
Complex Network Analysis using Parallel
Approximate Motif Counting∗

George M. Slota Kamesh Madduri
Department of Computer Science and Engineering

The Pennsylvania State University
University Park, PA, USA

Email: gms5016@psu.edu, madduri@cse.psu.edu

Technical Report CSE #14–001

February 24, 2014

Abstract

Subgraph counting forms the basis of many complex network analysis metrics, in-
cluding motif and anti-motif finding, relative graphlet frequency distance, and graphlet
degree distribution agreements. Determining exact subgraph counts is computation-
ally very expensive. In recent work, we present Fascia, a shared-memory parallel
algorithm and implementation for approximate subgraph counting. Fascia uses a
dynamic programming-based approach and is significantly faster than exhaustive enu-
meration, while generating high-quality approximations of subgraph counts. However,
the memory usage of the dynamic programming step prohibits us from applying Fascia
to very large graphs. In this report, we introduce a distributed-memory paralleliza-
tion of Fascia by partitioning the graph and the dynamic programming table. We
discuss a new collective communication scheme to make the dynamic programming
step memory-efficient. These optimizations enable scaling to much larger networks
than before. We also present a simple parallelization strategy for distributed subgraph
counting on smaller networks. The new additions let us use subgraph counts as graph
signatures for a large network collection, and we analyze this collection using various
subgraph count-based graph analytics.

∗Extended technical report version of the conference paper to appear in the Proceedings of the 28th IEEE
International Parallel & Distributed Processing Symposium (IPDPS).

1

1 Introduction

Subgraph counting is a computationally intensive problem. A näıve algorithm, which ex-
haustively enumerates all vertices reachable in k hops from a vertex, runs in O(nk) time,
where n is the number of vertices in the network and k is the number of vertices in the
subgraph. For large networks, this imposes considerable constraints on the sizes of possible
subgraphs that can be counted. Thus, there has been a lot of recent work on approximation
algorithms. Approaches are either based on sampling or on exploiting network topology.
Sampling-based methods analyze a subset of the network and extrapolate counts based on
the observed occurrences and network properties [1–3], while the other class of methods im-
pose some constraint on the network or transform the network, so that the possible search
space [4] is restricted. The color-coding-based counting approach belongs to the second
category and forms the basis of our current work.

The color-coding technique [5] can be used to determine counts of non-induced tree-

structured templates in O(m · 2k · ek · log 1/δ
ε2

) time, where m is the number of edges in the
graph, and δ and ε are confidence and error parameters, respectively (i.e., the estimated
count is within c(1± ε) with probability (1−2δ), where c is the exact count). The algorithm
can be informally stated as follows: every vertex in the network is randomly colored with
one of k possible colors. The number of colorful embeddings is then counted, where colorful
in this context means that each vertex in the template embedding has a distinct color. The
total embedding count is then scaled by the probability that the template is colorful, to give
an approximation for the total number of possible embeddings. The dynamic programming
algorithm used to count colorful embeddings avoids the prohibitive O(nk) bound seen in
exhaustive search.

In previous work, we introduced Fascia [6], a fast shared-memory parallel implementa-
tion of the color-coding algorithm for approximate treelet counting. The current work builds
on our prior work with distributed-memory parallelization. Multi-node strong scaling lets
us process larger graphs and template sizes, and we achieve very fast and accurate counts
for large-scale graphs. Distributed Fascia necessitates a new distributed representation of
the dynamic programming table data structure that is central to the count approximations.
The primary contribution of this work is presenting how this data structure can be managed
in a memory-efficient manner in a distributed setting.

Subgraph counts in isolation give little or no insight into the topological structure of
a complex network. However, a number of analytics introduced over the past decade use
subgraph counts as a means for identifying latent structural patterns within networks, for
ascertaining possible variations between neighborhoods of individual vertices within a sin-
gle network, and for comparative analysis of networks. We give an overview of some of
these subgraph-based analytics in the next section. Our second contribution is an extensive
comparative analysis of real-world networks using subgraph count-based graph analytics.
The efficient distributed-memory parallelization of Fascia enables these computations by
improving time to solution for distributed counting on small networks, and decreasing the
memory requirements for large networks.

2

2 Background

2.1 Motif Finding

Network motifs are defined as subgraphs that occur more frequently in a network than
would be expected by random chance. There has been considerable study of network motifs
in bioinformatics [1, 2, 4, 7–10], usually to discern structurally-significant characteristics in
protein-protein interaction and related biological networks. Alon et al. [9] developed a color-
coding based approach for the purpose of determining biological network motifs. Recent
work has also focused on applying subgraph counting and network motif finding methods for
social, informational, and other networks [11–13]. We perform a similar evaluation in this
report.

Motif finding is typically carried out by finding complete subgraph counts for all possible
templates of up to a certain size. The relative frequency of each subgraph is determined
by scaling the counts by either the total count or the average count. This process is then
repeated for perturbations of the network or for synthetic graphs with similar network param-
eters. From this, subgraphs with exceptionally high or low relative counts can be determined.
Prior knowledge about the network can then be used to determine whether the subgraph
plays a crucial role related to a functional characteristic. We will demonstrate the resilience
of treelet counts for motif finding with noisy or incomplete networks later in this report.

2.2 Graphlets

Graphlets are formally defined as small undirected subgraphs between two and five vertices
in size. Prior work by Pržulj et al. [14–17] extensively studies graphlets in the context
of biological networks. Pržulj et al. also identified all possible discrete orbits within each
graphlet. Orbits in this context refer to distinct automorphic vertices in the subgraph; i.e.,
it can be useful to explicitly differentiate between a vertex in the center of a star versus a
vertex on one of the leaves.

Graphlets are also considered to only be induced subgraph occurrences. Induced occur-
rences imply that for every subgraph embedding of a template in a network, edges can exist
between vertices in the subgraph if and only if they exist in the template. Most prior work
focuses on induced occurrences, as they are computationally less expensive to count. How-
ever, Alon et al. [9] argue that non-induced subgraph counts can provide a more accurate
analysis of noisy real-world networks. The color-coding technique can only be used to count
non-induced occurrences, and verifying its applicability to the comparative metrics is one of
the primary focuses of this work.

