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ABSTRACT
We present a new, distributed-memory parallel algorithm for de-
tection of degenerate mesh features that can cause singularities in
ice sheet mesh simulations. Identifying and removing mesh fea-
tures such as disconnected components (icebergs) or hinge vertices
(peninsulas of ice detached from the land) can significantly im-
prove the convergence of iterative solvers. Because the ice sheet
evolves during the course of a simulation, it is important that the
detection algorithm can run in situ with the simulation — run-
ning in parallel and taking a negligible amount of computation
time — so that degenerate features (e.g., calving icebergs) can be
detected as they develop. We present a distributed memory, BFS-
based label-propagation approach to degenerate feature detection
that is efficient enough to be called at each step of an ice sheet
simulation, while correctly identifying all degenerate features of
an ice sheet mesh. Our method finds all degenerate features in a
mesh with 13 million vertices in 0.0561 seconds on 1536 cores in the
MPAS Albany Land Ice (MALI) model. Compared to the previously
used serial pre-processing approach, we observe a 46,000x speedup
for our algorithm, and provide additional capability to do dynamic
detection of degenerate features in the simulation.
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1 INTRODUCTION
Modeling sea-level rise (SLR) is important in climate modeling. A
major factor contributing to SLR is mass loss from the Greenland
and Antarctic ice sheets [4]. To predict SLR accurately, ice sheet
dynamics are simulated using large-scale parallel computational
models (e.g. [5, 9, 11]). Typically, these models assume that ice flow
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is reduced by friction with bedrock, and fail to simulate regions,
such as icebergs, where the ice is floating and partially or completely
detached from the land ice. It is therefore important to detect these
regions during simulation so that they can be properly handled.

Most large scale ice sheet models employ finite-element or finite-
volume discretizations using unstructured ice sheet meshes. These
are either 2D or 3Dmeshes generated by extruding 2D basal meshes.
Therefore, detecting regions that are problematic for the solvers
reduces to detecting “degenerate features” in 2D basal ice sheet
meshes as detailed in [18]. These degenerate features can develop
over the course of an ice sheet simulation; therefore, it is of para-
mount importance that the detection can be efficiently performed
at runtime on meshes held in distributed memory.

In our study, we consider only 2D conformal meshes, such as
the basal triangular and quadrilateral meshes used in the Albany
Land Ice (Albany-LI) [17] velocity solver component of the MALI
model [9]. Zou et al. [20] considered the detection of degenerate
features in non-conformal block-structured grids; their proposed
method works efficiently for data generated by adaptive mesh re-
finement algorithms. However, they detect only a subset of the
degenerate features that we are required to detect.

The degenerate mesh features we must detect are similar to the
biconnected components of a graph. Biconnected components are
maximal subgraphs of a graph such that the removal of any single
vertex will not disconnect the subgraph. Zou et al. only considers
detection of connected components. Connected components are
maximal subgraphs such that at least one path exists between all
vertex pairs within the subgraph.

We view a mesh as an undirected graph, with mesh vertices cor-
responding to vertices in the graph, and graph edges defined by the
element connectivity in the mesh. Finding the biconnected compo-
nents of the graph reveals vertices that are single points of failure,
such as floating chunks of ice that are about to become icebergs.
While our study focuses on ice sheet simulations, biconnectivity al-
gorithms are also useful for fault tolerance in ad hoc networks [12],
and detecting mechanisms in meshes for structural dynamics [6].
There are shared-memory algorithms for graph biconnectivity (e.g.,
Tarjan and Vishkin [15]), but to support parallel ice sheet simula-
tions such as Albany-LI, distributed-memory algorithms that do
not rely on a global view of the graph are needed.

OurContributions:We present an efficient, distributed-memory
algorithm for detecting degenerate features in ice sheet meshes. We
implemented our algorithm in the Zoltan2 [2] graph algorithms
library and demonstrated it with the Albany-LI solver. We show
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that our algorithm is fast enough to run at every step of a simula-
tion, taking at most 0.4% of the runtime of a single solver step in
Albany-LI using a 13M element mesh. We explore the algorithm’s
performance with synthetic meshes in which we vary the size and
number of degenerate features, and show that the algorithm per-
forms well for meshes that approximate real ice sheet meshes.

2 BACKGROUND AND RELATEDWORK

  

Figure 1: Antarctic Ice Sheet coloredwith ice surface velocity
magnitude (red = fast, blue = slow), andmesh detail showing
a realistic map of floating (light blue) and grounded (brown)
ice and degenerate features marked with green (icebergs)
and red (hinges) circles.

Degenerate features of an ice sheet mesh correspond to parts
of the ice that are floating and either detached from grounded ice
(icebergs) or loosely attached to it (hinged peninsulas). Examples of
these features are shown in the mesh of Antarctica in Figure 1. We
refer to vertices corresponding to places where the ice is in contact
with the ground as “grounded” vertices and to vertices correspond-
ing to places where the ice is floating as “floating” vertices. Icebergs
(i.e., floating islands) are connected components of the mesh that
are constituted entirely of floating vertices. Hinged peninsulas, or
“hinges,” are portions of the mesh that are constituted of floating
vertices and that can be disconnected from the mesh by the re-
moval of a single vertex. Both icebergs and hinged peninsulas can
negatively impact solver convergence and need to be identified as
degenerate features. In fact, in these regions, ice flow equations
are typically ill-posed because the ice velocity is known only up to
translations and/or rotations.

