(u)) = Levels(High(v)) then
11: if High(u) > High(v) then
12: High(v)← High(u)

13: if High(u) = High(v) then
14: if Low(u) < Low(v) then
15: Low(v)← Low(u)

16: if High(v) or Low(v) changed and v /∈ Q then
17: Qn.insert(u)
18: Exchange High,Low for all v ∈ Qn

19: Swap(Q,Qn), Qn ← ∅
20: for all v ∈ Q do in parallel
21: for all v, u ∈ E(G) do
22: if u /∈ Q then
23: Q.insert(u)
24: A← all unique values in High
25: return A

value change in their neighborhood on the previous iteration.
This optimization is particularly important for graphs such as
web graphs, which can have a high diameter and long tails of
iterations where only a few updates are processed per iteration.
The final set of articulation vertices A are all unique vertex
values stored in High(v) across all v ∈ V (G).

Queuing Strategy: As noted, we use a queue-based ap-
proach for processing and communication. We maintain an
active set of vertices – these vertices had their or their
neighbor’s label update on the prior iteration. Likewise, many
of our implementations utilize a multi-level queue to minimize
necessary atomics, where each processing thread owns a
small queue, which they push to a rank-level queue when
it fills, while the rank-level queue is what is used during
communication boundary exchanges with other ranks. We do
not show this low-level of granularity in our algorithm listings
for space considerations, but we note it here in text because
it is an important performance optimization.

C. Discussion of Color-BiCC

We note that none of the distributed subroutines we devel-
oped for Color-BiCC are theoretically optimal. In fact, all of
these three subroutines are dependent on graph diameter within
the BSP model. However, as one will be able to observe in
our results, this is not restrictive on performance in practice
on real graphs. In fact, we observe consistent speedups across
all tests for our implementation and very fast performance
relative to other distributed implementations and the optimal
serial algorithm. This alludes to our primary takeaway for this

work: in real-world environments, implementation simplicity
can often trump theoretic efficiency by a considerable degree.

IV. CHERIYAN-THURIMELLA EDGE FILTERING

As mentioned, the Cong-Bader TV-Filter algorithm initially
reduces the number of edges needed to determine biconnectiv-
ity on some G. We additionally incorporate this optimization
into our implementation. This edge filtering is possible via
the interesting result of Cheriyan and Thurimella [11], which
states that the k-connectivity of some connected graph G is
equivalent (in terms of separators) to the k-connectivity of
some G′ where G′ = T ∪F1 ∪ ...∪Fk. Here T is a spanning
tree of G and Fi is a spanning forest of G−T−F1−. . .−Fi−1.
As biconnectivity decompositions seek to identify separators
of size 1, we can simply construct G′ = T ∪ F1. We observe
that this procedure can greatly reduce the number of edges
needing processed during a biconnectivity decomposition. In
practice, we got reductions in graph sizes from 3-10× for the
graphs we used for our experiments.

Algorithm 4 Cheriyan-Thurimella Edge Filtering
procedure FILTER(G = (V,E))

T = BFS(G)
C = ConnectedComponents(G− T)
F = BFS(G,C)
return T ∪ F

Our approach to distributed edge filtering is given in
Algorithm 4. We use two primary subroutines, including a
single/multi-source BFS and an implementation of connected
components. For BFS, we reuse an efficient implementation
that has been updated from our prior work [19]. Our connected
components implementation uses label propagation and is
given in Algorithm 5. Our connected components algorithm
initializes component labels for all vertices to be their global
vertex identifier. Until convergence, each vertex iteratively
updates their label to the lowest label in its neighborhood.
As with the final phase of Color-BiCC, this algorithm relies
heavily on the queue-based strategy described above.

A. Discussion of Cheriyan-Thurimella

We also considered two other approaches for implementing
the BFS, connectivity, and spanning tree stages of edge
filtering. Firstly, we implemented time-optimal algorithms that
use techniques such as the distributed-memory equivalent of
pointer-jumping. However, we actually observed “worse” per-
formance with these implementation, likely due to the larger
work complexity and high communication costs associated
with such techniques in distributed memory. Secondly, while
source code for optimized algorithms for these routines can be
found online, interoperability concerns with our existing code-
base would have necessitated implementations to also be from
scratch. Since our existing approach is observed to be quite
scalable as-is, we decided to keep our approach as given above
(and retain our consistent theme of “simplicity”).

