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Abstract—We present two new algorithms for finding the
biconnected components of a large undirected sparse graph.
The first algorithm is based on identifying articulation points
and labeling edges using multiple connectivity queries, and
the second approach uses the color propagation technique to
decompose the graph. Both methods use a breadth-first spanning
tree and some auxiliary information computed during Breadth-
First Search (BFS). These methods are simpler than the Tarjan-
Vishkin PRAM algorithm for biconnectivity and do not require
Euler tour computation or any auxiliary graph construction. We
identify steps in these algorithms that can be parallelized in a
shared-memory environment and develop tuned OpenMP imple-
mentations. Using a collection of large-scale real-world graph
instances, we show that these methods outperform the state-
of-the-art Cong-Bader biconnected components implementation,
which is based on the Tarjan-Vishkin algorithm. We achieve up
to 7.1× and 4.2× parallel speedup over the serial Hopcroft-
Tarjan and parallel Cong-Bader algorithms, respectively, on a
16-core Intel Sandy Bridge system. For some graph instances,
due to the fast BFS-based preprocessing step, the single-threaded
implementation of our first algorithm is faster than the serial
Hopcroft-Tarjan algorithm.

I. INTRODUCTION

The biconnected component (BiCC) decomposition of an
undirected graph refers to determining all maximal bicon-
nected subgraphs or blocks contained within the graph. A
biconnected subgraph is a graph which remains connected with
the removal of any single vertex and all edges incident on it.
Articulation vertices or articulation points are vertices that,
when removed, disconnect the graph into multiple connected
components. These vertices belong to two or more biconnected
components. Finding the articulation vertices in a graph is one
of main purposes of BiCC decomposition, as these vertices
represent links that are critical for overall connectivity. A
bridge is defined as an edge that, when removed, would
disconnect the graph into multiple connected components.
BiCC decomposition also gives us a disjoint partitioning of
all edges. Each edge in the graph can belong to only one
maximal biconnected subgraph.

Identifying large and non-trivial biconnected components,
articulation vertices, and bridges are useful in the analy-
sis and characterization of new graph data. In the field of
networking, when designing communication networks and
physical infrastructure networks, identifying articulation points
and minimizing bridges is relevant to network robustness and

redundancy. In large virtual networks such as social networks
and web crawls, BiCC decomposition gives insight into net-
work structure and has potential to be a useful preprocessing
step in data analysis [26], [27].

A. Contributions

This paper introduces two new shared-memory parallel
approaches for finding the biconnected components of large
sparse graphs. Both approaches use a breadth-first spanning
tree. The first method is based on executing multiple truncated
breadth-first searches (BFSes). We demonstrated the use of
this strategy to find articulation points in previous work [29].
Here, we extend the method for full BiCC decomposition.
The second method uses the color propagation [25] technique.
We used this strategy in prior work for detecting strongly
connected components in parallel. Similar to previous serial
and parallel algorithms, the output of both our algorithms is a
labeling of edges into disjoint biconnected components and a
classification of vertices into articulation and non-articulation
points.

We analyze and implement both algorithms and perform
an experimental study on an Intel multicore platform. Both
approaches demonstrate good parallel strong scaling across a
wide range of real-world and synthetic test cases, with the
truncated BFS-based approach (the first method) offering the
best speedups relative to a serial implementation. Additionally,
due to the fact that the first method uses the hybrid direction-
optimizing BFS algorithm of Beamer et al. [7] as a subrou-
tine, a substantial fraction of the graph edges are pruned or
untouched in some cases. This results in the single-threaded
performance of our new approach being faster than the linear-
work Hopcroft-Tarjan DFS-based algorithm.

II. BACKGROUND

There is substantial prior work on serial and parallel algo-
rithms for BiCC decomposition. We review three algorithms
that we use for comparison and discuss relevant implementa-
tion details in this section.

A. Hopcroft-Tarjan Algorithm

The serial algorithm for BiCC decomposition, designed by
Hopcroft and Tarjan [16], is optimal in the RAM model and
based on a single Depth-First search (DFS). It runs in O(n+



m) time (n is the number of vertices and m the number of
edges) and linear space. A recursive implementation to identify
articulation points is given in Algorithms 1 and 2.

Algorithm 1 Hopcroft-Tarjan biconnectivity algorithm to
identify articulation points.

1: procedure HT(G(V,E))
2: for all v ∈ V do
3: preorder(v)← −1
4: low(v)← −1
5: articulation(v)← false
6: global count← 0
7: root←selectRandomRoot(V )
8: HT-DFS(G, root, root)

Algorithm 2 Recursive DFS used in Hopcroft-Tarjan algo-
rithm.

1: procedure HT-DFS(G, u, v)
2: children← 0
3: preorder(v)← count++
4: low(v)← preorder(v)
5: for all 〈w, v〉 ∈ E do
6: if preorder(w) = −1 then
7: children← children+ 1
8: HT-DFS(G, v, w)
9: low(v)←min(low(v), low(w))

10: if low(w) ≥ preorder(v) and u 6= v then
11: articulation(v)← true
12: else if w 6= u then
13: low(v)←min(low(v), preorder(w))

The algorithm maintains two arrays of size n in addition
to the standard DFS stack of visited vertices. One array, the
preorder, records the order in which vertices are discovered in
the DFS. The second array low tracks the lowest DFS depth
of the adjacencies or children of the current vertex. When
there are no more adjacencies remaining to be explored from
the vertex on top of the stack, this vertex is removed. If this
vertex does not connect to any vertices lower on the stack
other than the vertex immediately preceding it on the stack,
then we know that this vertex is an articulation point and can
mark it as such.