Given a mesh and information about whether each mesh vertex
is grounded or floating, our goal is to determine whether or not
each mesh vertex is part of a degenerate feature.
Degenerate Feature Detections Algorithms: The previous de-
tection algorithm for Albany-LI was implemented as a standalone
MATLAB code [18] and used as a pre-processor to Albany-LI simu-
lations. To remove floating islands, Tuminaro et al. used a Breadth-
First Search (BFS) from every unvisited grounded vertex. Vertices

that remained unvisited after the BFS operations had to be part
of a floating island. Tuminaro et al. used graph coloring to re-
move hinged peninsulas. Each mesh vertex was colored so that no
neighboring vertices had the same color. Then, for each color, they
temporarily removed vertices of that color and re-ran the floating
island algorithm; hinged peninsulas would become floating islands
when the colored hinge vertices were temporarily removed. This
approach generally had runtimes of several minutes when running
on meshes with millions of elements.

A closely related problem was addressed in [20], considering
meshes generated by adaptive mesh refinement (AMR) algorithms.
This work found icebergs (but not hinged penisulas) in multi-level,
multi-resolution meshes. Their method detects connected compo-
nents at each level of the AMR structure and joins them together
globally. To find connected components at a single level, they use
the SAUF algorithm [19], a two-pass labeling algorithm that assigns
temporary labels to each vertex on the first pass, uses a Union-Find
data structure to determine which temporary labels are equivalent,
and finalizes labels on the second pass. In the distributed imple-
mentation, Zou et. al run the first pass of SAUF on each process,
considering only local vertices. Then they exchange ghost label
information, and construct the final set of labels by sending all local
Union-Find structures to an elected process on the same AMR level.
After assigning labels on a level-by-level basis, they do a similar
procedure to assign final labels for the entire AMR structure. Each
unique label then corresponds to a connected component across
the entire AMR structure. Similarly, Harrison et al. [7] present a
connected component algorithm for 3Dmeshes based on union-find
operations; they demonstrate its performance on 2197 processor
with two-billion element meshes. However, these connected com-
ponent approaches find icebergs only. Our biconnected component
method detects both icebergs and floating peninsulas that are con-
nected to the main ice sheet by a single point — features that create
significant challenges for solvers.
Biconnectivity Algorithms: Graph biconnectivity decomposi-
tion algorithms seek to identify all maximal biconnected subgraphs
as well as all cut vertices within some graph. Cut vertices, com-
monly referred to as articulation points or articulation vertices, are
single vertices that disconnect the graph when removed.

Biconnectivity is a well studied problem, with a work-optimal
serial algorithm presented by Hopcroft and Tarjan [10]. This work
optimal algorithm uses Depth First Search (DFS) to identify bi-
connected components. DFS algorithms, however, are not easy to
parallelize, as discussed by Tarjan and Vishkin [15]. Tarjan and
Vishkin [15] present a parallel algorithm for finding biconnected
components in a concurrent-read, concurrent-write parallel RAM
model, where each processor has access to shared memory. This
parallel algorithm reduces the problem of biconnectivity to the
problem of connectivity in an auxiliary graph. The auxiliary graph
can be constructed without using DFS, and its connectivity can
then be found efficiently in shared memory.

Two shared memory algorithms for biconnectivity exploit simple
graph operations such as BFS and color propagation [14] to identify
articulation points. The BFS-based algorithm does BFS sweeps to
determine whether children of certain vertices can reach other
vertices on their parents’ level; if so, the parent is not an articulation
point. The coloring version also does an initial BFS; it then uses
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color propagation rules to prevent certain color labels from being
passed through articulation points. Most recently, LCA-BiCC was
proposed by M. Chaitanya and K. Kothapalli [3]. They observe that
that finding bridges (edges whose removal disconnects the graph)
is more parallelizable than finding articulation vertices. They use
an arbitrarily rooted BFS on the input graph to find a set of non-
tree edges (edges not in the BFS tree). Then they find the Lowest
Common Ancestor (LCA) for each of the endpoints of the non-tree
edges. They show that this set of LCA vertices is guaranteed to
contain the set of all articulation points in the graph, although
it can contain non-articulation points as well. Edges not visited
in finding LCA vertices are bridges in the original graph; each
bridge has endpoints that are articulation points. The algorithm
is then applied recursively on the subgraphs formed by excluding
the bridges. An efficient biconnectivity algorithm has not yet been
demonstrated on a distributed graph representation. Distributed
2-edge connectivity algorithms exist, but these only find bridges.

One could use a biconnectivity algorithm to perform degenerate
feature detection by identifying biconnected components and then
testing each component to determine whether it is connected to
ground. (Indeed, we used this strategy to verify the correctness of
our proposed algorithm.) But by exploiting information about the
mesh to identify potential articulation points and propagating the
grounding information in the BFS operations, we can provide an
efficient algorithm that is feasible for distributed memory.