2.2.1 Graphlet Frequency Distance

The graphlet frequency distance (GFD) was proposed by Pržulj et. al [15] as a global compar-
ative measure based on the local structural characteristics of different networks. To calculate
the GFD, counts of all i = 1, 2, . . . , 29 graphlets in network G are determined as Ci(G). Each

3

of the 29 counts are then log-scaled by the total count of all graphlets, with the distance
value between networks G and H being the sum of the absolute differences of all scaled
counts.

Si(G) = − log(
Ci(G)

29∑
i=1

Ci(G)

), D(G,H) =
29∑
i=1

|Si(G)− Si(H)|

To avoid possible confusion created by using the term graphlet outside of its standard
context (subgraphs of 2 to 5 vertices), as well as the generic term subgraph, this report will
use the term treelet in their place where appropriate (for instance, in this report, we compute
treelet frequency distances).

2.2.2 Graphlet Degree Distribution

The graphlet degree distribution (GDD) can similarly be used as a global comparative mea-
sure between networks based on local structural characteristics [14]. To calculate the GDD
of a network, we determine the graphlet counts at every single vertex in the network for all
different graphlet orbits. The graphlet distribution for a given orbit is the number of ver-
tices in the network that have a certain number of embeddings, or degree, with the graphlet
orbit.; i.e. there are 450 vertices with a single embedding (a graphlet degree of one), 230
with two embeddings (a graphlet degree of two), 114 with three embeddings, and so forth.
The agreement value for a given orbit between two networks is determined as the euclidean
distance between all degree counts normalized with respect to the total area under a curve
scaled by the degree number:

SjG(k) =
djG(k)

k
,N j

G(k) =
SjG(k)

∞∑
k=1

SjG(k)

Aj(G,H) = 1− 1√
2

(
∞∑
k=1

[N j
G(k)−N j

H(k)]2)
1
2

Where djG(k) is the number of nodes with degree k of orbit j in graph G, N j
G(k) is the

normalized distribution, and Aj(G,H) is the agreement for orbit j between graphs G and
H. The total agreement is either the arithmetic or geometric sum of agreements for all
orbits. We consider only the arithmetic sum, as instances of zero agreement between orbits
are observed to occur in treelets larger than 5 vertices with minor frequency.

2.2.3 Graphlet Degree Signature Similarity

The graphlet degree signature can give an comperative similarity value between two given
nodes in a single network. A vector is created for all nodes in the network containing
the counts of embeddings for all graphlet orbits containing that node. It is described as
capturing the local topology and interconnectedness of the node in the context of its local

4

neighborhood [16]. The similarity value between two vertices, u and v, for orbit i, with
counts ui and vi, respectively, is calculated as follows:

Si(u, v) = 1− wi ×
| log(ui + 1)− log(vi + 1)|

log(max{ui, vi}+ 2

In this equation, wi is a certain weighting given to that specific orbit. These values are
dependent on the number of isomorphisms of smaller graphlets orbits that exist at that orbit
in its respective graphlet. The total similarity value is the sum of similarity values divided
by the sum of the weightings for all orbits. Although this work does not explicitly utilize
the graphlet degree signature similarity, future work will investigate its applicability towards
network alignment, clustering, and community detection.

2.3 Clustering

Bordino et al. [18] demonstrate that one can use the relative frequency of subgraphs within
networks to distinguish and cluster different networks. Using the relative frequencies of
undirected subgraphs up to four vertices and other topological properties such as in-degree,
out-degree, and PageRank as representative features for a network, they show up to 75%
clustering accuracy for networks chosen from seven distinct categories. Using directed edges
and 284 features in total, they achieved just over 90% clustering accuracy. Recent work by
Rahman et al. [3] implements an approximate graphlet counting algorithm and uses graphlet
counts as a vector to cluster various network types. We perform a similar clustering for a
larger group of networks using treelet counts.

3 Fascia Distributed-memory Parallelization

We begin this section with an overview of the approximate treelet counting method. We
then describe how we parallelize this computation in a fast and memory-efficient manner.
An in-depth description of color-coding, the dynamic programming formulation it uses, and
its shared-memory parallelization is available in other papers [6, 12].

3.1 Algorithm Overview

The color coding-based method is constituted by several steps (see Algorithm 1). Initially,
the input template is partitioned into subtemplates by following an iterative method of single
edge cuts. Next, the number of iterations to be performed is determined based on desired
approximation quality input parameters. For each iteration, we randomly color the graph
with at least k colors, where k is the number of vertices in the template. We then begin with
the last subtemplate created during our partitioning procedure and perform a bottom-up
dynamic programming scheme, tracing through the subtemplates in the reverse order they
were created during partitioning.

5

Algorithm 1 Subgraph counting using color coding.

Partition input template T (k vertices) into subtemplates Si using single edge cuts.

Determine Niter ≈ ek log 1/δ

ε2
, the number of iterations to execute. δ and ε are input

parameters that control approximation quality.
for it = 1 to Niter do

Randomly assign to each vertex v in graph G a color between 0 and k − 1.
Use a dynamic programming scheme to count colorful non-induced occurrences of T .

Take average of all Niter counts to be final count.

We are going to ignore several nuances about the dynamic phase of the algorithm for now.
The general idea is given in Algorithm 2. We can trace backwards up a tree that represents
the partitioning of the original template. The count for each subtemplate is dependent only
on the counts for its children subtemplates. Specifically, the count for a given subtemplate
Si with a given color mapping I at vertex v, is the sum over all products of the counts of
its children created during partitioning with mappings created by distributing the colors of
I, having one child subtemplate rooted at vertex v and the other child subtemplate rooted
at all vertices u in the neighborhood of v. Through this approach, we can trace all the way
back to our original template T . Our count estimate for this iteration is the sum of all counts
of T , over all vertices v, over all possible color sets I. The final count estimate is then the
average of all iteration counts, scaled by the probability that any given embedding of T in
the graph is colorful.