The listing is only for identifying articulation points. If we
would like to partition edges into components, we need to
maintain an additional stack. As each edge is first touched, it
is placed on this stack. When an articulation point is identified,
all of the edges contained in the biconnected component can
then be removed from the stack and appropriately labeled.
Our serial implementation is closely based on this recursive
DFS-based algorithm. We will refer to this as the HT method.

B. Tarjan-Vishkin Parallel Algorithm

The PRAM BiCC algorithm by Tarjan and Vishkin [30] re-
quires O(log n) time using O(n+m) processors. An overview
of the main steps is given by Algorithm 3.

The Tarjan-Vishkin algorithm has several key subroutines.
First, a spanning tree T is created from the input graph G.
This can be computed using any traversal. T is then rooted
at an arbitrary vertex and a Euler tour is found to create an
ordered list of vertices L. List ranking is then performed on
L, which in turn gives the preordering numbering of vertices

Algorithm 3 Tarjan-Vishkin algorithm to identify articulation
points.

1: procedure TV-BICC(G(V,E))
2: T ← SpanningTree(G)
3: L← EulerTour(T )
4: pre, size← ListRank(L)
5: low, high← DetermineMinMaxPreorder(G,T, pre, size)
6: G′ ← BuildAux(G,T, low, high)
7: C ← ConnectedComponents(G′)
8: B ← BiconnectedComponents(C,G)

pre(v) for all v ∈ T . The size of each subtree rooted at v in
T , size(v), is also found.

Similar to the serial algorithm, two values are then obtained
for each vertex v ∈ G, a low and a high value. Using the pre-
order numbering from the previous step, we determine the low
and high values as the lowest and highest preorder numbering
of all descendants of or neighbors of descendants of v that
are not connected in T . The next steps utilize these labelings
to build an auxiliary graph G′, whose connected components
C are the biconnected components of G. The problem of
finding biconnected components in the original graph is recast
as finding connected components in this auxiliary graph. A
final step can then be performed to create an explicit set B
of the edges and articulation points defining each biconnected
component in G.

1) Cong-Bader TV-Filter Algorithm: An experimental
study by Cong and Bader [11] presents an improvement
to the Tarjan-Vishkin algorithm that leads to a significant
reduction in the size of the auxiliary graph. They suggest a
preprocessing step that filters out certain non-essential edges
(i.e., edges that do not impact the biconnectivity of G). The
use of this preprocessing step also reduces execution time of
other subroutines in the Tarjan-Vishkin algorithm for the graph
instances studied in [11]. We also independently notice up to
a 4× speedup over the TV algorithm, and hence we just focus
on TV-Filter in this paper.

Note that this preprocessing step is similar to the approach
for finding k-connected subgraphs in a j-connected graph,
where j > k, as described by Nagamochi and Ibaraki [24].
However, it is important to note that the filtering step finds only
a k-connected subgraph in a k-connected graph, specifically
where k = 1, by constructing k + 1 spanning forests (in
this case, a spanning tree and then a spanning forest of the
graph with that spanning tree removed). As a result, this
preprocessing step preserves the biconnectivity of the original
graph by maintaining articulation points, bridges, and the
biconnected components themselves.

Algorithm 4 Cong-Bader algorithm to identify articulation
points.

1: procedure CB-BICC(G(V,E))
2: T, P ← BFS(G)
3: F ← SpanningForest(G \ T )
4: B ← TV-BiCC(F ∪ T )
5: for all e = 〈u, v〉 ∈ G− (F ∪ T ) do
6: label e as in BiCC containing v and P (v)
7: B ← (B ∪ e)



Algorithm 4 provides an overview of Cong and Bader’s
approach. A BFS is first performed from an arbitrary vertex
to obtain T (the spanning tree) and P (parent information).
Edges in T are then filtered from G. A spanning forest F is
obtained using another traversal and by executing connected
components. The union of edges in F and T is shown
to contain the essential edges needed to determine the bi-
connected components B using the standard Tarjan-Vishkin
algorithm. The rest of the edges are non-essential. Once the
Tarjan-Vishkin algorithm completes, the non-essential edges
are labeled and added back to obtain the complete BiCC
output. Correctness proofs and the data structures used to store
the intermediate results are given in [11].

In this work, we use an updated version of the code first
developed by Cong and Bader for their study [10], which
was designed using the SIMPLE POSIX threads-based frame-
work [4]. We changed their code for execution on our test
platform, primarily modifying storage of common structures
and eliminating or globalizing some thread-owned structures
in an effort to reduce memory utilization. Despite these
changes, memory usage when creating the auxiliary graph
limits running the code on our two largest test instances.

C. Related Work

There are several other known parallel algorithms for BiCC.
One of the earliest CREW PRAM parallel algorithms was
presented by Eckstein [13]. This approach runs in O(d log2 n)
time with O((n + m)/d) processors on the CREW PRAM
model. This work was the first to note that the structure
of BFS trees can be utilized to find articulation points, and
our work can be considered a related extension of this work
for modern architectures. Savage and JáJá [28] designed two
PRAM algorithms, taking O(log2 n) and O(log2 n log k) time
and requiring O(n3/ log n) and O(mn+n2 log n) processors,
respectively, where k is the number of biconnected compo-
nents. A CREW PRAM algorithm by Tsin and Chin [31] runs
in O(log2 n) time with O(n2/ log2 n) processors.

Another class of proposed biconnectivity algorithms utilize
open ear decompositions. An original approach was described
by Maon et al. [22]. This approach was expanded upon by
Miller and Ramachandran [23], with a related implementation
for solving 2-edge connectivity problems on an early mas-
sively parallel MasPar system [17].

In terms of parallel implementations, the Tarjan-Vishkin
approach has received the most attention, with Cong and
Bader being the first to demonstrate parallel speedup on an
SMP system over the serial HT algorithm with their TV-Filter
algorithm. Edwards and Vishkin [14] also implemented the
TV and HT algorithms using a new programming model, and
demonstrated scalability and parallel speedup on the Explicit
Multi-Threading (XMT) manycore computing platform.