Algorithm 5 Connected Components
procedure CONNECTEDCOMPONENTS(G = (V,E))

for all v ∈ V (G) do in parallel
C(v)← VertexID(v)

Q← V (G), Qn ← ∅
while Q is not empty on some rank do

for all v ∈ Q do in parallel
for all (v, u) ∈ E(G) do

if C(v) > C(u) then
C(v)← C(u) . Propagate lower labels
Qn.insert(v)

for all (v, u) ∈ E(G) do
if C(v) changed then

Qn.insert(u)
Exchange C(v) for all boundary v ∈ Qn

Update C(v) for all received values
Swap(Q,Qn), Qn ← ∅

return C

V. IMPLEMENTATION DETAILS

We implement all of our methods in C++ using MPI
and OpenMP for distributed and shared-memory parallelism.
For the graph structure, communication routines, and cer-
tain subroutines, we use and modify code available from
HPCGraph2. We use a 1D vertex distribution, which we
determine via a naı̈ve hash-based approach. Our processing
methodology closely follows a BSP approach, with com-
putation/communication supersteps. Communications mostly
consists of boundary exchanges of queue data and ghost vertex
states in an all-to-all fashion.

VI. EXPERIMENTAL SETUP

We run our experiments on well-known datasets with a
variety of scales and topologies. The datasets are given in
Table II. We consider the underlying graphs for any directed
graphs. We also preprocess all networks to extract the largest
connected component and remove duplicate edges. Our graphs
primarily come from the Stanford Large Network Dataset
Collection3, the Network Data Repository4, and the Koblenz
Network Collection5. We additionally include a random scale-
25 R-MAT graph generated with parameters {A = 0.45, B =
0.15, C = 0.15, D = 0.25}.

For experimentation, we consider runs on RPI’s AiMOS
supercomputer. AiMOS has nodes with 2× 20-core 3.15 GHz
IBM Power 9 CPUs and 512 GB DDR which are connected by
100 Gb EDR Inifiniband. Our build and execution environment
on AiMOS includes Spectrum MPI 10.4 and XL 16.1.1
running on RHEL 8.4. We compare directly to the code openly
available for Color-BiCC6. For additional comparisons, we

2https://github.com/HPCGraphAnalysis/HPCGraph
3http://snap.stanford.edu/data/index.html
4https://networkrepository.com/index.php
5http://konect.cc/
6https://www.cs.rpi.edu/∼slotag/soft/BiCC-HiPC14.tar

TABLE I
GRAPHS USED FOR EXPERIMENTS AND THEIR PROPERTIES IN TERMS OF
THE NUMBER OF VERTICES |V | AND EDGES |E| AFTER PREPROCESSING

AS WELL AS THE APPROXIMATE DIAMETER D AND NUMBER OF
BICONNECTED COMPONENTS (#BICCS).

Graph Name Type |V | |E| D #BiCCs Ref.
soc-LiveJournal1 Social 4.8 M 43 M 46 76 K [20]
com-Friendster Social 52 M 1.1 B 35 5.5 M [21]
web-Google Web 855 K 4.3 M 25 60 K [20]
web-ClueWeb09 Web 225 M 1.0 B 40 15 M [22]
dbpedia-link Info. 18 M 127 M 13 2.8 M [23]
wikipedia link en Info. 14 M 335 M 12 1.9 M [23]
RMAT 25 Random 34 M 537 M 11 174 K [24]

implemented our own version of the serial Hopcroft-Tarjan
algorithm.

To better analyze distributed scaling behavior on a limited
number of nodes, we run one MPI rank per socket on AiMOS
for our experiments. We have generally observed the fastest
execution times with only 1 thread per code for all algorithms,
so we fix our thread count per rank equal to the core count
per socket for all experiments. As such, we run 2 MPI ranks
per each AiMOS node and 20 OpenMP threads per rank.

