Constant-Memory Graph Coarsening

George M. Slota
Rensselaer Polytechnic Institute
slotag@rpi.edu

Abstract—Graph coarsening is an important step for many
multi-level algorithms, most notably graph partitioning. How-
ever, such methods often utilize an iterative approach, where
a new coarser graph representation is explicitly constructed
and retained in memory at each level of coarsening. These
overheads can be prohibitive for processing massive datasets or in
constrained-memory environments like GPUs. We develop a data
structure (CM-Graph) for representing coarsened graphs, which
can be used with any adjacency-based graph representation. The
CM-Graph data structure uses a constant amount of memory,
regardless of the desired level of coarsening. In addition, CM-
Graph does not require modification to the existing graph
representation, it offers a several-fold memory savings in practice,
and it can even accelerate graph coarsening, due to not having to
explicitly construct coarser graph structures. We further describe
efficient GPU parallelizations of the CM-Graph subroutines for
adjacency access, which can also be utilized in most arbitrary
graph computations without modification.

Index Terms—graph coarsening, graph partitioning, parallel
algorithms

I. INTRODUCTION

This paper considers the problem of graph coarsening with
a specific focus on its usage within a graph partitioning-like
framework. Graph coarsening can be described as the process
of taking some input graph G (or matrix) and producing
a smaller output G’ that closely represents G per some
objective(s) [1]. The primary motivation for coarsening is to
accelerate a computationally difficult problem on a given input.
Coarsening has found wide applications in graph partition-
ing [2, 3] and clustering [4], graph neural networks [5], graph
embedding [6], and linear algebraic applications [7, 8, 9],
among a plethora of others [10].

The vast majority of prior work in graph coarsening has
focused on how to optimize the coarsening procedure to
produce some G’ that meets the desired objectives for a
given application. Generally, these optimizations have focused
on computational time to solution [3], parallelization effi-
ciency [2, 11, 12], and quality of solution per the given
objective [13, 14, 15]. Many coarsening procedures, partic-
ularly in graph partitioning [16, 17], follow a basic multi-
level approach, where the graph G is iteratively coarsened until
the resulting G’ is small enough that the target computational
problem becomes tractable. A solution on the coarsened graph
is then extrapolated back to the original input.

For our primary motivating problem, graph partitioning,
such a procedure produces many intermediate GG; graphs that
are maintained in memory to iteratively refine the produced
solution on G’ as it is extrapolated back to the original G.

Christopher Brissette
Rensselaer Polytechnic Institute
brissc@rpi.edu

This requires the explicit creation and storage of all inter-
mediate graphs in memory or disk. State-of-the-art coarsening
implementations often spend more than half of their processing
time during graph construction [2]. For massive graphs or
when processing in limited memory devices (e.g., GPUs),
these overheads can be prohibitive to scalability.
Contributions: We introduce CM-Graph and describe its
implementation and optimizations for serial and shared mem-
ory parallel applications on CPU and GPU. We demonstrate
it under two representative coarsening algorithms, including
greedy/random coarsening and heavy edge coarsening. These
two algorithms represent the primary ways the adjacencies of a
vertex are processed: basic adjacency reachability/traversal and
computing some reduction (e.g., max, sum) over the vertex’s
entire adjacency list. Our code is available on GitHub'.

II. CM-GRAPH: CONSTANT-MEMORY COARSENING

A. Basic Graph Coarsening

We first consider a graph G = (V, E, W,,,W.), where V
(n = |V]) defines a set of vertices, E (m = |E|) defines
a set of edges, and W, and W, are weights for vertices
and edges (with possibly multiple weights per each). This
G can be coarsened in many different ways [10], though we
focus on pairwise aggregation in this work, or the processes
of contracting edges. An edge contraction combines both
endpoint vertices into a super-vertex, where the super-vertex
contains all adjacencies of the original vertex and the summed
vertex weights. When multi-edges appear during contraction,
they can be combined into a single edge with the summed edge
weights. Vertices can also be contracted in instances where no
direct edge exists between them (e.g., 2-hop coarsening) and
it is also possible to contract three or more vertices at once.