Algorithm 2 Fascia dynamic programming routine with distributed counting.

for it = 1 to Niter do in parallel
Color G(V,E) with k colors
Initialize 3D count table
for all Si in reverse order of partitioning do

for all v ∈ V do in parallel . thread-level
Update count table for template Si
using child subtemplate counts

3.2 Distributed Counting

There are several avenues for parallelization in this method. For shared memory paralleliza-
tion of Fascia and for very small graphs, we partition the outer loop across threads (i.e,
each thread performs Niter/p iterations with p-way threading). We refer to this as the outer-
loop parallel approach. This idea can be extended to a distributed setting, and the iteration
chunks of the outer loop can be assigned to different tasks. With this setting, we can also
perform the inner loop (counts for all vertices) in parallel using multithreading. We refer
to this hybrid parallelization strategy as distributed counting. As the dynamic programming

6

table storing counts scales as n ·
(
k
k/2

)
, where n is the number of vertices in the graph and

k is the number of vertices in the template, memory use is an issue with this approach for
large graphs and templates.

3.3 Partitioned Counting and Memory Optimizations

For modest-sized graphs (more than 2 million vertices) and large templates (k > 10), memory
utilization quickly becomes problematic with distributed or shared-memory counting. This
is an issue even when using various previously-introduced memory-saving techniques such
as a fast hashing scheme or vertex-based table initializations [6]. We have therefore also
implemented a distributed graph partitioning-based approach, where each task performs
counts for a subset of all v ∈ V .

Algorithm 3 Fascia Partitioned Counting Approach.

for it = 1 to Niter do
Color G(V,E) with k colors
for all Si in reverse order of partitioning do

Init Tablei,d for Vd (vertex partition on task d)
for all v ∈ Vd do . Thread-level parallelism

for all c ∈ Ci do
Compute all CountSi,c,v

Nd, Id, Bd ← Compress(Tablei,d)
for all d = 1 to NumTasks do

Ni, Ii, Bi ← Bcast(Nd, Id, Bd)

Countd+ =
Vd∑
v

CT∑
c

CountT,c,v

Count← Reduce(Countd)
Scale Count based on Niter and colorful embed prob.

In this approach, each task is required to have a full table for each child subtemplate,
while only needing to create the table for the current subtemplate for the task’s subset of
vertices. At the end of each iteration, unnecessary child tables are deleted. The table subsets
for the current subtemplate are then distributed to all nodes in the cluster. Due to the large
memory footprint of these arrays, this approach has substantial data transfer overhead. We
have therefore reduced total data transfer costs by utilizing a compressed sparse row (CSR)
format for storing the counts. This allows for fast distributed counting on graphs much
larger than previously possible.

The CSR format is a commonly-used sparse matrix storage format consisting of three
arrays. One array stores all values matrix non-zero values in row-major ordering. This array
would be structured as [(row1)(row2) · · · (rown)], where (rowi) is a list of all nonzero values
in that row. A second array of the same length as this first array is used to hold the column
indexes at each of the nonzero values stored in the first array. The final array is of length n,

7

or the number of rows, and it holds indexes to the start of the sequence of values for each
row.

By considering a table for each discrete subtemplate Si as a matrix of size n×Ci, where
n is the number of vertices in G and Ci is the number of possible color sets for Si, we can
use the CSR format to our table in order to compress it and reduce data transfer volume.
The first array stores all non-zero counts for all vertices and color mappings. The second
array is the color mapping indexes for each count value, as computed using a combinatorial
number system approach (see [6]). The final array denotes the indexes for the start of count
values for each vertex.

Because the lookup for any specific (x, y) index can be slow using this format and the
color-coding approach requires a significant number of such lookups, we ideally want to
decompress values for direct access. However, in order to further minimize memory footprint,
we only decompress when the values are needed to compute the count of the new parent
subtemplate.

Algorithm 3 details the pseudocode. For every Si, we only initialize our table for the
task’s specific subset of vertices Vd. We compute all the counts for the subset of vertices
(v ∈ Vd) for all possible colorsets (c ∈ Ci) for the current subtemplate. We then compress
the table into CSR format, with Nd denoting the array of count values, Id the array of color
mapping indexes, and Bd containing the begin indexes for each vertex. We distribute the
counts among all d tasks, so that each task now has the child counts required to compute
counts for the new parent template.

At the completion of each iteration, each task computes the final count for the template
for its subset of vertices. We simply keep a running sum of the counts for each task for each
iteration. After all iterations are completed, we reduce the sums from all tasks, scale them
by the number of iterations and probability that the template is colorful, and then will have
produced our final count estimate. It should be noted that no additional approximations
are introduced during parallelization. There would still be minor variation in the serial and
parallel approaches due to the random coloring and rounding error incurred when performing
floating-point arithmetic.

4 Experimental Setup

We performed experiments on various parallel platforms and interactive systems, including
Gordon at the San Diego Supercomputer Center, Stampede at the Texas Advanced Com-
puting Center, and the CyberSTAR and Hammer systems at Penn State University. For
experiments where execution times are reported, we used the Compton system at Sandia
National Laboratories. Each Compton node has 2 Intel Xeon E5-2670 (Sandy Bridge) pro-
cessors with 64 GB memory. Code was compiled with the Intel C compiler icc using -openmp

and -O3 flags.

8

4.1 Networks Analyzed

We analyzed networks from eleven different categories, obtained from many different sources [19–
21] (see Table 1). These include collaboration networks from Arvix and the DBLP Computer
Science Bibliography [22–24], communication networks of emails and Facebook wall posts [22,
25,26], four Erdős-Rényi G(n, p) random graphs, snapshots of the peer-to-peer Gnutella net-
work at various times [22,27], four biological protein-protein interaction (PPI) networks [28],
five road networks [21, 23], four random scale-free Barabǎsi-Albert networks [29], six so-
cial networks of online relationships of various types [20, 30, 31], four random small-world
graphs [32], and four web crawls of various universities and Google [23]. The social network
of Orkut [24] was additionally analyzed for parallel performance, as well as a synthetic social
contact network of Portland [33]. In total, over 50 different networks were considered.

n (×103) m (×103)
Network Type Count

min max min max

Collaboration 6 26 425 14 1050
Communication 4 30 63 87 855
G(n, p) 4 10 100 100 1000
Peer-to-peer 9 6 63 9.7 77
Bio PPI 4 0.7 22 1.3 22
Road 5 440 1970 530 2800
Scale-free 4 10 100 100 1000
Social 6 60 150 214 5400
Small-world 4 10 100 100 1000
Web Crawl 4 280 875 761 3900

Orkut - 3100 - 117000 -
Portland - 1620 - 31000 -

Table 1: Networks analyzed in this study: categories, counts, sizes.