3 ICE SHEET FEATURE DETECTION
Algorithm 1 shows a high-level view of our approach. The inputs
of our algorithm are a meshM and grounding information for each
vertex indicating whether the vertex is grounded. From the meshM ,
we can extract a graphG = (V ,E) in which vertices inV correspond
to mesh vertices in M and edges in E correspond to mesh vertex
adjacencies along element edges inM .

Algorithm 1 Degenerate feature detection algorithm

1: procedure prop-alg(Mesh M,grounding_info)
2: Compute set of potential articulation points using M
3: Extract graph G from M
4: labels← ∅
5: Propagate initial grounding_info labels in G
6: while Propagation is incomplete do
7: Continue propagating, repropagate if necessary
8: Return labels indicating connection to ground

The first step in Algorithm 1 is to identify a set of potential
articulation vertices in the mesh. For correctness, this set must
include at least all true articulation points. The set may include
vertices that are not true articulation points; indeed, the set of all
mesh vertices can be used. However, the algorithm completes more
quickly if the set of potential articulation points is close to the set
of true articulation points, and we can exploit mesh information to
closely approximate the set of true articulation points (Section 3.1).

Grounding information is then passed from grounded vertices
to neighboring vertices via label propagation. Each vertex v has
a label that is a structure of four vertex IDs: two representing
grounded vertices to which there is a path from v in G, and two

that record which vertices propagated the grounded vertex IDs to
v . Grounded vertices’ labels are initialized with their vertex IDs,
and they propagate their vertex IDs to neighboring vertices in a
breadth-first manner. When a vertex receives new grounded infor-
mation, it stores the grounded vertex IDs it received and propagates
them further (Section 3.2). Initial propagation halts at potential ar-
ticulation points. Then propagation is restarted, with care taken
to propagate grounding information correctly through potential
articulation points (Section 3.3). Once all vertices have been labeled
correctly, propagation ends and the labels indicate whether a vertex
is grounded or not. Vertices with two grounded-vertex IDs in their
labels have two paths to the ground, and thus, are not part of any
degenerate features. Other vertices are part of degenerate features
and will be removed by the ice sheet simulation.

3.1 Identifying Potential Articulation Points
When considering a geometric 2D mesh, all articulation points will
be located on the boundary. Given the elements of a mesh, it is
straightforward to compute the boundary edges of the mesh; the
boundary edges are those that are not shared by two elements. Then,
given the list of boundary edges, we determine which vertices are
potential articulation points by looking at the number of boundary
edges incident to each boundary vertex. If a boundary vertex has
two incident boundary edges, it cannot be an articulation point;
its two incident edges must either come from adjacent elements
sharing some other edge incident on that boundary vertex or exists
on a corner of the mesh. If a vertex has more than two incident
boundary edges, it is a potential articulation point. For example, in
Figure 2 (top), vertex B is a potential articulation point because it
has more than two boundary edges, while vertex F is not.

3.2 Label Propagation Rules
All grounded vertices initialize the grounded vertex IDs in their
labels to their own vertex IDs. During label propagation, vertices
share their grounding information with neighboring vertices. Algo-
rithm 2 shows the rules used to update a neighboring vertex’s label.
Vertices that are not potential articulation points may give their
neighbors all (zero, one or two) of the unique grounded vertex IDs
that they have. The neighboring vertices track from which vertices
they received each grounded vertex ID. If a neighboring vertex
already has two grounded vertex IDs, it is “full” and is not updated.

We ensure that potential articulation points send only one vertex
ID to each neighbor, as an articulation point can contribute only
one point of contact to the ground to any neighbor. Full potential
articulation points pass their own vertex ID as a grounded vertex,
rather than either of the grounded vertex IDs that they store. “Half-
full” potential articulation points (those having only one grounded
vertex ID in their label) pass their one grounded vertex ID. Because
labels contain the vertex ID of the vertices giving a stored grounded
vertex ID, a potential articulation point can determine whether or
not it has previously given the neighbor a grounded vertex ID.

3.3 Propagation on Two Frontiers
We use two queues to manage propagation along two “frontiers”:
propagation from potential articulation points (art_frontier) and
propagation from other vertices (frontier). As shown in Algorithm 3,
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Algorithm 2 Function for updating neighboring vertices labels
during propagation

1: procedure Give-Labels(curr_vtx, neighbor)
2: if curr_vtx ∈ Potential_Articulation_Points then
3: if curr_vtx hasn’t sent anything to neighbor before then
4: if curr_vtx has two grounded vertex IDs then
5: curr_vtx gives neighbor its own vertex ID as
6: a grounded vertex
7: else
8: curr_vtx gives its only grounded vertex ID
9: to neighbor
10: else
11: curr_vtx gives neighbor any grounded vertex IDs
12: that neighbor doesn’t have

the two queues separate the potential articulation points from the
other vertices while propagating. Initially, grounded vertices are
placed in the appropriate queue (frontier or art_frontier, depend-
ing on whether they are or are not potential articulation points).
Our algorithm begins propagation from the frontier queue; when
that queue is empty, it swaps to the art_frontier queue and re-
sumes propagation. This swap-and-propagate pattern continues
until both queues are empty, meaning no labels changed in the
previous iteration. Separating potential articulation vertices from
non-articulation vertices allows potential articulation points to ac-
crue as much grounding information as possible before passing
that grounding information along. In particular, it increases the
likelihood that potential articulation points will have full labels
before they propagate their values, which reduces the total number
of propagation iterations we need.