For many coarsening algorithms, a maximal matching is
first computed. A graph matching is a set of edges that share
no endpoint vertices, and it provides a set of independent
edge contractions. To coarsen (G, matched edges are contracted
and the endpoint vertices are merged into super-vertices. This
process is then iteratively repeated until G’ is sufficiently
coarse, with all graphs at the intermediate coarsening levels
retained in some array. Note that the literature is quite broad
for graph coarsening, and there are plenty of methods which
do not fit this basic outline. In this work, we focus on the
coarsening algorithms that fit this outline for simplicity, though
our methods are much more broadly applicable.

Uhttps://github.com/HPCGraphAnalysis/CMGraph

B. CM-Graph Coarsening Data Structure

We will describe CM-Graph and its algorithms in
a relatively low level. To begin, we assume we have
some graph G with n vertices and m edges stored
in a compressed sparse row (CSR) format as G =
(adjArray, offsets, vertex Weights, edge Weights). We use
the term vertex ID or vertex identifier to denote some numeric
value that uniquely identifies some vertex u, typically in
[0...n —1]. A CSR utilizes two arrays to access edges (or
adjacencies) of u. An integer array of length 2m (adjArray)
contains all adjacencies for all vertices in some order, usually
by vertex ID. A second array of length n+1 (offsets) contains
the start indicies in adjArray for all vertices’ adjacencies.
E.g., adjArrayloffsetsu]] is the first adjacency of w and
offsets[u + 1] — offsets[u] gives the degree of w.

Our coarsening scheme is centered on the ancillary CM-
Graph data structure, defined in Table I. We require no
modification to the original graph CSR representation (or
any other adjacency-based representation) to use CM-Graph.
Our scheme is centered around linking the adjacency lists of
vertices during a contraction (or merge) into a super-vertex.
This allows us to access these linked adjacency lists from
a super-vertex during coarsening algorithm processing. Five
primary arrays of length n to track graph coarsening, with
an additional n-length array and integer used to accelerate
processing during multilevel processing. The final row in
Table I is not part of the CM-Graph data structure itself,
but gives a (very very loose) worst-case bound for memory
overhead when accessing a coarsened adjacency structure.

Name Size Brief Description

Head n Head[u] is the super-vertex that has consumed u

Next n Next[u] is the next vertex after w in the adjacency chain
Level n Level[u] is the coarsening level that w has merged
Degree n Degree[u] is the sum degree of super-vertex u’s children

vWeight n(w) vWeight[u] is the sum weight of super-vertex u’s children
Supers n Array containing all current super-vertices
nSuper 1 Number of current super-vertices

ExpAdjs O(m) Worst-case overhead for parallel adjacency expansion

TABLE I
THE NECESSARY DATA CONTAINED WITHIN CM-GRAPH. ‘NAME’
INDICATES HOW IT WILL BE REFERENCED WITHIN THE TEXT OF THIS
PAPER AND ‘SIZE’ IS THE LENGTH OF THE NAMED ARRAY.

As can be seen in Table I, for each vertex u in G, we
store its ‘Head’, which is the current super-vertex that u has
merged into. The array ‘Next’ is how we keep track of the
linked list of adjacencies from the super-vertex. The value
of Next[u] gives the next vertex in the linked adjacency list
of super-vertex Head[u]. Initially, both Head[u] and Next[u]
are simply set to u. ‘Level’ gives the coarsening level (or
more generally, an order) at which vertex v has merged into
some other super-vertex, initially set to zero. Note that a vertex
can merge into some other super-vertex only once. ‘Degree’
gives the sum degree of all children of some super-vertex u,
where the children are all vertices that are part of the linked
adjacency and have their Head set to w. It is initialized to the
original degree of uw. While it is not explicitly necessary to

track this, it is useful for the adjacency expansion algorithms
described later. Similarly, we use ‘vWeight’ to track the sum
vertex weights. This is not necessary for unweighted graphs
and it would be a multi-dimensional array for a graph with
each vertex having w weights. Finally, ‘Supers’ holds the
super-vertex IDs for the current coarsening level and *nSuper’
gives the number of super-vertices. These again are not strictly
necessary, though it helps accelerate processing, particularly
at higher coarsening levels.