U7-1 U8-1 U9-1 U10-1 U11-1 U12-1

U7-2 U8-2 U9-2 U10-2 U11-2 U12-2

T7-1 T7-2 T7-3 T7-4 T7-5 T7-6

T7-7 T7-8 T7-9 T7-10 T7-11

Figure 1: Templates structures used in MPI scaling, CSR memory usage, and for network
noise analyses.

All graphs considered are undirected with multiple edges and self loops removed. This
mainly only affected the structure of the communication and social networks. The color-
coding method can be applied to directed graphs as well. However, the current implemen-
tation is unable to do so and this extension is left for future work.

9

4.2 Templates Analyzed

All tree-structured templates between three and nine nodes were considered in our analysis.
There is 1 template with 3 nodes, 2 templates with 4 nodes, 3 templates with 5 nodes,
6 templates with 6 nodes, 11 templates with 7 nodes, 23 templates with 8 nodes, and 47
templates with 9 nodes. The templates were created by parsing data output by an online
graph generator [34]. Additionally, since treelet degrees were considered for templates of
three to seven vertices, it was necessary to copy and modify each of these template files to
set a varying root node for the different orbits. In total, 92 subgraphs were considered when
calculating motifs and the treelet frequency distances and 83 discrete orbits over 23 different
treelets were considered when calculating the treelet degree distribution agreements. For
analyzing our distributed algorithm’s performance with regards to scaling and memory use,
we use two templates of 7, 8, 9, 10, 11, and 12 vertices. Figure 1 shows the 11 different
7-vertex templates used in Section 5.7.

5 Performance Results and Network Analysis

In this section, we present performance results achieved with our distributed and partitioned
implementations of Fascia. We will demonstrate strong scaling along with reduction in
data transferred due to use of the CSR communication layout. Additionally, we also use
color-coding treelet counting in several network analysis methods: motif finding, network
type clustering, as well as relative treelet frequencies and treelet degree distributions. The
latter two use modifications to existing techniques that commonly use the smaller graphlets,
with the changes to calculation methodologies noted where appropriate. We will also study
robustness of using treelet counts for analyzing noisy or incomplete networks by perturbing
a subset of vertices/edges.

5.1 Parallel Performance

Figure 2 (left) gives strong scaling results of partitioned treelet counting by Fascia for the
U12-1 and U12-2 templates on the Orkut network. A single iteration of counting is performed
using the partitioning methodology previously explained. Running times are reported for up
to 15 nodes, or 240 total cores. As can be seen from Figure 2, an approximate speedup of
3.5× is observed on the U12-1 template, in comparison to the shared-memory multithreaded
single-node execution. With U12-2, a more complex template, we achieve a 7× speedup on
15 nodes.

Figure 2 (right) gives the cumulative time spent in data transfer for both the U12-1 and
U12-2 templates on 2 to 15 nodes. This includes both the time needed to compress the data
and the time spent in MPI collective communication routines. We observe that compression
takes about a quarter of the total time. Although the overall running time for U12-2 is
higher than U12-1, the transfer time for U12-2 is lower because of the smaller table size.

We do not observe good data transfer time scaling due to two primary reasons. Firstly,
there is a tradeoff between time for compression and communication. The larger the number

10

400

800

1200

1600

4 8 12
MPI tasks

E
xe

cu
ti

on
 t

im
e

(s
)

Template U12−1 U12−2

10

20

30

40

4 8 12
MPI tasks

D
at

a
tr

an
sf

er
 t

im
e

(s
)

Template U12−1 U12−2

Figure 2: Parallel scaling of the partitioned counting approach. U12-1 and U12-2 templates,
Orkut network; Total execution time (left) and total data transfer time (right).

50

100

150

200

250

4 8 12
MPI tasks

E
xe

cu
ti

on
 t

im
e

(s
)

Template U12−1 U12−2

Figure 3: Parallel scaling of 16,000 iterations for counting U12-1 and U12-2 templates on
the C. elegans PPI network.

of nodes, the greater the amount of data to be broadcast. Secondly, the performance of the
MPI Broadcast on our test system does not scale linearly with transfer size, for large arrays
and for a relatively small number of nodes (i.e., a broadcast of d size to n nodes takes longer
to complete than a broadcast of d

2
size to 2∗n nodes). This mostly accounts for the decrease

in total transfer times for both templates from about 2 to 6 nodes.
As the total communication time only accounts for a small fraction of total running time,

we do not yet consider it to be the primary bottleneck for scaling in our approach. Analysis
of computation time differences between nodes indicates that there is computational load
imbalance using a näıve vertex partitioning method. Reordering of vertices or a distributed
dynamic load balancing scheme would likely alleviate this bottleneck. We will investigate
this in future work.

Figures 3 gives the scaling for 16, 000 total iterations of counting templates U12-1 and
U12-2 on the C. elegans PPI network doing full outer-loop parallelization and distribution.
For this instance, we are concurrently performing color-coding iterations on 240 cores (15
MPI tasks, 16 threads per node). Due to the minimal communication overhead required
in performing this count, parallel speedup is about 12.5× for both templates. We can thus

11

utilize a combination of both the partitioning and outer-loop distributed parallelization for
strong scaling on large networks.

5.2 CSR Bandwidth Reduction

The large size of the dynamic programming table can make partitioned counts accumulation
difficult, due to the considerable amount of data transferred at each step of the algorithm.
The overall data transfer volumes can be upwards of dozens of gigabytes for a single color-
coding iteration, even for modestly-sized graphs with millions of vertices and a relatively
small value of k. To this effect, it is important to try and minimize these costs in order to
improve execution times.

0

5

10

15

20

U7−1 U7−2 U8−1 U8−2 U9−1 U9−2 U10−1 U10−2 U11−1 U11−2 U12−1 U12−2
Template

M
ax

 d
at

a
tr

an
sf

er
 s

iz
e

(G
B

)

Format CSR Table

Figure 4: Maximum data transfer required on Orkut using the U12-1 and U12-2 templates
with baseline table and CSR storage.