Algorithm 3 BFS-based label propagation algorithm

1: procedure BFS-Prop(frontier,art_frontier,labels,G=(V,E))
2: if frontier.empty() then
3: swap(frontier,art_frontier)
4: while !frontier.empty() do
5: curr_vtx ← frontier.pop()
6: for all neighbors n of curr_vtx do
7: Give-Labels(curr_vtx,n)
8: if n’s label changed then
9: if n ∈ Potential_Articulation_Points then
10: art_frontier.push(n)
11: else
12: frontier.push(n)
13: if frontier.empty() then
14: swap(frontier,art_frontier)

3.4 Multi-Phase Conditions
Although rare in ice sheet meshes, features such as chains of artic-
ulation points can occur and require special handling to correctly
identify all degenerate features. These situations require additional
phases of the propagation algorithm. Figure 2 shows an example. To
determine whether additional propagation is needed, we identify
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Figure 2: An example demonstrating label propagation

potential articulation vertices that have two grounded vertex IDs
in their label and a half-full neighbor vertex whose only grounded
vertex ID is not the potential articulation point’s ID. We add all
such potential articulation points to a frontier, reset labels that have
only one grounded vertex ID, and propagate from this new frontier.
Algorithm 4 shows this addition to BFS-Prop. The multi-phase ap-
proach is required only when certain topological conditions exist
in the mesh and there is a large difference in shortest path distance
between two grounded vertices and non-grounded vertices in the
mesh. These conditions are rarely, if ever, encountered in practice,
but we provide mitigation to ensure correctness.

3.5 Propagation Example
Figure 2 shows an example that illustrates parts of our algorithm.
Initially, only grey vertices A, B, and F are grounded; all white ver-
tices are not grounded initially. Labels for A, B and F are initialized
to their respective IDs. Vertices A and F are placed in the frontier
queue, since they are grounded and not potential articulation points.
As a potential articulation point, vertex B is placed in art_frontier.

Vertex A propagates its label to its neighbors and adds its neigh-
bors to the appropriate queues depending on their potential articu-
lation status. In particular, A gives F its label so that F is full with
label (F ,A). Vertex F then propagates its full label to its neighbors,
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Algorithm 4 Driver for BFS-Prop, Complete, Multi-Phase Solution

1: procedure BFS-Prop-Driver(labels, G=(V,E))
2: art_frontier ←grounded potential articulation vertices
3: frontier ←grounded vertices that are not potential
4: articulation points
5: BFS-Prop(frontier,art_frontier,labels,G)
6: while true do
7: for all potential articulation points v ∈ V do
8: if v’s label is full then
9: for all neighbors n of v do
10: if n’s label is half-full and doesn’t have
11: v’s ID then
12: art_frontier.push(v)
13: if art_frontier.empty() then
14: break
15: for all v ∈ V do
16: if v’s label is half full then
17: clear v’s label
18: BFS-Prop(frontier,art_frontier,labels,G)

and the neighbors propagate (A, F ) to their neighbors. (Note that
labels (F ,A) and (A, F ) are equivalent.) The neighbors ofA and F in
frontier then propagate label (A, F ) to potential articulation points
E and G, giving them both full labels.

Next, from the art_frontier queue, vertices B, E, and G propa-
gate to their neighbors; because E and G have full labels (A, F ),
they propagate their own vertex IDs (see Algorithm 2). Not-full
neighbors of E and G are placed in the frontier queue (since their
neighbors are not potential articulation points), and the swapping
between the frontier and art_frontier queues continues.

We eventually reach the state in Figure 2 (bottom). This state is
not the final state, as the vertices labeled B do not yet have full labels.
However, at this point, the queues are both empty. Algorithm 4
(lines 7-12) finds that the vertices labeled B may not be in their final
state, so a new round of propagation is initiated. All half-full labels
are emptied, and propagation is restarted from vertex H . We do
not need to restart propagation from vertex G, so the degenerate
feature connected to G ends up with no labels.

4 DISTRIBUTED MEMORY
IMPLEMENTATION

We have created a distributed memory implementation of our algo-
rithm that is callable by parallel mesh-based applications. Because
the application’s mesh is likely already distributed to processors
in a balanced manner for its computation, we use the same dis-
tribution of data to processors as the application. We assume the
commonly used “owner computes” strategy for the application’s
distribution of mesh entities; that is, each processor identifies a
set of unique vertices for which it is responsible. Our load balance
and communication patterns are thus determined by the applica-
tion’s distribution of the data; however, since our runtimes are very
small compared to the application’s solve times, redistributing data
within our method to adjust load balance is not worthwhile.

The application also provides all edges incident to its owned
vertices, including edges to off-processor vertices. Then in each

processor p, we store an “owned” graph vertex for each mesh vertex
owned by p. We also create one layer of “ghost” vertices — copies of
vertices that are owned by some processor q , p, and are neighbors
of vertices owned by processor p. Using the edges provided by
the application, we create a “local” graph consisting of the owned
vertices, the ghost vertices and the edges.