Most recently, Ausiello et al. developed a MapReduce-based
biconnected components detection algorithm [2], [1] under
a streaming data model. This method is based on previous
work by Westbrook and Tarjan [32], but utilizes a lightweight

navigational sketch of the input graph to hold biconnectivity
information for the full graph.

III. NEW PARALLEL ALGORITHMS

We present two new methods in this section that are both
based on a breadth-first spanning tree. However, unlike TV and
TV-Filter, we do not construct an auxiliary graph. Instead, we
identify some properties that articulation vertices must satisfy
and use them to decompose the graph. Our two methods use
BFS and color propagation as underlying subroutines, and
so we refer to them as BiCC-BFS and BiCC-Coloring. The
output obtained is identical to prior algorithms. In both the
methods, we initially assign two integer labels to each vertex
and progressively update them. The final vertex labels of all
vertices can be inspected to determine the component to which
an edge belongs to. These algorithms assume that we begin
with an undirected graph with a single connected component.

A. BFS-based BiCC method

We first describe the BFS-based approach to identify artic-
ulation points, similar to that used by Eckstein [13]. The key
steps are listed in Algorithms 5 and 6. Assume that G has
only one connected component with no multi-edges and self
loops. Choose an arbitrary vertex r, designate it as the root,
and perform a BFS. Store the BFS output in two arrays, P
and L. For all v ∈ V , P (v) stores a parent of v (i.e, the BFS
tree) and L(v) gives the depth of v in the BFS tree, or the
distance of v from r. For all v ∈ V , we define a child w of v
to be any adjacency of v such that P (w) = v. Thus, the set
of all children of a vertex is a subset of its adjacencies. Our
algorithm is based on the following proposition.

Proposition III.1. A non-root vertex v in the BFS tree 〈P,L〉
is an articulation vertex if and only if it has at least one child
w that cannot reach any vertex of depth at least L(v) when v
is removed from G.

The above statement is equivalent to the following.

Proposition III.2. A non-root vertex v in the BFS tree 〈P,L〉
is not an articulation vertex if and only if all its children w in
the BFS tree (P (w) = v) can reach all other vertices in the
graph G when v is removed from G.

Proof: An articulation vertex, by definition, is a vertex
whose removal will decompose G into two or more connected
components. Consider a vertex v and all its adjacencies. The
BFS output splits the adjacencies of any non-root vertex into
three disjoint subsets: its children (as defined above), non-
child adjacencies at depth L(v) + 1, and adjacencies at depth
L(v) or L(v) − 1. If v were an articulation point, then the
adjacencies of v would be split up such that at least two of
them lie in different connected components upon removal of
v. If v is not an articulation point, there must be an alternative
path in the graph from adjacencies of v to every other vertex,
and thus, between every pair of adjacencies of v as well. To
show that v is an articulation point, it suffices to inspect just
the children of v in the BFS tree and show that at least one of



them cannot reach an alternate vertex at the same level as v
(and thus is disconnected from some part of the graph). Non-
child adjacencies of v have a path through their parent in the
BFS tree to other vertices, and so we do not need to consider
them explicitly. If a child can reach some vertex at the same
level as v, then it can reach all other vertices by tracing a path
back to the root.

As a more general extension of the above propositions, we
have the following Corollary.

Corollary III.3. If a traversal from any ui ∈ V (P (ui) = v)
is not able to reach all other uj ∈ G (P (uj) = v) when v
is removed from the graph, then v is an articulation point.
Further, if the only path in G between ui and uj requires v,
then ui and uj are in separate biconnected components with
v as an articulation point. We term v as the parent articulation
vertex.

Algorithm 5 BFS-based algorithm to identify articulation
points in BiCC decomposition.

1: procedure BFS-ARTPTS(G(V,E))
2: for all v ∈ V do
3: Art(v)← false
4: visited(v)← false

5: Select a root vertex r
6: P,L← BFS(G, r)
7: for all u(6= r) ∈ V where P (u) 6= r do
8: v ← P (u)
9: if Art(v) = false then

10: l←BFS-L(G,L, v, u, visited)
11: if l ≥ L(v) then
12: Art(v)← true

13: Check if r is an articulation point

Algorithm 6 Truncated BFS subroutine in the BFS-ArtPts
algorithm.

1: procedure BFS-L(G(V,E), L, v, u, visited)
2: Insert u into Q
3: Insert u, v into S
4: visited(u)← true
5: visited(v)← true
6: while Q 6= ∅ do
7: for all x ∈ Q do
8: Remove x from Q
9: for all 〈w, x〉 ∈ E where visited(w) = false do

10: if L(w) < L(u) then
11: for all s ∈ S do visited(s)← false
12: return L(w)
13: else
14: Insert w into Q
15: visited(w)← true
16: return L(u)

We now describe the algorithm in more detail. Paralleliza-
tion of the initial BFS computation required to construct P
and L is well-studied. We use the parallel BFS from our
prior work [29]. This implementation maintains a bit vector
for tracking visited vertices, thread-local queues, and further
utilizes a direction-optimizing search [7]. These optimizations
have been demonstrated to considerably speed up parallel BFS
computations on the small-world graphs we are considering.

To identify the articulation points, we consider every vertex
u and its parent v = P (u). Instead of performing pairwise

reachability queries from u, we perform a BFS from u after
removing v from G and track the level of vertices that are
reached, using the previously computed L values. If any vertex
w with level L(v) or less is reached, we can exit. This step
(i.e., step 7 of Algorithm 5) can also be parallelized, with each
thread maintaining a separate visited bit vector. We also use
another temporary stack S in the BFS-L subroutine to track
visited vertices.