Figure 4 gives the maximum data transfer during a single iteration for all of the UX-1
and UX-2 templates from 7 to 12 vertices on the Orkut network. On average, we observe
a consistent 35% reduction in data transferred, with a reduction of over 50% occurring for
select templates. Also, note that the Orkut network has a relatively high average vertex
degree, which results in a considerably higher rate of template embeddings for any given
vertex relative to a network that is not nearly as dense. In general, the total time required
for CSR compression and decompression is much lower than the time required to broadcast
the compressed table.

5.3 Motif Finding

In this illustrative example for motif finding using results from previous work [6], we analyze
five different networks using all eleven different seven node templates. These networks are the
Enron email network, the social contact network of Portland, the Slashdot social network, a

12

road network of Pennsylvania, and a G(n, p) random graph created with the same number
of nodes and edges as the Enron network. As our previous work has demonstrated, even
on relatively small networks, motifs can become apparent after a very small number of
iterations. However, in this example, we run 1000 iterations to minimize any error. The
resultant relative counts are given in Figure 5.

●
●

●
●

● ●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11
Subgraph

R
el

at
iv

e
F

re
qu

en
cy

●●●●● ●●●●● ●●●●● ●●●●● ●●●●●Enron Portland Slashdot Road G(n,p)

Figure 5: Relative treelet frequencies on five different networks, from [6].

Template 1, a star with six edges, shows the largest spread in relative frequencies between
all of the networks. It is clear that this template would be considered a very strong anti-motif
for the road network. Having knowledge of what the road network is representing (streets
are edges and nodes are intersections), we can deduce that these findings make logical sense,
seeing as how there are very few six-way intersections commonly encountered.

It is also apparent that the G(n, p) graph, while having the same number of nodes, edges,
and average degree of the Enron graph, contains a vastly different local topology. This would
once again corroborate existing information, in that it is known that G(n, p) graphs very
rarely correspond to real-world networks.

5.4 Relative Treelet Frequency Distances

The relative treelet frequency distances were calculated for all networks and groups using
all treelets between four and nine vertices in size. We ran each count for 1000 iterations
to minimize error in the estimates. The methodology used to calculate these distances is
slightly different from the approach described in the background Section. Instead of taking
the logarithm of the total count over all subgraphs, we scale values by the total counts for
the specific treelet size. This is done because, even using a log scale, the differences in count
magnitudes between four and nine-node treelets is far too large to scale them by the same
denominator.

13

Figure 6: Treelet frequency distances between all tested networks. Darker implies a lower
distance or higher similarity.

Figure 6 demonstrates the results of these calculations on a heatmap. For visualization
purposes, the final distance values are log-scaled. Red represents low disagreement while
orange, yellow, and finally white show increasingly higher disagreements. Each row-column
coordinate represents the distance calculated between the networks (names on the right hand
side and bottom). Networks are ordered by group.

A number of observations are possible by observing Figure 6. Several groups show very
minimal intra-group disagreement, including the road networks, the small world and G(n, p)
random graphs, as well as the collaboration and peer-to-peer networks in a lesser extent.
The protein-protein interaction networks show agreement among the unicellular organisms
(E. coli, H. pylori, S. cerevisiae), but low agreement with the multicellular organism (C. el-
egans).

The peer-to-peer results are interesting, in that there appears to be two distinct subgroups
with high intra-group agreement. Each distinct network is simply a snapshot of part of the

14

same larger network at varying points in time. This might highlight the highly dynamic and
fluid nature of peer-to-peer networks, as connections are being constantly made and broken
as new content is released and shared. Or it might just be an artifact due to noise and the
relatively small sample of the network that was taken at each date.

There is also some agreement between the random small-world networks with the peer-
to-peer and collaboration networks, demonstrating a correspondence to the small-world phe-
nomenon that is known to exist in these networks. However, there is no such correlation with
the social network crawls, which is surprising and likely suggests that there are other net-
work measures necessary to take into account when determining network similarity beyond
subgraph frequency, or that the graph generator parameters or algorithm used to create the
small-world graphs need further tuning.

5.5 Treelet Degree Distribution Agreements

The treelet degree distribution agreement was calculated on all of the considered networks,
for all 83 distinct treelet orbits, on all three to seven vertex tree-structured subgraphs. Again,
we ran these counts each for 1000 iterations. These values were calculated using the same
methodology as previously described for graphlets without any modification. The heatmap
of results for all networks is presented in Figure 7 (bottom). Once again, red indicates a
high agreement (low disagreement) and white indicates a low agreement.

One of the more interesting observations from this analysis deals with the scale-free
networks. The absolute per-vertex counts for these networks were consistently large, resulting
in a very spread out distribution for each treelet orbit, and almost no agreement between
any of the other networks. It is likely due to the existence of hubs with a massive degree and
small diameter neighborhood that caused this to occur, as the number of treelet embeddings
increase combinatorially with vertex degree. Since most vertices are within close range to a
hub, their treelet embedding counts are affected as well when the treelet is large enough.

The Google+ social network experienced a similar phenomenon, as did the Digg commu-
nication network to a lesser extent. Their overall distributions are extremely different from
that of other networks in their group. It should be noted that the G(n, p) 33K network is
different from the other G(n, p), because it was modeled with the same number of nodes
and edges as the Enron network, and thus had a much lower average degree than the other
random graphs in that group. This difference isn’t noticed with treelet frequency distances,
however, indicating that treelet degree distributions are more sensitive in this regard.

Figure 7 also demonstrates similar results as seen previously with the treelet frequency
distances. A lot of network types have low intra-network variance in this instance, notably
the road and peer-to-peer networks. The collaboration, communication, peer-to-peer, web,
social, and small world graphs also all share a relatively low variance with each other. This
could be attributed to the social actions and connections that form these graphs. As was
seen with treelet frequencies, the road networks show little agreement with any of the other
networks considered, likely due to their vastly different and mostly planar structure.