C. Merging

Consider a merge of vertex v into vertex u in level k,
visualized in Figure 1. In the prior level £—1, both w and v are
super-vertices. After this current merge, v will be absorbed into
super-vertex u. To perform this update, vertex v sets it Head
to u and its Level to k. Vertex v and all of its children set their
current Head to Vertex u, while the last prior merged vertex
of u updates its Next value to v. This is the most expensive
part of merging, as it is required to traverse the linked list
of Next vertices to update the prior ‘tail’ (z as given in the
figure) and perform all needed updates to the Heads values. An
alternative approach is to instead not store Heads and compute
them for each vertex in place during processing. However, as
a vertex can appear multiple times when expanding linked
adjacency lists (discussed next), the extra computational cost
is considerably higher with only modest memory savings.

‘a’ merges into ‘X’
during level 5

—
Next W,

» Vertex Level
Head

Fig. 1. A visual example of how a merge of vertex a into vertex = would
occur. Vertex a and b update their new head to super-vertex x, previous tail
vertex z now has its Next set to x, and x updates its Level to the current
coarsening level. In addition, the Degree and vWeight(s) of super-vertex x
would also be updated to now include the Degree and vWeight(s) of prior
super-vertex a.

To unmerge vertices by one level, the above procedure is
reversed. Any vertex u with the Level one lower than the
current is identified as a new super-vertex, the super-vertex
Head[u] traverses its linked adjacencies to compute a new
Degree and vWeight(s) and ‘cut’ its linked adjacencies where
they point to u by updating the tail vertex’s Next value, and u
and u’s children update their Head values to u, and u updates
its Level back to 0.

D. Accessing Adjacencies

We consider two primary means to access adjacencies,
depending on the algorithmic use case. Consider accessing
adjacencies of super-vertex u. One method is to access its
adjacencies and all the adjacencies of its children, directly
as a linked list. We access the adjacencies of wu, and then

iteratively access the adjacencies of curVert = Next[u] while
Next[curVert] # curVert. See Algorithm 1, where we tra-
verse a graph G’s CSR adjacency list from some super-vertex
u. This approach is used for a greedy coarsening algorithm,
where we select the first vertex that has not been marked for
a merge on the current coarsening level.

Algorithm 1 Basic Access of Adjacencies of Super-vertex u
1: Input: CSR Graph G, CM-Graph C, Vertex u
adjldz = G.offsets[u]
curVert =u
for all i in 1... C.Degree[u] do
a = GetNextAdj(G, C, curVert, adjldz)
v = C.Head|a]
Do processing given edge (u, v)

return

procedure GETNEXTADI(G, C, curVert, adjldx)
10: v = G.adjList[adjldz)

if adjldx + 1 > G.offsets[curVert + 1] then

R A R o

—
—_

12: curVert = C.Next|curVert|
13: adjlde = G.offsets|curVert]
14: else

15: adjldr = adjldr 4+ 1

16: return v

The second method explicitly creates the weighted adja-
cency list of u for the current level, given in Algorithm 2.
To do this, we need to access all adjacencies as described
above, tracking all unique super-vertices v and summing edge
weights for each v to get the effective edge weight between u
and each v. This procedure can be easily accomplished via a
hash table, and we use an efficient serial implementation from
prior work for this purpose [18]. Note that in Algorithm 2, the
Map.InsertOrUpdate (v, w) function will place key-value pair
(v, w) into the table if key v does not yet exist; otherwise, w is
added to the current value for v in the table. We also note that
this procedure will necessarily add memory overheads while
coarsening or processing using CM-Graph, and we discuss this
drawback later in our analysis section.

Algorithm 2 Hash-based Adjacency Expansion
1: Input: CSR Graph G, CM-Graph C, Vertex u
Map = HashTable()
adjldz = G.offsets[u]
curVert = u
for all i in 1... C.Degree[u] do
w = G.EdgeWeights|adjldz)
a = GetNextAdj(G, C, curVert, adjldz)
v = C.Head|a]
Map InsertOrUpdate (v, w)
return {Map keys(), Map.values()}

R AR

—
e

Extracting all unique key-value pairs gives us lists of
adjacencies (keys) and edge weights (values) for vertex wu.
We note that this second procedure can be used in any

arbitrary coarsening or graph algorithm, given that the vast
majority of graph processing algorithms perform computations
by accessing the adjacencies of vertices.