The root vertex r must be handled separately. There are
several ways to determine whether it’s an articulation point.
The simplest way is to select a vertex that is definitely not
an articulation point (vertex of degree 1), or is certainly an
articulation point (a degree-2 vertex, with one of its neighbors
having a degree of one). If no such vertices exist, then there
are two options. One is to create a new spanning tree using
an alternate root and run the second stage of the algorithm
with any children u of the original root r, P (u) = r. Because
our optimized BFS subroutine is quite fast, this is not entirely
impractical. The second option is to run a BFS on G\r from a
single u where P (u) = r and track whether all other w where
P (w) = r are also reachable. If they are all reachable from
u, then r is not an articulation vertex as per Corollary III.3.

1) Identifying Biconnected Subgraphs: We now extend the
previous algorithm and make it work-efficient to label edges.
The new method is given in Algorithms 7 and 8.

Algorithm 7 BFS-based algorithm to perform BiCC decom-
position.

1: procedure BFS-BICC(G(V,E))
2: for all v ∈ V do
3: Art(v)← false
4: visited(v)← false
5: Low(v)← v
6: Par(v)← v
7: Select a root vertex r
8: P,L, LQ← BFS(G, r)
9: for all Qi ∈ LQm···1 do

10: for all u ∈ Qi, where Par(u) = u do
11: Remove u from Qi
12: v ← P (u)
13: l, vidlow, Vu ←BFS-LV(G,L, v, u, visited)
14: if l ≥ L(u) then
15: Art(v)← true
16: visited(v)← false
17: for all w ∈ Vu do
18: Low(w)← vidlow
19: Par(w)← v
20: visited(w)← false
21: Remove w from V
22: for all e = 〈u, v〉 ∈ E do
23: if Low(v) = Low(u) or Par(u) = v then
24: BiCC(e)← low(u)
25: else
26: BiCC(e)← low(v)

The primary goal of this approach is to determine for all
v ∈ V two labels, Par(v) and Low(v). The Par value is
the highest-level articulation point (parent articulation vertex)
separating v from the root. Low signifies the lowest-value
vertex identifier (vertices are numbered from 0 to n−1) among
all vertices contained in the biconnected component of v. We
can then use these two vertex labels to uniquely label all edges.

The first step in Algorithm 7 is similar to Algorithm 5.
A BFS is performed in order to determine the level L(v)



Algorithm 8 Truncated BFS subroutine in BFS-BiCC to
identify articulation points and track component vertex set.

1: procedure BFS-LV(G(V,E), L, v, u, visited)
2: Insert u into Q
3: Insert u into Vu
4: visited(u)← true
5: visited(v)← true
6: vidlow ← u
7: while Q 6= ∅ do
8: for all x ∈ Q do
9: Remove x from Q

10: for all 〈w, x〉 ∈ E where visited(w) = false do
11: if L(w) < L(u) then
12: return (L(w),∅,∅)
13: else
14: Insert w into Q
15: Insert w into Vu
16: visited(w)← true
17: if w < vidlow then
18: vidlow ← w
19: return (L(u), vidlow, Vu)

and parent P (v) for each vertex v in V . Additionally, we
store the output of the level-synchronous BFS as a list of
queues LQ. Each Qi ∈ LQ contains all the vertices at a
distance i from the root vertex. We inspect the queues in
reverse order, from maximum level m through level 1 (level 0
is considered as the level containing the root). If u has already
been assigned a Par value, we know that the biconnected
component that contains u has already been discovered via
another child of P (u). Otherwise, we perform a similar BFS
as in Algorithm 5. However, in this search, we also track the
lowest vertex identifier encountered, vidlow, as well as a list
of all unique vertices encountered, Vu.

If we determine that v is an articulation vertex based on
the retrieved minimum level l, we then proceed to label all
Par and Low of all encountered vertices w. Par(w) is set
to point to the BiCC parent articulation vertex of v, while
Low(w) is set to vidlow. This ensures a unique and consistent
labeling across vertices within the components. Note that it is
not necessary to create the Par values, since simply tracking
the articulation vertices is sufficient to correctly label edges.
We choose a Par array as opposed to a boolean array or
vertex list in order to be consistent with the output of prior
BiCC algorithms.

Once a component is identified, Vu, which is the discov-
ered component minus the articulation vertex, is considered
removed from G (line 21 of Algorithm 7). We do not modify
G. Instead, we maintain valid, a shared boolean array of
size n that signifies the current state of a vertex. When we
remove a v from G, we set valid(v) = false. Because we
are working from the highest-level leaves of the tree to the
root in T , we can safely do this. On any given level i, all
articulation vertices on level i− 1 will be discovered. This is
because separate biconnected components cannot exist through
articulation vertices by Corollary III.3, and all such articulation
vertices will be discovered by Proposition III.1. It is also
guaranteed that no vertices in the biconnected component will
have been previously removed, as there is no way they could
have been encountered by a successful articulation vertex

search.
The final step is to label all edges between all u and v.

Although it is possible to do this in the inner BFS loop, it is
simpler and more cache-friendly to do the separate step. For
labeling, if both vertices have the same Low value, we know
they were discovered during the same search, and therefore the
edge is contained in their component. If the edge is between
a child and its parent articulation point, we apply the Low
label of the child. We don’t further explicitly label vertices as
belonging to a component, since articulation vertices exist in
multiple components, and the information is readily retrievable
by examining Low and Par arrays.

2) Parallelization: Our primary avenue for parallelization
is across all vertices in the current queue level (step 9).
We could also parallelize the BFS-LV search. However, in
our implementation, the BFS-LV is only parallelized once
we reach level 1, since we observe that in in most real-
world graphs that have a massive biconnected component, a
randomly-selected root vertex is likely to be contained in the
giant component. We do not require additional synchronization
while updating the Low and Par values. Should the parent
be an articulation vertex and the children be contained in
the same component, the same Par and Low values will
subsequently be given to all vertices in the component. Thus,
all the concurrent writes are benign races.