15

co
lla

b−
as

tr
o

co
lla

b−
co

nd
en

se
d

co
lla

b−
db

lp
co

lla
b−

ge
ne

ra
l

co
lla

b−
hi

gh
en

ph
ys

co
lla

b−
hi

gh
en

th
eo

ry
co

m
m

−
di

gg
co

m
m

−
en

ro
n

co
m

m
−

eu
al

l
co

m
m

−
fa

ce
bo

ok
gn

p1
0k

gn
p3

3k
gn

p5
0k

gn
p1

00
k

p2
p−

gn
u1

p2
p−

gn
u2

p2
p−

gn
u3

p2
p−

gn
u4

p2
p−

gn
u5

p2
p−

gn
u6

p2
p−

gn
u7

p2
p−

gn
u8

p2
p−

gn
u9

pp
i−

ce
le

g
pp

i−
hp

yl
o

pp
i−

ec
ol

i
pp

i−
sc

er
e

ro
ad

ne
t−

ca
ro

ad
ne

t−
co

ro
ad

ne
t−

fl
ro

ad
ne

t−
pa

ro
ad

ne
t−

tx
sf

−
10

k
sf

−
33

k
sf

−
50

k
sf

−
10

0k
so

ci
al

−
br

ig
ht

ki
te

so
ci

al
−

ca
ts

te
r

so
ci

al
−

ep
in

io
ns

so
ci

al
−

go
w

al
la

so
ci

al
−

gp
lu

s
so

ci
al

−
sl

as
hd

ot
sw

−
10

k
sw

−
33

k
sw

−
50

k
sw

−
10

0k
w

eb
−

be
rk

st
an

w
eb

−
go

og
le

w
eb

−
no

tr
e

w
eb

−
st

an
fo

rd

collab−astro
collab−condensed
collab−dblp
collab−general
collab−highenphys
collab−highentheory
comm−digg
comm−enron
comm−euall
comm−facebook
gnp10k
gnp33k
gnp50k
gnp100k
p2p−gnu1
p2p−gnu2
p2p−gnu3
p2p−gnu4
p2p−gnu5
p2p−gnu6
p2p−gnu7
p2p−gnu8
p2p−gnu9
ppi−celeg
ppi−hpylo
ppi−ecoli
ppi−scere
roadnet−ca
roadnet−co
roadnet−fl
roadnet−pa
roadnet−tx
sf−10k
sf−33k
sf−50k
sf−100k
social−brightkite
social−catster
social−epinions
social−gowalla
social−gplus
social−slashdot
sw−10k
sw−33k
sw−50k
sw−100k
web−berkstan
web−google
web−notre
web−stanford

Figure 7: Treelet degree distribution agreements between all tested networks. Darker implies
a higher agreement.

5.6 Clustering Using Treelet Frequency Counts

We also examine whether we can use the treelet occurrence frequencies to cluster networks
into categories. The relative frequencies of all 4-9 vertex tree-structured subgraphs for the
same ten network groups were considered to be a feature vector, and we used the the k-means
and E-M clustering algorithms with the number of clusters set to 10. Approximately 70%
and 75% average clustering accuracies were produced using the k-means and E-M algorithms,
respectively. This is about the same accuracy as reported by Bordino et al. on undirected
graphs (75%). However, they only considered seven network groups at a time, and used
other topological features beyond subgraph frequencies. This result indicates that large
treelet frequencies are useful features to consider when attempting to classify networks of
various types.

16

5.7 Node and Edge Deletion and Edge Rewiring

As most real-world networks are incomplete, noisy, and dynamically evolving, the utility of
treelet count for network analysis should be examined under these considerations. We select
four networks and introduce varying amounts and types of network alterations. A 100K
vertex G(n, p) graph, the Notre Dame web crawl, the Slashdot social network, and one of
the Gnutella peer-to-peer snapshots were all modified by deleting vertices, deleting edges,
and randomly rewiring edges. 5%, 10%, 20%, 50%, and 75% modifications of total vertices
or edges were performed. The differences in treelet frequency distance between the modified
and original network were then noted. As before, 1000 iterations were performed to retrieve
the counts for all networks.

gnp100k NotreWeb

p2p Slashdot

0.01

0.1

1

0.01

0.1

1

10

0.1

1

0.1

1

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Templates

R
el

at
iv

e
C

ou
n

ts

Modification baseline v5 v10 v20 v50 v75

Figure 8: Treelet counts after 5%, 10%, 20%, 50%, and 75% vertices are deleted.

Figure 8 gives the results of vertex deletion on motif plots for all eleven different seven
vertex templates (T7-1 to T7-11) on the four aforementioned networks. Vertex deletion has
the most pronounced effect on the p2p network and the least effect on the gnp100k network.
It is surprising that for some templates, the scaled counts are accurate even with 75% of the
vertices deleted. This suggests that combining sampling-based schemes with color-coding
might be quite effective to obtain counts for some templates.

Using the methodology to calculate treelet frequency distances (as originally presented
with log scaling), we calculate disagreement values for all networks before and after pertur-
bation. The maximal distance between the original and modified counts for any network
was with the Notre Dame web crawl, having a disagreement value of 4.1. With relative
count scaling, this can be contrasted to the average disagreement value between all baseline
networks, which is 9.2. The minimal disagreement for the modified networks was with 100K

17

gnp100k NotreWeb

p2p Slashdot

0.01

0.1

1

10

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Templates

R
el

at
iv

e
C

o
u

n
ts

Modification baseline e5 e10 e20 e50 e75

Figure 9: Treelet counts after 5%, 10%, 20%, 50%, and 75% edges are deleted.

gnp100k NotreWeb

p2p Slashdot

0.001

0.01

0.1

1

10

0.001

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Templates

R
el

at
iv

e
C

ou
n

ts

Modification baseline r5 r10 r20 r50 r75

Figure 10: Subgraph counts after 5%, 10%, 20%, 50%, and 75% edges are rewired.

vertex G(n, p) graph, having an absolute disagreement of only 0.6. These results support the
assertion that using treelet counts for network analysis can be useful even with incomplete
networks.

18

Figure 9 gives results obtained with random edge removal from the networks. Edge
removal has a lower impact on treelet counts as expected. The calculated maximal disagree-
ment was with the Gnutella peer-to-peer graph, having a disagreement value of 1.2 with
75% edges removed. All other values were well below 1. This lends further credibility to the
use of treelet analysis on networks with a high proportion of known vertices, but a lower
confidence in known edges, such as protein interaction networks in computational biology.