In distributed memory, the label-propagation algorithm can
maintain its “push” of label values to neighboring vertices without
ill effects. We perform Algorithm 3 (BFS-Prop) independently on
each processor’s local graph, allowing labels to propagate to both
owned and ghost vertices. Once local propagation stops, we commu-
nicate (via MPI point-to-point messages) to push the ghost vertices’
labels to their owning processor. The owned labels are then made
consistent with values received from the ghost copies. A global
communication (all-reduce) is used to determine whether any pro-
cessor had meaningful label changes due to the exchange of ghost
information. If so, the ghost vertices are updated via point-to-point
communication from their owners and propagation resumes.

We use existing classes from the Tpetra [1] package of Trilinos [8]
to implement this strategy. We build Tpetra Maps to describe the
distribution of the owned and ghosted vertices among processors.
To store labels for owned and ghosted vertices, we use the Maps to
create a Tpetra FEMultiVector — a distributed vector that provides
ghost-exchange communication and ghost update capabilities. The
FEMultiVector was designed for finite element assembly opera-
tions, allowing processors to contribute physical values to ghost
vertices and sum the contributions from multiple processors. It
is templated on a scalar type, which is usually double in physics
simulations. We, however, provide our label structure as the scalar
type, and overload its summation operator to use our Give-Labels
function (Algorithm 2). To use the FEMultiVector’s communication
capabilities, we call FEMultiVector’s method beginFill() before we
start the local label propagation, and endFill() to communicate the
ghost vertices’ labels to their owners and “sum” their values into
the owned versions using the overload summation operator. To
communicate the owned labels back to the ghost copies, we use the
FEMultiVector method doOwnedToOwnedPlusShared().

5 CORRECTNESS PROOFS
Here we will prove the correctness of our algorithm. First, we’ll
show that any vertex with two labels after propagation completes
must have at least two internally-vertex-disjoint paths to grounded
vertices. As mentioned in our algorithms description, the existence
of at least two such paths indicates grounded status to the given
vertex; we keep these vertices during simulation. We don’t need
to differentiate between vertices that were initially grounded or
those that were marked grounded during propagation. Then, we’ll
show that our propagation rules guarantee any vertex with two
internally-vertex-disjoint paths will end with two labels. Taken
together, we have our primary proposition:

Proposition 5.1. Under our label propagation rules, a vertex n
will own two unique labels, l1 and l2 ⇐⇒ ∃P1, P2, two vertex-
disjoint paths from n to two unique grounded vertices, v1 and v2.

Proof: A is set of potential articulation points. B is a pseudo-BiCC
component containingn. A pseudo-BiCC is amaximumbiconnected
subgraph bounded by potential articulation points. v1 and v2 are
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grounded vertices, potentially anywhere in the graph. Paths P1, P2
are termed (internally) vertex-disjoint if they have no vertex in
common except n. By our propagation rules, n having some label
l implies that ∃P , where P is a (minimal length) path tracing n to
some grounded vertex v ∈ G , as labels only propagate along edges.

We first prove that the existence of two unique labels implies the
existence of two vertex-disjoint paths to grounded vertices. Assume
vertex n has two vertex identifiers in its label, v1 and v2.

Trivial Cases: The trivial cases are if both labels refer to vertices v1
and v2 which are neighbors of n, or if one label refers to n (i.e., n
is grounded). The first case is obvious, and our propagation rules
implies ∃P2 from n to v2 for the second case. This path would
obviously be vertex-disjoint with empty path P1 = {n}.

Nontrivial Case: Assume n has two labels referring to grounded ver-
tices located anywhere within the graph. Per our propagation rules,
this implies ∃P1, P2 from n to each of v1,v2. An equivalent state-
ment to what we’re trying to prove is that ∃P = {v1, . . . ,n, . . . ,v2};
i.e., a path from v1 to v2 containing n. Assuming this path doesn’t
exist, ∃s , where s is one vertex that P1 and P2 must traverse between
both v1 or v2 and n. The removal of only s would therefore discon-
nect n from v1 and v2; hence, s is an articulation point and s ∈ A,
as actual articulation points are a subset of A. By our propagation
rules, s can only pass one label, so n having labels v1 and v2 is a
contradiction, and therefore such an s can’t exist.

We next show that the existence of two vertex-disjoint paths to
grounded vertices for n implies that n terminates propagation with
two labels. Assume that n has two vertex-disjoint paths, P1 and P2,
to initially grounded vertices, v1 and v2. We consider three cases.

Case 1 – n,v1,v2 ∈ B: In this case, all three vertices considered are
contained within the same pseudo-BiCC. Based on our propagation
rules, the labelsv1 andv2 will propagate from the grounded vertices.
If we consider P1 and P2 as a minimal vertex-disjoint pair of paths,
these labels will reach n without passing through some potential
articulation point to another pseudo-BiCC; B itself is biconnected,
which with our propagation rules guarantees the existence of some
path through any three vertices contained within it.

Case 2 – v1 ∈ B and v2 < B: In this case, v2 is contained in B′, a
pseudo-BiCC distinct from B. v1’s label will propagate along P1
within B to n unimpeded.v2’s label will begin propagating along P2,
which potentially passes through some number of potential artic-
ulation points. If B′ neighbors B (Case 2.1) with some x ∈ A,B,B′,
labels from both v1 and v2 will reach x . When the propagation
frontiers swap, x will propagate its own label along the portion of
P2 to n, giving n its second label.