3) Algorithm Analysis: The dominant step in the algorithm
is the number of invocations of BFS-LV and the cumulative
number of edge inspections performed through BFS-LV, with
the naı̈ve approach requiring an upper bound of O(nm) work.
The rest of the steps (initialization, initial BFS, Low and Par
labeling) require θ(n +m) work. The naı̈ve approach to de-
termine articulation points is somewhat inefficient, since there
is no ordering imposed on invocations of BFS-L. However, in
the full algorithm, we inspect vertices in level-synchronous
order, and once a biconnected component is identified, all
visited vertices are marked as invalid. Thus, there are no
further unnecessary traversals. We also truncate BFS-LV as
soon as we encounter a vertex at the level of the parent. We
observe that the cumulative number of edge examinations is
a small constant multiplicative factor of the total number of
edges, and so the work performed is linear in practice. The
level-synchronous approach of examining the vertices implies
that the parallel time would be proportional to the the graph
diameter.

B. Coloring-based BiCC Method

Instead of potentially performing a full BFS from each
vertex in T , it is also possible to compute the same Par
and Low values using the color propagation technique. Color
propagation is an iterative strategy that is similar to recursive
doubling, and we have previously used it to develop practical
parallel algorithms for connected components in undirected
graphs, as well as the weakly and strongly connected compo-
nents in directed graphs [29].

We define the lowest common ancestor (LCA) p of any
two neighboring vertices u and v in a BFS tree T 〈L,P 〉 to be



the lowest-level vertex that both vertices share some ancestral
relationship with in T . Should a parent-child relationship exist
between these two vertices, P (v) = u or P (u) = v, then the
lowest common ancestor is simply the parent vertex.

Our Coloring-based approach is based on the following
observation for biconnected components with at least three
vertices.

Proposition III.4. In a biconnected component with at least
three vertices, determine the LCA of all pairs of neighboring
vertices. At least two vertices in the component will have their
lowest-level LCA set to the parent articulation point.

Proof: Any biconnected component containing at least
three vertices has the requirement that the articulation vertex
has at least two children. If the articulation vertex has only
one child, then the removal of this child would disconnect the
component and the component is therefore not biconnected.
Additionally, the lowest-level LCA for each of the these two
child vertices will always be articulation vertex, as per Propo-
sition III.1. It should also be noted that for any biconnected
component of size larger than three, it is highly likely that
two neighboring vertices of higher levels connected through
an edge not in T have each of their lowest level mutual parents
set as the parent articulation vertex as well.

1) Identifying BiCC with Color Propagation: Our approach
for determining biconnected components is given by Algo-
rithm 9. This algorithm once again determines the same Par
and Low values as the BFS approach. However, instead of
propagating the values to vertices within the same BiCC
through a search, we simply propagate them to their neighbors
one iteration at a time under certain constraints.

The initialization steps are the same as before. We select
a root and perform the BFS to create the parent and level
arrays. We use this information to initialize the Par values
for each vertex v to the lowest-level LCA among it and all of
its neighbors 〈u, v〉 ∈ E. We omit pseudocode for LCA, as it
is a well-known algorithm.

Once initialization is complete, we begin our primary col-
oring loop. The goal of coloring is to color all vertices in
a biconnected component, v ∈ B under a parent articulation
vertex of p, with Par(v) = p. Additionally, we want to color
all Low(v) as the vertex in B with the lowest vertex identifier.

A Par value is propagated from a vertex v to a neighbor u if
the level of Par(v) is less than the level of Par(u). To ensure
that no Par value is passed down from an articulation vertex
to its child, we don’t propagate Par values from a parent to
a child unless the Par value of the child is not equal to the
parent (i.e., we know there is a path from the child to a vertex
of lower level than the parent, so by Proposition III.1, we know
the parent is in the same biconnected component as its child).
We only propagate Low values between vertices that have the
same Par value, as the same Par value already indicates that
they are in the biconnected component.

We know that in any non-trivial biconnected component
there must be at least two vertices with their Par value
initialized to the parent articulation vertex for the component.

Algorithm 9 Color propagation-based algorithm to perform
BiCC decomposition.

1: procedure COLOR-BICC(G(V,E))
2: for all v ∈ V do
3: Art(v)← false
4: Low(v)← v
5: Par(v)← v
6: Insert v into Q
7: queued← true
8: Select a root vertex r
9: P,L← BFS(G, r)

10: Init-LCA(G,P, L, Par)
11: while Q 6= ∅ do
12: for all v ∈ Q do
13: Remove v from Q
14: for all 〈u, v〉 ∈ E do
15: if Par(u) = v then
16: continue
17: if L(Par(v)) > L(Par(u)) then
18: Par(u)← Par(v)
19: if queued(u) = false then
20: queued(u)← true
21: Insert u into Q
22: if Par(v) = Par(u) then
23: if Low(v) < Low(u) then
24: Low(u)← Low(v)
25: if queued(u) = false then
26: queued(u)← true
27: Insert u into Q
28: if any u got queued and queued(v) = false then
29: queued(v)← true
30: Insert v into Q
31: for all v ∈ Q do
32: queued(u)← false

33: for all e = 〈u, v〉 ∈ E do
34: if Low(v) = Low(u) or Par(u) = v then
35: BiCC(e)← low(u)
36: else
37: BiCC(e)← low(v)

Algorithm 10 Initialize the LCA for all neighbors using
parents and level information.