We performed another study to observe the effect of randomly rewiring a proportion of
edges within the network. These results are shown in Figure 10. Uninterestingly, the treelet
counts on the random network once again show minimal change, along with the peer-to-peer
network. However, the treelet counts on the social network and web crawl are quite different.
A high degree of random rewiring seems to have a greater affect on the local topology in the
social network and the web crawl.

The disagreement values calculated for Slashdot and the Notre Dame web crawl are
relatively high for 75% rewiring (6.6 and 10.4, respectively), and the values calculated at
20% are much lower (1.0 and 2.4). Even with a rather high proportion of 20% spurious
edges, the counts obtained on these modified networks are demonstrably similar to that of
the original networks, providing further evidence to support the use of non-induced treelet
counts in analysis of mildly noisy or incomplete networks.

5.8 Execution times for Analyses

The initial motivation for our partitioned implementation was to overcome the memory
usage imposed by dynamic programming table for large networks. The multi-node parallel
implementations also greatly reduce the time spent in performing the comparative network
analyses reported in the previous subsections. Table 2 lists the approximate running times
required to generate some of the counts used in Figures 5–10. The times are given by days
(d), hours (h), minutes (m), and seconds (s) for processing time in serial, on a 16-core server,
and on a 15-node cluster. The total times are approximate, as we utilized several different
environments to collect the data points required to generate the figures. Some of the serial
execution times were extrapolated based on strong scaling observed with the shared- and
distributed-memory implementations.

As seen in Table 2, exploiting multi-node parallelism for large network analysis can lead
to significant performance improvements. Motif finding, by calculating the counts on the
given networks for 11 templates of size 7, could be completed in less than two hours on 15
nodes, with most of the time spent on counts for the large Portland network. Further, our
network noise analysis, which involved calculating all 11 possible 7-vertex templates for 64
different network configurations, could be fully processed in about two-and-a-half hours. The
number of color-coding iterations performed could be reduced for some of these networks if
lower accuracy guarantees are desired.

19

Size Time
Network

n m Serial 1 node 15 nodes

Motif counts
Portland 1.6 M 31 M 4 d 11 h 1 h
Road 1 M 1.5 M 11 h 3 h 10 m
Slashdot 82 K 440 K 2 h 30 m 2 m
Enron 33 K 180 K 40 m 10 m 50 s
gnp33k 33 K 180 K 1 h 10 m 40 s

Network perturbation analysis
NotreWeb 330 K 760 K 2 d 15 h 1 h
Slashdot 82 K 440 K 1 d 6 h 30 m
p2p 63 K 77 K 10 h 3 h 10 m
gnp100k 100 K 1 M 3 d 10 h 40 m

Table 2: Approximate analysis times with Fascia in serial, on a single node (OpenMP),
and on 15 nodes (OpenMP + MPI). Size: K= ×103, M= ×106, Time: (d)ays, (h)ours,
(m)inutes, (s)econds.

5.9 Comparisons to Recent Work

SAHAD [13] and PARSE [12] by Zhao et al. both utilize the color-coding approach for
determining approximate subgraph counts in distributed environments. PARSE is an MPI-
based approach and SAHAD is a newer and more scalable version that uses Hadoop. The
parallelization strategies and software environment used in their performance studies are
very different from the settings used in our study. Hence it is difficult to perform a head-
to-head comparison. To get a sense of relative speedup with our approach, consider the
following selection of performance results: The PARSE paper reports an execution time of
about an hour on 400 cores of a cluster for a 2 million vertex, 50 million edge network and a
6-vertex chain template. For the same network, a single color-coding iteration with SAHAD
for a 10-vertex tree template is reported to take 25 minutes on 42 nodes (1344 cores). With
distributed Fascia on 15 nodes (240 cores), we can count occurrences of a 12-vertex chain
and 12-vertex tree on a 3 million vertex, 117 million edge network in about 3 and 4 minutes,
respectively.

Rahman et al. have recently designed GRAFT [3], a tool for quickly counting graphlets
in large networks using a sampling-based technique. On the com-DBLP network from
SNAP [19] (n = 330K, m = 930K), they report a single node execution time of about
47 seconds to count all 29 graphlets, with approximately 5% error. On the same network
and with the same approximate error bound, Fascia counts all 92 tree-structured templates
of size 5 to 9 vertices, in about 78 seconds. Using networks grouped as peer-to-peer, collab-
oration, road, and citation, Rahman et al. demonstrated that graphlets could be used for
clustering networks, and reported 77% and 91% clustering accuracy rates when using 29 and
18 graphlets, respectively. As mentioned before, Fascia achieves up to 75% accuracy for

20

clustering networks into 10 groups. Further quality and performance comparisons of sam-
pling vs. color-coding and the use of graphlets vs. treelets would make for interesting future
work.

6 Conclusions

This work introduces distributed-memory parallelizations of Fascia, a fast implementation
of approximate subgraph counting using color-coding. By partitioning the dynamic pro-
gramming table and distributing iterations across nodes of a cluster, approximate counts
of non-induced tree-structured subgraphs, or treelets, can be retrieved quickly for networks
with up to millions of vertices and hundreds of millions of edges.

Using this new implementation, we conducted an extensive study to highlight the efficacy
of using large tree-structured templates to describe network topology, in the same way that
smaller subgraphs of varying structures were previously used. Additionally, we demonstrate
the robustness of using non-induced subgraph counts as graph signatures by quantifying the
impact of random edge deletion and rewiring alterations on subgraph counts.

Acknowledgment

This work is supported by NSF grant ACI-1253881 and used instrumentation funded by
the NSF grant OCI-0821527. This work also used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by NSF grant OCI-1053575. We thank
Siva Rajamanickam (Sandia Labs) for facilitating timely access to computing resources at
Sandia. Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

References

[1] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “Efficient sampling algorithm for esti-
mating subgraph concentrations and detecting network motifs,” Bioinformatics, vol. 20,
no. 11, pp. 1746–1758, 2004.

[2] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM Trans. on Computa-
tional Biology and Bioinformatics, vol. 3, no. 4, pp. 347–359, 2004.