If there are multiple pseudo-BiCCs between B and B′, then at
some y ∈ A along P2 labels from v1 and v2 will intersect. If P1 and
P2 are both minimal paths and not just a minimal vertex-disjoint
path pair (Case 2.2),y will propagate its label along P2 towardn until
it either reaches n or some z ∈ A, which will subsequently begin
propagation of its label toward n. After some number of potential
articulation points, two labels will reach x ∈ A,B, which will finally
propagate its label the rest of the way to n along P2 within B.

If P1 and P2 are not both minimal paths (Case 2.3) is when we
might require multiple phases of iteration. The shorter path be-
tween v1 or v2 and n might propagate its label to “consume” all
potential articulation points surrounding n, as demonstrated in
Figure 2. Recall we start a new phase by clearing half-labels and
re-propagating from the newly defined ground. In our new phase,
we can guarantee that there exists some new ground v3 that has a
shorter path to n thanv1 orv2 in the prior phase; at a minimum, the
pseudo-BiCC where minimal paths between v1,v2 and n intersect
will contain v3. By guaranteeing that we decrease the distance of
at least one minimal grounded path to n during each phase, we will
eventually reach one of the prior cases.

Case 3 – v1 < B and v2 < B: In this case, we can apply the logic
used in Case 2 on both P1 and P2. We omit it for brevity.

Note that in the above cases, if there are greater than just two
vertex-disjoint paths from n, it simply follows that at least two
unique labels will reach n. Conversely, we provide the following
simple corollary to complete our correctness proof.

Corollary 5.2. Under our label propagation rules, a vertex n will
own less than two unique labels ⇐⇒ there exists less than two
vertex-disjoint paths from n to unique grounded vertices.

Proof: First assume that our algorithm terminates with n having
less than two labels. If n has two or more vertex-disjoint paths to
grounded vertices, then by Proposition 5.1, n will have ended up
with two unique labels, a contradiction.

Next, to prove the other direction of our corollary, assume that n
has less than two vertex-disjoint paths from n to unique grounded
vertices. If no path exists, then no label could reach n. If ∃P1 from n
to grounded vertex v1, then either v1 ∈ B or v1 < B. If v1 ∈ B, then
its trivial to show that the only label that will reach n is from v1, as
either there are no other grounded vertices, or paths from n from
these grounded vertices must pass through v1 ∈ A. If v1 < B, then
P1 must pass through some x ∈ A,B. As x is a potential articulation
point, it will only pass a single label, regardless of how many other
grounded vertices exist outside of B with a path to n through x .

5.1 Complexity Discussion
Generally speaking, our propagation algorithm utilizes a “frontier”
in a similar fashion to breadth-first search. A vertex will be placed
on the frontier at most twice as its label set is filled. As such, the
number of propagations a vertex will send along an edge during a
given phase is bounded by amaximumof two. The number of phases
we require is bounded above by the cardinality of our potential
articulation point set. So we can give a worst-case work complexity
ofO(|E | |A|), where E is the set of edges andA is the set of potential
articulation points. However, we note that we have never required
more than a single phase on real data or the synthetic data in our
results. In practice, we see a linear expected work complexity on
real-world ice sheet data ofO(|E |). For parallel time, the number of
propagation iterations is dependent on the diameter of the graph d ,
which for rectangular meshes grows approximately with O(

√
|V |),

where V is the set of vertices; note that each propagation iteration
itself can be parallelized in O(1) time on O(|E |) processors. We
therefore have a worst-case time of O(d |A|) and expected time of
O(d) on O(|E |) processors.
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Table 1: Real (top) and synthetic (bottom) mesh data, includ-
ing the numbers of vertices, elements, potential articulation
points and vertices removed from the mesh.

Mesh #Vertices #Elements Potential #Removed
16km 52,465 51,087 21 0
8km 210,170 206,436 51 14
4km 841,346 831,173 174 6
2km 3,368,275 3,341,449 389 22
1km 13,479,076 13,413,766 606 65

Mesh #Vtx #Elems #Potential #Removed
(max) (min) (max) (max)

ground(2km) 3,364,589 3,354,197 260 21
numdegen ∼3,364,589 1,563,762 15,800 2,683,500
numcomplex ∼3,368,253 2,878,139 17,313 21
longdegen ∼3,365,592 1,565,262 904,858 63,000
longcomplex ∼3,368,235 2,870,687 25,229 21
syn-largest 16,236,896 16,186,433 1550 96

6 EXPERIMENTAL SETUP
The scaling results we present were obtained on AMOS, RPI’s
Blue Gene/Q housed at the Center for Computational Innovations.
AMOS has 5K nodes with 80K cores and 80TB of RAM.

We used real meshes of Antarctica from the ProSPecT ice sheet
project [13]. These meshes have geographic resolution from 16km
to 1km. Smaller resolutions result in more refined meshes; thus, the
number of elements ranges from 51K to 13.4M.