E. Creating a k-level Graph

Given the coarsening of the graph to K levels, we can also
explicitly construct a graph structure at any arbitrary level
k < K. To access the adjacencies of u at some arbitrary level
k, we examine the Level[v] values for each v = C.Next[u]
vertex encountered during the above procedures. We stop the
linked list traversal when a Level[v] of k + 1 is found. To
construct a full graph representation, we first identify our set
of Heads as vertices u with Level[u] > k, indicating that they
were super-head vertices until level k. We can then access
their adjacencies for level k as described above, and use those
adjacencies to fill an edge list or explicitly construct a new
CSR or similar graph representation.

F. Parallelization

A straightforward CPU parallelization of a matching-based
coarsening algorithm would assign in parallel every vertex
in a given level to some thread. Each thread then attempts
to identify a match for their owned vertex (with some syn-
chronization), with all identified matches across all threads
being merged in a later step. For such a scheme, our method
can be directly implemented without modification to the
underlying algorithm, as all expanded head adjacencies can
be processed independently and a proper matching will not
have any conflicts during merging. For the merging of more
than two vertices outside of an explicit matching, a bit more
synchronization is required, though the idea is the same. We
implement such a naive coarse-grained parallelization using
OpenMP for a comparison baseline.

However, for GPUs, a more fine-grained approach is gen-
erally required for performance on real-world graphs with
an irregular degree distribution [19, 20, 21]. Modern GPU
processing of such graphs considers parallelization across
edges, where the adjacencies of u are processed in parallel
by a warp, thread block, or some other construct of multiple
threads.

Hence, we consider two more fine-grained parallelizations
of our linked adjacency list expansion. With a super-vertex’s
adjacencies expanded and reduced into arrays, an adjacency
vertex—thread mapping and processing can proceed as nor-
mal. The first parallelization is relatively straightforward: we
simply parallelize Algorithm 2 by using a thread-safe hash
table, optimized for GPU from prior work [22], parallelizing
over the insertion loop.

The primary phase of this approach, given in Algorithm 3,
is for each thread to discover their assigned adjacencies of
super-vertex u by traversing u’s linked adjacency list. To do
this, a thread initially computes their effective offset tOffset
from w’s offset in the CSR G.offset array as a function of
their thread ID threadIdz. When their offset is greater than the
number of original adjacencies for u, it updates their current
vertex tVert to the next one in the linked adjacency list and

Algorithm 3 GPU Hash Parallelization of Adj. Expansion

1: Input: CSR Graph GG, CM-Graph C, Vertex u

2: Map = ThreadSafeHashTable()

3: tOffset = threadldx

4: tOffsetSum = tOffset

5: titer = C.degree|u]/blockDim + 1

6: tVert =u

7: while tOffsetSum < C.degree[u] do

8 while G.offsets[tVert]+ tOffset > G.offsets[tVert+1] do
9: tOffset —= (G.offsets[tVert + 1] — G.offsets[tVert])
10: tVert = C.Next[u]

11: w = G.edgeWeights[G.offsets[tVert] + tOffset]

12: a = G.adjList|G.offsets[tVert] + tOffset]

13: v = C.Head|a]

14: Map InsertOrUpdate (v, w)

15: tOffset = blockDim

16: tOffsetSum += tOffset

17: return {Map keys(), Map.values()}

subtracts u’s original degree from tOffset. This process is
repeated iteratively, until the original degree of ¢ Vert is greater
than the current tOffset, which gives them a unique vertex
and adjacency offset within the linked adjacency lists. This
allows the thread to retrieve the neighbor and weight of the
associated edge for insertion into the hash table. For super-
vertices with a Degree larger than the number of processing
threads in a warp/block (blockDim), threads reset their tOffset
to blockDim and continues the process from their current
location in the linked adjacency list. When the thread’s offset
is greater than the total C.degree[u] of super-vertex u, the
thread has reached the end of the linked adjacency list and is
done with its portion of the expansion.