[3] M. Rahman, M. Bhuiyan, and M. Hasan, “GRAFT: An efficient graphlet counting
method for large graph analysis,” IEEE Trans. on Knowledge and Data Engineering,
2014, to appear.

21

[4] J. Chen, W. Hsu, M. L. Lee, and S.-K. Ng, “NeMoFinder: dissecting genome-wide
protein-protein interactions with meso-scale network motifs,” in Proc. 12th ACM
SIGKDD Int’l. Conf. on Knowledge Discovery and Data mining (KDD), 2006, pp. 106–
115.

[5] N. Alon, R. Yuster, and U. Zwick, “Color-coding,” J. ACM, vol. 42, no. 4, pp. 844–856,
1995.

[6] G. M. Slota and K. Madduri, “Fast approximate subgraph counting and enumeration,”
in Proc. 42nd Int’l. Conf. on Parallel Processing (ICPP), 2013, pp. 210–219.

[7] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network
motifs: Simple building blocks of complex networks,” Science, vol. 298, no. 5594, pp.
824–827, 2002.

[8] S. Omidi, F. Schreiber, and A. Masoudi-Nejad, “MODA: an efficient algorithm for
network motif discovery in biological networks,” Genes Genet Syst, vol. 84, no. 5, pp.
385–395, 2009.

[9] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. Sahinalp, “Biomolecular
network motif counting and discovery by color coding,” Bioinformatics, vol. 24, no. 13,
pp. i241–i249, 2008.

[10] J. Huan, W. Wang, and J. Prins, “Efficient mining of frequent subgraphs in the presence
of isomorphism,” in Proc. 3rd IEEE Int’l. Conf. on Data Mining (ICDM), 2003, p. 549.

[11] J. Leskovec, A. Singh, and J. Kleinberg, “Patterns of influence in a recommendation
network,” Proc. 10th Pacific-Asia Conf. on Advances in Knowledge Discovery and Data
Mining (PAKDD), pp. 380–389, 2006.

[12] Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe, “Subgraph enumeration in
large social contact networks using parallel color coding and streaming,” in Proc. 39th
Int’l. Conf. on Parallel Processing (ICPP), 2010, pp. 594–603.

[13] Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. S. A. Kumar, and M. V. Marathe, “SAHAD:
Subgraph analysis in massive networks using Hadoop,” in Proc. 26th Int’l. Parallel and
Distributed Processing Symp. (IPDPS), 2012, pp. 390–401.

[14] N. Pržulj, “Biological network comparison using graphlet degree distribution,” Bioin-
formatics, vol. 23, no. 2, pp. e177–83, 2007.

[15] ——, “Modeling interactome, scale-free or geometric?” Bioinformatics, vol. 20, no. 18,
pp. 3508–3515, 2004.

[16] T. Milenkovič and N. Pržulj, “Uncovering biological network function via graphlet de-
gree signatures,” Cancer Informatics, vol. 6, pp. 257–273, 2008.

22

[17] N. Pržulj, D. Corneil, and I. Jurisica, “Efficient estimation of graphlet frequency dis-
tributions in protein-protein interaction networks,” Bioinformatics, vol. 22, no. 8, pp.
974–980, 2006.

[18] I. Bordino, D. Donata, A. Gionis, and S. Leonardi, “Mining large networks with sub-
graph counting,” in Proc. 8th IEEE Int’l. Conf. on Data Mining (ICDM), 2008, pp.
737–742.

[19] J. Leskovec, “SNAP: Stanford Network Analysis Project,” http://snap.stanford.edu/
index.html, last accessed Feb 2014.

[20] J. Kunegis, “KONECT - the Koblenz network collection,” in Proc. Int. Web Observatory
Workshop, 2013, pp. 1343–1350.

[21] “9th DIMACS Implementation Challenge – Shortest Paths,” http://www.dis.uniroma1.
it/challenge9/download.shtml, last accessed Feb 2014.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and shrink-
ing diameters,” ACM Trans. on Knowledge Discovery from Data, vol. 1, no. 1, 2007.

[23] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Community structure in large
networks: Natural cluster sizes and the absence of large well-defined clusters,” Internet
Mathematics, vol. 6, no. 1, pp. 29–123, 2009.

[24] J. Yang and J. Leskovec, “Defining and evaluating network communities based on
ground-truth,” in Proc. 12th IEEE Int’l. Conf. on Data Mining (ICDM), 2012, pp.
745–754.

[25] V. Bimal, A. Mislove, M. Cha, and K. Gummadi, “On the evolution of user interaction
in Facebook,” in Proc. 2nd ACM Workshop on Online Social Networks (WOSN), 2009,
pp. 37–42.

[26] B. Klimmt and Y. Yang, “Introducing the Enron corpus,” in Proc. 1st Conf. on Email
and Anti-Spam (CEAS), 2004.

[27] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the Gnutella network: Properties
of large-scale peer-to-peer systems and implications for system design,” IEEE Internet
Computing, vol. 6, no. 1, pp. 50–57, 2002.

[28] I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and D. Eisenberg, “DIP,
the database of interacting proteins: a research tool for studying cellular networks of
protein interactions,” Nucleic Acids Research, vol. 30, no. 1, pp. 303–305, 2002.

[29] G. Csardi and T. Nepusz, “The igraph software package for complex network research,”
InterJournal, vol. Complex Systems, p. 1695, 2006.

23

[30] J. McAuley and J. Leskovec, “Learning to discover social circles in ego networks,” in
Proc. 26th Annual Conf. on Neural Inf. Proc. Systems (NIPS), 2012, pp. 548–556.

[31] M. Richardson, R. Agrawal, and P. Domingos, “Trust management for the semantic
web,” in Proc. 2nd Int’l. Semantic Web Conf. (ISWC), 2003, pp. 351–368.

[32] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model for graph
mining,” in 4th SIAM Int’l. Conf. on Data Mining (SDM), 2004, pp. 442–446.

[33] Network Dynamics and Simulation and Science Laboratory, “Synthetic data products
for societal infrastructures and proto-populations: Data set 1.0,” Virginia Polytechnic
Institute and State University, Tech. Rep. NDSSL-TR-06-006, 2006.

[34] F. Ruskey, “The (Combinatorial) Object Server,” http://theory.cs.uvic.ca/root.html,
last accessed Feb 2014.

24