We also generated synthetic meshes by specifying the size of
the central ice mass and the number and size of the degenerate
and complex features. First, the central ice mesh was created by
connecting a regular grid of vertices together in elements of four
vertices. Then we create “complex” features, which are blocks that
are similar to the central ice block, but smaller. These features are
chains of elements; each one starts on the edge of the central ice
sheet, has a number of intermediate ice elements, and then con-
nects back to a different vertex on the edge of the central ice sheet.
Degenerate features are similar, but they connect to the central
ice sheet at only one point on its edge. Grounding information is
generated randomly for the vertices in the central ice sheet and the
complex features. Degenerate features are targetted to be removed,
so we do not allow them to be grounded initially. As we varied the
parameters we were testing, the numbers of vertices in meshes of
equivalent resolution varied slightly; maximum values are reported
in Table 1. Likewise, the orientation of the complex and degenerate
features may vary slightly due to random generation.

For our scaling studies, we distributed mesh vertices equally
among processors using “linear” distributions that assign |V |/P
vertices to each of P processors in the order of their global vertex
ID numbers. These distributions are likely not optimal with respect
to locality of vertices. However, because our method uses the same
parallel distribution as applications calling it, we did not investigate
optimal partitioning strategies in our tests.

7 RESULTS
To evaluate our method, we ran experiments on AMOS with the
real and synthetic ice sheet meshes in Table 1. All tests correctly
identified degenerated features in the meshes; thus, we focus on the
performance of our method.We did weak and strong scaling studies,
as well as specialized analyses to show how mesh features (number
of grounded vertices, number and length of degenerated features,
number and length of complex features) affect our algorithm.

7.1 Feature Detection Performance
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Figure 3: Strong scaling: runtime time using the largest real
ice sheet mesh, 1km
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Figure 4: Strong scaling: percentage of runtime time for
propagation and communication with real mesh 1km

7.1.1 Strong Scaling. The largest real mesh, 1km, has over 13.4 mil-
lion vertices. Strong scaling for this mesh is nearly perfect up to 512
MPI ranks, as shown in Figure 3. Beyond 512 ranks, communication
increases, and computation takes longer due to a larger number
of frontier switches in the propagation phase. The breakdown of
computation and communication times is shown in Figure 4.

The largest synthetic mesh, syn-largest, was slightly larger than
our largest real case at 16 million elements. The results in Fig-
ure 5 show good strong scaling as well. There is little reduction in
speedup as the number of MPI ranks approaches 4096; the extra ver-
tices may aid the scaling, or our mesh generator may not perfectly
replicate the features of the real ice sheet mesh. Figure 6 shows how
much time our algorithm spends propagating, and how much time
our algorithm spends communicating while solving a synthetic test
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Figure 5: Strong scaling: runtime time for the largest syn-
thetic ice sheet mesh, syn-largest
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Figure 6: Strong scaling: percentage of runtime for propaga-
tion and communication with synthetic mesh syn-largest

case. The time spent communicating remains nearly constant as the
number of processors increases, and the computation time reduces
nearly by half when we double the number of processors.

100 101 102
0

0.2

0.4

0.6

0.8

1

Number of MPI Ranks

S
ol
ve

T
im

e
(s
ec
on

d
s)

52K Vtx/Rank

Figure 7: Weak scaling: runtime time for real meshes 16km,
8km, 4km, 2km, and 1km

7.1.2 Weak Scaling. The availability of real ice sheet meshes with
varying resolutions enables effective weak-scaling experimentation.
As mesh resolution is halved in each dimension, the number of
elements increases by roughly four (see Table 1, top). Our weak-
scaling tests on the real meshes 16km, 8km, 4km, 2km and 1km

assigned roughly 52K vertices per MPI rank on AMOS. Figure 7
shows that our algorithm’s weak scaling is good on real data.
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Figure 8: Weak scaling: runtime time for synthetic meshes

Our weak-scaling tests on synthetic meshes assigned roughly
3.9K vertices per MPI rank. Figure 8 shows our algorithm has good
weak scaling on the synthetic data, even with a small workload.
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Figure 9: Scaling with different numbers of initial grounded
vertices with synthetic mesh grounded(2km)

7.1.3 Scaling vs. Mesh Complexity. The sizes and numbers of mesh
features and grounded vertices can impact the performance of our
algorithm. To study this impact, we modified the synthetic 2km
mesh to vary its characteristics.

First, in the ground(2km)mesh, we varied the number of vertices
in the mesh that were initially grounded, from the extreme case
of only one initially grounded vertex to the case typical in real ice
sheet meshes where 89% of vertices are initially grounded. Figure 9
shows that as the number of initially grounded vertices increases,
the runtime of our algorithm decreases, as fewer vertices’ grounding
state needs to be determined and grounding information is available
across more processors initially. In the extreme cases with very
few initially grounded vertices, strong scaling is poor because few
processor have grounding information initially; most grounding
information needs to propagate via communication. However, with
12% or more initially grounded vertices, all tests exhibited good
strong scaling similar to the realistic 89% grounding case.
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Figure 10: Scalingwith different lengths of complex features
using synthetic mesh longcomplex

Figure 10 shows our algorithm’s behavior as the length of com-
plex features increases. Varying the length of complex features
from one to 215 elements shows little effect on the algorithm’s run-
time. Since vertices in complex features may be initially grounded,
propagation through complex features is equivalent to propagation
in the central ice mass. We do not measure the typical lengths of
complex features in real meshes, but we can use the number of po-
tential articulation points to get an idea. The real 2kmmesh has 389
potential articulation points; the synthetic mesh has 373 potential
articulation points with a complex feature length of two.
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Figure 11: Scaling with different numbers of complex fea-
tures with mesh numcomplex

Next, with mesh numcomplex, we varied the number of complex
features in a 2km mesh from 127 to 9217. The results, shown in
Figure 11, are similar to Figure 10. Adding complex features does not
adversely affect our algorithm’s running time, as the algorithm’s
runtime does not depend on the number of biconnected components.
Similarly to above, we can use the number of potential articulation
points to get an idea of how many complex features are realistic.
There are 366 potential articulation points in the synthetic mesh
that has 188 complex features, which is as close as we get to the
389 potential articulation points of the 2km mesh.