1: procedure INIT-LCA(G(V,E), P, L, Par)
2: for all v ∈ V do
3: for all 〈u, v〉 ∈ E do
4: w = LCA(v, u,G, P, L)
5: if L(w) ≤ L(Par(v)) then
6: Par(v) = w

These lowest-level Par values will freely propagate to all
vertices in the biconnected component, with the exception of
vertices not initialized to a Par besides their parents, which
are vertices that have no immediate non-tree connection to
a vertex of a lower level. However, these vertices do have
a path to their grandparent vertex (which may be the parent
articulation vertex) through either a vertex at the same level,
non-tree edge (which also must be a child of the same parent)
or one of their children. Using a recursive argument along
this path, the directional restriction we have on Par value
propagation will eventually be lifted as this lower level Par
will finally reach the original vertex. When this happens, the
lowest-level parent articulation vertex Par will be able to
reach this vertex as well through any path. We also know
that if the Par value reaches all vertices in the component,
then so must the correct Low value, as it is unique and will
begin propagating immediately when the vertex which has the
Low vertex identifier value gets their Par set, or initialized



to the final correct value.
We rely on a queue Q to avoid having to examine every

vertex at every iteration. We further rely on a pushing as
opposed to pulling form of coloring. While visiting vertex
v, we examine and overwrite the colors of all its neighbors,
u. With a pulling methodology, we would only overwrite the
color of v with the best color from all of u. We empirically find
pushing to be faster. We mitigate the race condition created by
two vertices both overwriting the color of u by adding both
v and u to the queue. If v had attempted to push the superior
color but got it overwritten, on the next iteration v will attempt
to push it again and succeed.

2) Parallelization: As with the BFS-BiCC algorithm, paral-
lelization of the first stage of the algorithm is straightforward
as it utilizes a standard BFS. Parallelization of the coloring
stage is a bit more involved, but still relatively simple to
implement. We parallelize over the queue in step 12, with each
thread examining and propagating colors from a limited subset
of vertices. To avoid the overhead associated with writing
to a shared queue, we instead have each thread place their
vertices in a thead-owned queue. Once a thread completes
its iteration, its queue is copied into the global queue for
the next iteration. As these operations are non-blocking, there
is minimal overhead. Like the previous approach, the final
labeling step over all edges is easy to parallelize.

3) Algorithm Analysis: The key step in Color-BiCC is
the coloring phase, and the work performed depends on the
number of times a vertex is inserted into the queue and
cumulative number of edges inspected. The rest of the steps
can be performed in θ(n + m) work. The upper bound on
work for coloring-based connected components and strongly
connected components algorithms is O(n2) [25], but the
observed performance is linear in the number of edges for
real-world, low-diameter graph instances [6], [29]. Because
we impose additional constraints in this case for BiCC and
use precomputed LCA information to direct the color propaga-
tion, the work performed is input-dependent. We quantify the
overhead of coloring through the additional edge inspections
required (a multiplicative factor) over the baseline value of
m. We report this value for all the test instances in the
next section. Note that concurrency depends on the size of
the queue for each iteration, and is not dependent on graph
diameter.

IV. EXPERIMENTAL SETUP

Experiments were performed on a dual-socket Intel system
with 64 GB main memory and Xeon E5-2670 (Sandy Bridge)
CPUs clocked at 2.60 GHz, and each having 20 MB last-
level cache. OpenMP was used for parallelization. Several
large real-world graphs were used in our study. These are
listed in Table I. These graphs were retrieved from a number
of sources, namely the SNAP database [20], the Koblenz
Network Collection [19], the 10th DIMACS Implementation
Challenge [5], and the University of Florida Sparse Matrix
Collection [12]. The R-MAT [9] and G(n, p) (GNP) networks
were generated with the GTGraph [21] suite using the default

TABLE I
NETWORK SIZES AND PARAMETERS FOR ALL NETWORKS. THE COLUMNS

ARE #VERTICES, #EDGES, AVERAGE AND MAX-DEGREE, APPROXIMATE
DIAMETER, # OF BICCS AND SIZE OF THE LARGEST BICC.

Network n m davg dmax d̃ia # Bi Max Bi

LiveJournal 4.8M 43M 18 20K 21 1.1M 3.7M
Orkut 3.1M 117M 76 33K 11 68K 3.0M

WikiLinks 26.0M 543M 42 4.3M 86 3.5M 22M
ItWeb 41.0M 1.0B 50 1.3M 46 5.0M 33M

Friendster 63.0M 1.6B 53 5.2K 34 13M 49M
Cube 2.1M 59M 56 67 157 1 2.1M

Kron 21 1.5M 91M 118 214K 8 238K 1.3M
R-MAT 24 7.7M 133M 35 257K 11 2.2M 5.4M

GNP 1 10.0M 200M 40 152 7 1 10M
GNP 10 10.0M 200M 40 80 19 19 5M

parameters. Only the largest connected component for each
graph was taken. Directed edges were considered undirected.
Multiple edges and self loops were removed. This was done to
reduce noise in results and simplify analysis and comparison
between tested algorithms.

Friendster, LiveJournal, and Orkut are social networks [34],
[3], [8]. WikiLinks is the cross-link network between articles
on Wikipedia [33]. Cube is 3D coupled consolidation problem
of a cube discretized with tetrahedral finite elements [18].
R-MAT 24 is an R-MAT graph of scale 24. The Kron 21
graph is a scale 21 graph created from the Kronecker gen-
erator of the Graph500 benchmark [15]. Finally, GNP 1 and
GNP 10 refer to Erdős-Rényi random G(n, p) graphs with
1 and 10 large biconnected components, respectively. The
GNP 10 network was created to have 10 large biconnected
components connected through 9 bridges. The components
were generated independently with geometrically decreasing
sizes (5.0M, 2.5M, 1.25M, ...) with the bridges added manually
by connecting the independent components via single edges.