VII. RESULTS

Figure 1 gives the strong scaling performance of our Color-
BiCC implementation from 1 to 64 ranks on AiMOS. We give
the summed time of Color-BiCC and edge filtering (Color-
BiCC-Dist), the time of Color-BiCC without edge filtering
(Color-BiCC-NoFilter), the time of the serial Hopcroft-Tarjan
algorithm (HT-Serial), and the time of Slota and Madduri’s
shared memory code running on a single socket (Color-
BiCC-SM). We run on only a single socket (20 threads) to
enable relative comparisons to a single rank of the distributed
implementation.

Fig. 1. Strong scaling of our Color-BiCC implementation from 1 to 64
ranks on AiMOS with (Color-BiCC-Dist) and without filtering (Color-BiCC-
NoFilter) relative to the shared memory Slota-Madduri algorithm (Color-
BiCC-SM) on 20 threads and the optimal serial Hopcroft-Tarjan algorithm
(HT-Serial) on a single thread.

0 20 40 60
0

1

2

3

S
ol
ve

T
im

e
(s
ec
on

d
s)

soc-LiveJournal1

0 20 40 60
0

50

100

S
ol
ve

T
im

e
(s
ec
on

d
s)

com-Friendster

Color-BiCC-Dist Color-BiCC-NoFilter HT-Serial Color-BiCC-SM

0 20 40 60
0

0.1

0.2

S
ol
ve

T
im

e
(s
ec
on

d
s)

web-Google

0 20 40 60
0

20

40

Number of MPI Ranks

S
ol
ve

T
im

e
(s
ec
on

d
s)

web-ClueWeb09

0 20 40 60
0

10

20

Number of MPI Ranks

S
ol
ve

T
im

e
(s
ec
on

d
s)

dbpedia-link

0 20 40 60
0

10

20

Number of MPI Ranks

S
ol
ve

T
im

e
(s
ec
on

d
s)

wikipedia link en

For Color-BiCC with edge filtering, we measure an average
speedup of 15× from 1 to 64 ranks. Relative to the serial
and shared memory algorithms, we measure average speedups
of 11× and 7.3×, respectively. For all inputs except for
web-Google, we note that the sum time for Color-BiCC and

TABLE II
COMPARISON OF HOPCROFT-TARJAN (HT) ON A SINGLE THREAD, THE

SLOTA-MADDURI CODE (SM) ON 20 THREADS, OUR DISTRIBUTED
IMPLEMENTATION OF COLOR-BICC WITHOUT FILTERING (CBNF) ON 64

RANKS, OUR DISTRIBUTED IMPLEMENTATION OF COLOR-BICC WITH
FILTERING (CBD) ON 64 RANKS, AND THE SPEEDUP OF COLOR-BICC

WITH FILTERING FROM 1 TO 64 RANKS.

Graph HT SM CBNF CBD Speedup
soc-LiveJournal1 2.2 0.80 0.36 0.23 10×
com-Friendster 61 33 5.6 2.2 30×
web-Google 0.21 0.098 0.047 0.060 3.7×
web-ClueWeb09 30 38 7.3 4.9 8.9×
dbpedia-link 6.5 6.6 0.97 0.72 22×
wikipedia link en 9.3 6.6 1.5 1.0 13×

filtering is lesser than the time for Color-BiCC to process
the unfiltered input. On a single rank and 20 threads, we
note that our distributed Color-BiCC implementation is 1.9×
slower on average than the Slota and Madduri code. However,
we believe that this difference is quite reasonable in terms
of overhead, considering that the communication routines and
queue structures are still being utilized on single rank runs.
For the largest inputs of com-Friendster and web-ClueWeb09,
we observe scaling past the shared memory performance in as
little as 2 or 4 ranks. For a distributed implementation operat-
ing on irregular graph inputs, we believe this performance to
be in-line with the state-of-the-art. Table II summarizes these
performance results. We note in bold the fastest execution
time, which is CBD for all inputs except for web-Google,
and we also give the speedup of CBD relative to the serial
algorithm.