While the lengths and number of complex features do not impact
the algorithm’s runtime, the length of degenerate features can have
a dramatic impact. Results varying the degenerate feature length

100 101 102 103 104

10−1

100

101

Number of MPI Ranks

S
o
lv
e
T
im

e
(s
ec
o
n
d
s)

Length 1
Length 10
Length 50
Length 500
Length 1500
Length 3000

Figure 12: Scaling with different lengths of degenerate fea-
tures with mesh longdegen

from 1 to 3000 in a 2km mesh are shown in Figure 12. For small
degenerate lengths typical of real ice sheet meshes, the length of
degenerate features has modest impact. But as the length grows to
3000 and above, the algorithm loses scalability. Since degenerate
features do not have grounded vertices, the algorithm makes slower
progress on features split over processor boundaries.
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Figure 13: Scaling with different numbers of degenerate fea-
tures with mesh numdegen

The number of degenerate features has a less dramatic effect
on runtime, but as Figure 13 shows, the more degenerate features
there are, the more slowly our algorithm runs. While scalability is
unaffected by the number of degenerate features, the overall run-
time increases with the number of degenerate features. We observe
that the number of degenerate features in ice sheets typically is
small. In the 1km mesh, only 65 vertices are removed, so numbers
of degenerate features over 100 are atypical of our real mesh data.

7.2 Application Results
We demonstrate the performance of our algorithm by incorporat-
ing it into the Zoltan2 graph algorithm package [2] of the Trilinos
solver framework [8] and calling it from the Albany-LI component
of the MPAS-Albany Land Ice (MALI) simulation code [9]. MALI is a
high-fidelity, variable-resolution ice sheet model developed as part
of the U.S. Department of Energy’s Energy Exascale Earth System
Model (E3SM). Albany-LI uses a conjugate gradient solver with a
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semicoarsening algebraic multigrid preconditioner [18]. The itera-
tive solver is sensitive to degenerate features in ice sheet meshes.
Thus, developers preprocessed their meshes with a degenerate-
feature removal algorithm that was implemented in Matlab and
run in serial before the simulation began; dynamic degerate-feature
removal as the ice evolved during a simulation was not possible.

Mesh Distributed (MPI Ranks) Serial Matlab Speedup
16km (real) 0.0176 s (6) 1.04 s 59×
8km (real) 0.0217 s (24) 5.65 s 260×
4km (real) 0.0414 s (96) 34.6 s 835×
2km (real) 0.0407 s (384) 245 s 6019×
1km (real) 0.0561 s (1536) 2630 s 46880×

Table 2: Execution time for our distributed method in
Albany-LI, compared to the serial Matlab preprocessor.

With our new algorithm, serial preprocessing in Albany-LI is
no longer needed. The mesh can be read into parallel processors,
and degenerate features can be detected quickly at runtime. Our
distributed implementation enables dynamic degenerate-feature re-
moval to capture changes in the ice over the course of a simulation.

Table 2 shows the striking difference in runtime between our ap-
proach and the Matlab preprocessing approach. The preprocessing
approach was run on a workstation with an Intel Xeon Gold 6146
CPU (3.20 GHz). Our distributed code was run in Albany-LI model
on NERSC’s Edison Cray XC30 supercomputer on varying num-
bers of MPI ranks. Albany-LI uses geometric partitioning (recursive
inertial bisection [16]) to assign mesh elements to processors; our al-
gorithm then used the distribution from Albany-LI. We see roughly
46,000× speedup in the highest resolution case. Moreover, our al-
gorithm takes at most 0.4% of the time of a single simulation step.
Thus, our algorithm is fast enough to be used dynamically in the
simulation as needed.

8 CONCLUSIONS AND FUTUREWORK
We have proposed an algorithm for identifying degenerate features
in ice sheet meshes. We showed that our distributed memory imple-
mentation is efficient enough to be used at every step of an ice sheet
simulation with negligible computational overhead. Our method
scales very well for real and synthetic meshes. It also behaves well
on synthetic meshes generated with an extreme scale and number
of complex and degenerate features.

There are many directions for future work related to our base-
line algorithm. We have explored generalizations of this algorithm
that find all hinge points in a mesh; this capability is of interest to
many other mesh-based scientific applications, such as [6]. Simi-
larly, we have developed an extension of our algorithm to solve the
biconnectivity problem on general graphs. Future work will explore
optimizing these solutions and applying them to real-world appli-
cations. Additionally, we have discussed using a similar approach
to identify triconnected components in graphs. These extensions
are quite promising, as efficient distributed algorithms for bicon-
nectivity and triconnectivity are not yet present in the literature.
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