V. RESULTS

We compare the performance of our two new algorithms
to Cong and Bader’s improvement to the Tarjan-Vishkin algo-
rithm, as well as the Hopcoft-Tarjan serial algorithm. We will
demonstrate absolute speedups relative to prior work, strong
scaling of our algorithms, an analysis of each of our algorithms
with respect to the basic graph computations on which they are
based on, as well as a more general analysis of the biconnected
component size and count distribution between real world and
synthetic graphs.

A. Execution times and Scaling

Table II gives the serial execution time of the Hopcroft-
Tarjan algorithm, the parallel times of our coloring and BFS
algorithms with 32 threads, the TV-Filter implementation run
with 32 threads, as well as our best speedup over TV-Filter.
All reported times are the averages over five independent tests.
We select the highest out-degree vertex as the root for reasons
that will be noted. The fastest time over all approaches is given
in bold. As previously mentioned, memory limitations for the



TABLE II
EXECUTION TIME (SECONDS) RESULT COMPARISON BETWEEN THE

SERIAL HOPCROFT-TARJAN ALGORITHM, TV-FILTER ALGORITHM ON 32
THREADS, AND THE NEW BFS-BICC AND COLOR-BICC APPROACHES ON

32 THREADS.

Network HT TV-Filter BFS-BiCC Color-BiCC Speedup vs. TV-F

LiveJournal 2.1 1.6 0.38 0.61 4.2
Orkut 3.4 1.8 0.49 0.93 3.6

WikiLinks 25 24 7.0 20 3.4
ItWeb 19 – 50 3.3 –

Friendster 79 – 20 48 –
Cube 1.2 0.64 0.17 0.51 3.8

Kron 21 1.8 2.3 0.60 2.2 3.8
R-MAT 24 4.7 5.8 1.5 5.6 3.9

GNP 1 11 5.8 5.0 4.8 1.2
GNP 10 6.5 5.9 12 4.0 1.5

TV-Filter algorithm prevented us from obtaining time results
on the two largest graphs, ItWeb and Friendster.

From Table II, it is apparent that the BFS-based algorithm
demonstrates the fastest absolute execution times for a ma-
jority of test cases. Our coloring algorithm demonstrates the
best performance on the remaining test cases. Both of our
algorithms demonstrate considerable speedup over both the
serial algorithm as well as the TV-Filter algorithm. As will
be explained, the relative performance benefit between the
BFS and coloring algorithms is highly dependent on graph
structure.

Figure 1 gives the strong scaling of the BFS, coloring,
and TV-Filter algorithms from 1 to 32 threads on all 10 test
graphs. Reported speedups are relative to the execution time
of Hopcroft-Tarjan. Similar results as Table II can be observed
from Figure 1, with the BFS algorithm demonstrating the
fastest execution time and best speedups on a majority of tests.

B. Breadth-First Search Analysis

Table III gives the execution time of the BFS-BiCC algo-
rithm with 1, 16, and 32 threads. Additionally, the running
time of just a single BFS exploration of the entire graph is
given along with the serial algorithm for comparison. We
also report a work estimate termed edge ratio in the final
column. The edge ratio is the total number of edges explored
during the second stage of the BFS-BiCC algorithm (where
articulation vertices are being searched for) divided by the
total number of edges in the graph. This essentially gives the
multiplicative factor of additional/lesser work being performed
in comparison to the Hopcroft-Tarjan algorithm, where all m
edges are necessarily examined.

As can be observed, the graphs that have low edge ratios
demonstrate the best performance with BFS-BiCC relative to
the serial approach. In fact, for all four networks where the
edge ratio is considerably less than 1.0, such as Orkut, Cube,
Kron, and R-MAT, single thread execution time for BFS-
BiCC is faster than the time for Hopcroft-Tarjan. As explained
before, this is because of the direction-optimizing BFS that is
very effective for certain low-diameter graphs.

Figure 2 gives the ratio of time spent in each of the four
stages of the BFS-BiCC algorithm (initial BFS tree creation,

TABLE III
EXECUTION TIME (IN SECONDS) COMPARISON BETWEEN THE SERIAL

ALGORITHM, A STANDARD BFS RUN, AND THE BFS-BICC ALGORITHM.
ADDITIONALLY, A RATIO OF THE AVERAGE NUMBER OF EDGES EXAMINED

DURING THE INNER-LOOP BFS IS GIVEN.

Network HT BFS (1) (16) (32) Edge Ratio

LiveJournal 2.1 0.032 2.5 0.56 0.38 1.0
Orkut 3.4 0.025 3.3 0.75 0.49 0.60

WikiLinks 25 0.40 29 9.3 7.0 1.3
ItWeb 19 0.41 460 70 50 1.6

Friendster 79 0.46 150 33 20 0.95
Cube 1.2 0.042 0.98 0.20 0.17 0.031

Kron 21 1.8 0.030 1.1 0.71 0.60 0.015
R-MAT 24 4.7 0.12 6.2 2.0 1.5 0.042

GNP 1 11 0.082 37 10 5.0 3.1
GNP 10 6.5 0.15 31 16 12 19
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Fig. 2. Per-step execution time breakdown of the BiCC-BFS approach.

articulation point identification, final level BFS run(s), edge
labeling). For most graphs, the second stage dominates the
overall execution time, as expected. The exception to this is a
few of the graphs mentioned previously that have a low edge
ratio. For those, the necessary O(m) work required by edge
labeling is the largest portion of execution time.

C. Color Propagation Analysis

We will now look at similar performance metrics obtained
for the Color-BiCC algorithm. Table IV gives the execution
time of Color-BiCC with 1, 16, and 32 threads, as well as the
execution time of a color propagation algorithm for identifying
connected components in a graph.