Fig. 2. Proportion of execution total time of BCC-Color-Dist for each of the
seven primary stages: Spanning tree, connected components, spanning forest,
and graph construction for the filtering algorithm; as well as the BFS, LCA,
and coloring stages of the biconnected components algorithm.

so
c-
Li
ve
Jo
ur
na
l1

co
m
-F
rie
nd
st
er

we
b-
G
oo
gl
e

we
b-
C
lu
eW
eb
09

db
pe
di
a-
lin
k

w
ik
ip
ed
ia
lin
k
en

0

0.2

0.4

0.6

0.8

1

P
ro
p
or
ti
on

of
E
x
ec
u
ti
on

T
im

e

Filter-Tree Filter-CC Filter-Forest Filter-Construct
BiCC-BFS BiCC-LCA BiCC-Color

For our final analysis of results, we consider the proportional
execution time breakdown of Color-BiCC with filtering on 64
ranks of AiMOS. This is given in Figure 2. We note that
the connected components routine of the filtering algorithm is
on average the largest proportion of execution time, followed
by the color propagation phase of Color-BiCC. These results

are relatively unsurprising, given that the filtering algorithm is
running on the entire unfiltered graph, while the color propaga-
tion routine usually requires the greatest number of supersteps
out of all of our implemented procedures. We finally note
that on 64 ranks, the ratio of communication to computation
time is approximately balanced. This is surprisingly consistent
for all of our larger inputs (web-Google has a higher relative
communication), likely due to our relatively naı̈ve hash-based
1D distribution.

A. Other Comparisons

Here, we compare our performance to the fastest distributed
biconnectivity algorithms we have identified in the literature,
that of Feng et al. [9]. As their code is not publicly available,
a direct comparison is not possible. They run on the 2010
Twitter crawl from the Laboratory for Web Algorithmics7 and
the California Road Network from SNAP8, using 8 and 60
Pregel workers (threads) spread across 2 and 15 “Amazon EC2
r3.2xlarge instances with enhanced networking”, respectively.
For their fastest implementation (GD-BCC), they report times
of about 12 seconds for the road network and 100 seconds for
the Twitter crawl; their Tarjan-Vishkin code was quite slower.
Comparatively, we observe serial Hopcroft-Tarjan times on
AiMOS of 0.8 seconds for the road network and 92 seconds
for Twitter. Mirroring their distributed experimental setup (4
threads per node, on 2 and 15 nodes) for our Color-BiCC
implementation, we observe times of about 0.3 seconds for
the road network and 12 seconds for Twitter.

We note the obvious, in that these times cannot be di-
rectly compared across different hardware setups. In addi-
tion, the overheads of Pregel can be considerable relative to
a lightweight HPC-focused framework such as HPCGraph.
However, we still point out that these differences by them-
selves likely do not explain the entire observed differences in
execution times.

VIII. CONCLUSION

We have presented our distributed implementation and port
of the shared memory Color-BiCC algorithm for graph bi-
connectivity computation. In addition, we present the first
distributed implementation for Cheriyan-Thurimella edge fil-
tering. We note that our relatively simple and theoretically sub-
optimal approach scales well past the optimal serial algorithm
and appears to be considerably faster than other existing state-
of-the-art biconnectivity codes. A straightforward extension
of this work would be further optimization of the repeated
constituent subroutines in our two implementations, such as
spanning tree construction. In addition, the ideas we discussed
in this paper might be also applicable towards the design of
efficient distributed triconnectivity or general k-connectivity
algorithms.

7https://law.di.unimi.it/webdata/twitter-2010/
8https://snap.stanford.edu/data/roadNet-CA.html

IX. ACKNOWLEDGMENTS

We thank the Center for Computational Innovations at RPI
for supplying and maintaining computational resources used
in this work, including the AiMOS supercomputer supported
by the National Science Foundation under Grant No. 1828083.

REFERENCES

[1] I. Bogle, K. Devine, M. Perego, S. Rajamanickam, and
G. M. Slota, “A parallel graph algorithm for detect-
ing mesh singularities in distributed memory ice sheet
simulations,” in Proceedings of the 48th International
Conference on Parallel Processing, 2019, pp. 1–10.

[2] R. E. Moraes and C. C. Ribeiro, “Power optimization in
ad hoc wireless network topology control with biconnec-
tivity requirements,” Computers & Operations Research,
vol. 40, no. 12, pp. 3188–3196, 2013.

[3] C. A. R. Pinheiro, Social network analysis in telecom-
munications. John Wiley & Sons, 2011, vol. 37.