We also compute an edge ratio metric in this case. It is
calculated as the total number of edge propagations divided
by the total number of edges. There is a moderate correlation
between the edge ratio and performance of the coloring
algorithm. This is especially apparent for the Kron 21 and R-
MAT graphs, which demonstrate the highest edge ratio, and
correspondingly are the only networks where fully-parallel
coloring offers no advantage over the serial algorithm. It is
noted that this ratio does not account for the initialization of
the LCAs, which does make a considerable contribution to the



●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●● ● ● ● ●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●● ● ● ● ●

LiveJournal Orkut WikiLinks ItWeb Friendster

Cube Kron_21 RMAT_24 GNP_1 GNP_10

1

2

3

4

5

6

7

1

2

3

4

5

6

7

12 4 8 16 32 12 4 8 16 32 12 4 8 16 32 12 4 8 16 32 12 4 8 16 32

Cores

S
p
e
e
d
u
p
 v

s
. 
H

o
p
c
ro

ft
−

T
a
rj
a
n
's

Algorithm ●  BFS−BiCC  Color−BiCC  TV−Filter

Fig. 1. Parallel scaling of BFS and Coloring approaches as well as Cong and Bader’s implementation relative to the serial Hopcroft-Tarjan algorithm.

TABLE IV
EXECUTION TIME (IN SECONDS) COMPARISON BETWEEN THE SERIAL
ALGORITHM, A COLOR PROPAGATION ALGORITHM FOR CONNECTED

COMPONENTS, AND THE COLOR-BICC ALGORITHM. ADDITIONALLY, THE
TOTAL NUMBER OF COLOR PROPAGATIONS DIVIDED BY THE NUMBER OF

EDGES IN THE NETWORK IS REPORTED.

Network HT Color (1) (16) (32) Edge Ratio

LiveJournal 2.1 0.48 4.7 0.92 0.61 0.10
Orkut 3.4 0.44 9.4 1.5 0.93 0.063

WikiLinks 25 4.6 63 24 20 0.30
ItWeb 19 – 36 5.4 3.3 0.083

Friendster 79 21 360 63 48 0.063
Cube 1.2 0.19 9.7 0.84 0.51 0.17

Kron 21 1.8 0.43 5.0 2.8 2.2 0.62
R-MAT 24 4.7 1.2 16 6.8 5.6 0.57

GNP 1 11 1.8 53 8.3 4.8 0.064
GNP 10 6.5 2.0 37 7.0 4.0 0.062

overall time.
Figure 3 gives a per-step breakdown as Figure 2, with the

four steps as the initial BFS tree creation, the initialization
of the LCAs for all vertices, the primary coloring stage,
and the final edge labeling. Compared to the breakdown for
the BFS algorithm, the coloring algorithm has much more
consistent ratios of times spent in all four stages across all
networks. As is also observed, a majority of time is spent in the
LCA initialization and coloring stages, with the coloring stage
taking approximately twice as much time as the initialization
stage.

D. Performance impact of root vertex choice

For the breadth-first search algorithm, the vertex selected
as the initial root can considerably impact the overall running
time. Table V demonstrates this difference. By selecting the
vertex with the highest out-degree, the work required during
the inner loop of the BFS algorithm can be minimized. This
is because the final large biconnected component is usually
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Fig. 3. Per-step breakdown of the Coloring approach.

found by the first vertex encountered in the final level queue.
For networks containing a node with an exceptionally large
out degree, such as WikiLinks (4.3M), the resultant difference
in running time can be quite considerable. As the effort to
find this vertex is minimal and often tracked during graph
creation, the extra work required for this simple heuristic is
minimal with regards to the possible payoff.

For coloring algorithms, there is minimal correlation be-
tween the initial root vertex and the execution time of the algo-
rithm. Ideally, the selected root should minimize the number of
traversals required to initialize the LCA for all vertices, as well
as minimize the number of the color propagations required.
Selecting such a vertex seems like a challenging problem to
be solved and the solution with the highest degree heuristic
does not seem satisfactory.



TABLE V
SPEEDUPS RESULTING FOR BOTH THE BFS AND COLORING ALGORITHMS

WITH THE HEURISTICALLY-CHOSEN ROOT VERTEX COMPARED TO THE
AVERAGE RESULT OVER 20 RANDOMLY SELECTED ROOT VERTICES.

Network BFS-BiCC Speedup BFS-Color Speedup

LiveJournal 2.7 0.98
Orkut 2.7 0.94

WikiLinks 930 1.1
ItWeb 1.8 0.97

Friendster 3.7 1.0
Cube 0.92 0.98

Kron 21 3.5 1.1
R-MAT 24 12 0.96

GNP 1 1.1 1.0
GNP 10 0.42 1.0

VI. CONCLUSIONS

This paper introduces two novel shared-memory parallel
algorithms for finding the biconnected components of an
undirected graph. Since they both use simple and well-known
subroutines, practical and efficient parallel implementations
are much more feasible compared to prior algorithms. Ad-
ditionally, our implementations of both of these algorithms
offer considerable speedup over the TV-Filter implementation,
and are more memory-efficient. We will extend the theoret-
ical analysis of these algorithms by identifying worst-case
instances for the BiCC-BFS approach. We will also focus
on performance tuning and experimental analysis of these
algorithms in future work. Using the BiCC decomposition and
relative component sizes to characterize graph structure, par-
ticularly community structure in real-world social networks,
will perhaps provide novel insight.
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[4] D. A. Bader and J. JáJá. SIMPLE: A methodology for programming
high performance algorithms on clusters of symmetric multiprocessors
(SMPs). Journal of Parallel and Distributed Computing, 58(1):92–108,
1999.

[5] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. Graph parti-
tioning and graph clustering, 10th DIMACS implementation challenge
workshop. Contemporary Mathematics, 588, 2013.

[6] J. Barnat and P. Moravec. Parallel algorithms for finding SCCs in
implicitly given graphs. Formal Methods: Applications and Technology,
4346:316–330, 2006.
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