[4] D. Day, M. Bhardwaj, G. Reese, and J. Peery, “Mech-
anism free domain decomposition,” Computer methods
in applied mechanics and engineering, vol. 192, no. 7-8,
pp. 763–776, 2003.

[5] A. Frank, “Connectivity and network flows,” Handbook
of combinatorics, vol. 1, pp. 111–177, 1995.

[6] R. Tarjan and U. Vishkin, “An efficient parallel biconnec-
tivity algorithm,” SIAM Journal on Computing, vol. 14,
no. 4, pp. 862–874, 1985.

[7] G. Cong and D. A. Bader, “An experimental study of
parallel biconnected components algorithms on symmet-
ric multiprocessors (smps),” in 19th IEEE International
Parallel and Distributed Processing Symposium. IEEE,
2005, pp. 9–pp.

[8] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu,
“Pregel algorithms for graph connectivity problems with
performance guarantees,” Proceedings of the VLDB En-
dowment, vol. 7, no. 14, pp. 1821–1832, 2014.

[9] X. Feng, L. Chang, X. Lin, L. Qin, W. Zhang, and
L. Yuan, “Distributed computing connected components
with linear communication cost,” Distributed and Paral-
lel Databases, vol. 36, no. 3, pp. 555–592, 2018.

[10] G. M. Slota and K. Madduri, “Simple parallel biconnec-
tivity algorithms for multicore platforms,” in 2014 21st
International Conference on High Performance Comput-
ing (HiPC). IEEE, 2014, pp. 1–10.

[11] J. Cheriyan and R. Thurimella, “Algorithms for parallel
k-vertex connectivity and sparse certificates,” in Pro-
ceedings of the twenty-third annual ACM Symposium on
Theory of Computing, 1991, pp. 391–401.

[12] J. Hopcroft and R. Tarjan, “Algorithm 447: efficient
algorithms for graph manipulation,” Communications of
the ACM, vol. 16, no. 6, pp. 372–378, 1973.

[13] A. Buluç, S. Beamer, K. Madduri, K. Asanovic, and
D. Patterson, “Distributed-memory breadth-first search
on massive graphs,” arXiv preprint arXiv:1705.04590,
2017.

[14] S. Stergiou, D. Rughwani, and K. Tsioutsiouliklis,
“Shortcutting label propagation for distributed connected
components,” in Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining,
2018, pp. 540–546.

[15] M. Chaitanya and K. Kothapalli, “Efficient multicore al-
gorithms for identifying biconnected components,” Inter-
national Journal of Networking and Computing, vol. 6,
no. 1, pp. 87–106, 2016.

[16] M. Ahmadi and P. Stone, “A distributed biconnectivity
check,” in Distributed Autonomous Robotic Systems 7.
Springer, 2006, pp. 1–10.

[17] A. Kazmierczak and S. Radhakrishnan, “An optimal
distributed ear decomposition algorithm with applications
to biconnectivity and outerplanarity testing,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 11,
no. 2, pp. 110–118, 2000.

[18] I. Bogle and G. M. Slota, “Distributed algorithms for
the graph biconnectivity and least common ancestor
problems,” in The 6th IEEE Workshop on Parallel and
Distributed Processing for Computational Social Sys-
tems, 2022.

[19] G. M. Slota, S. Rajamanickam, and K. Madduri, “High-
performance graph analytics on manycore processors,” in
International Parallel & Distributed Processing Sympo-
sium (IPDPS), 2015.

[20] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.
Mahoney, “Community structure in large networks: Nat-
ural cluster sizes and the absence of large well-defined
clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–123,
2009.

[21] J. Yang and J. Leskovec, “Defining and evaluating net-
work communities based on ground-truth,” Knowledge
and Information Systems, vol. 42, no. 1, pp. 181–213,
2015.

[22] R. A. Rossi and N. K. Ahmed, “The network
data repository with interactive graph analytics and
visualization,” in AAAI, 2015. [Online]. Available:
https://networkrepository.com

[23] J. Kunegis, “Konect: the koblenz network collection,”
in Proceedings of the 22nd international conference on
world wide web, 2013, pp. 1343–1350.

[24] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A
recursive model for graph mining,” in Proceedings of the
2004 SIAM International Conference on Data Mining.
SIAM, 2004, pp. 442–446.