Algorithm 4 GPU Sorting Parallelization of Adj. Expansion
1: Input: CSR Graph G, CM-Graph C, Vertex u
2: {A, W} = ExpandAdjacencies(C, G, u)
3: {A, W} = RadixSort(A4, W)
4: {A, W} = ReduceByKey(A, W)
5: return {A, W}

We note that the process given in Algorithm 3 can have a
significant amount of thread contention for hash table inser-
tions. Hence, we have also created a lock-free and atomic-free
variant for GPU adjacency expansion, given in Algorithm 4.
As we will discuss in our experimental results, this variant
tends to be more performant for large degree vertices and
with larger thread groups. This algorithm has three phases.
Initially, arrays are filled with the Head[v] values (for A) and
associated weights (for W) for all v in the linked adjacency
list of super-vertex u. This process is similar to the one given
above for our hashing algorithm, though we compute unique
offsets in the A, W arrays for each adjacency/weight instead
of performing hash table insertions. We then use a radix sort
on the vertex IDs in A, with sorting of W simply mirroring
the index changes for values in A. Finally, we then perform
a reduce-by-key operation, which sums up values in W for
each associated ‘key’ in A and places these values into the

final reduced adjacency and weight arrays. These latter two
phases utilize atomic-free prefix-sums-based operations as key
subroutines. We must omit explicit details about these phases
for space considerations, but the broader routines are well-
known GPU operations.

G. Analysis

We analyze the complexity of our methods using standard
big-O notation. We consider both memory complexity and
time complexity for a serial implementation. In addition, we
consider parallel work and depth complexity, where ‘depth’
describes the longest sequence of serial dependencies. Depth
can be considered the best-case parallel time given infinite par-
allel resources, which is generally bounded below as (n +m)
parallel processing units for graph computations.

The memory complexity of our coarsening struct is O(n) for
the number of vertices of the graph. This is constant, regardless
of the number of coarsening levels. When performing explicit
adjacency expansion we require additional memory up to the
maximum possible degree in the current graph level, which
is bounded by the number of heads for that level or simply
O(n) in the worst case. In parallel, when there are multiple
concurrent adjacency expansions, the worst case memory is
required when all edges in GG are being considered at once,
giving us O(m) complexity, though in practice it is much less
than that. Regardless, the memory complexity for all of our
methods is the same as the O(n + m) simply required for
storage of the original graph.

The time complexity of merging of v into w is dependent
on the number of sub-vertices for both, as each Head value
requires updating. An upper bound for number of sub-vertices
would be 2% for matching-based coarsening, where k is the
level of coarsening and is generally bounded by log n in real-
world settings. However, the time/work complexity for all
merges would be O(n), which improves on the O(n + m)
required for explicit graph reconstruction. Though, we note
that with explicit coarse graph construction, the size of the
graph and subsequent complexities decrease with each level.

Parsing the adjacency of a super-vertex also requires traver-
sal of all merged vertices along with an examination of all of
their adjacencies. Assume the length of an expanded adjacency
is a = 2%d,, ., in the worst case, where d,,,, is the maximum
degree in the graph. An upper bound on work complexity
(and parallel depth for naive CPU parallelization) would be
O(a) for matching-based coarsening. Over the entire graph,
expanding all adjacencies for all Heads requires O(m) work.
Our sorting-based GPU algorithm has three primary steps:
expanding all adjacencies into their Head values, sorting all
Heads and their edge weights, and then doing a reduce-by-key
operation. We can expand adjacencies in O(k?) parallel depth,
while radix sort has a parallel depth of O(logalogn), as we
do a prefix sums across the expanded adjacency list and require
log, n radix steps. The final reduce-by-key requires only log a,
giving us an overall parallel depth of O(2* + logalogn).
For hashing-based parallelization, we have a possible worst-
case occurring when only a single unique key (super-vertex)

appears across the full linked adjacency, resulting in a depth
of O(a), same as with naive CPU parallelization.

III. EXPERIMENTS

We perform our CPU testing on the bella server at RPI’s
High Performance Combinatorics and Graph Analytics Labo-
ratory. bella has dual AMD EPYC 7742 64-Core Processors
with 2 TB DDR4. For GPU experiments, we use a 40 GB
NVIDIA A100 GPU on the lab’s zepy GPU server.

We select the largest 20 matrices (see Figures 2 and 4) from
the SuiteSparse Matrix Collection [23] as of July 2024, sorted
using nonzeros, for our testing. For our serial tests, we use the
9 largest instances as well as the largest mesh (nlpkkt240). As
most of these graphs are too large for our GPU memory, we
use the rest of the largest 20 for parallel testing. We consider
all edges as undirected and utilize edge weights if available.
We otherwise use unit edge weights, and we use unit vertex
weights for all graphs.

We initially compare CM-Graph in serial directly against
the native METIS implementation. We use the 1-hop METIS
functions for both Random (greedy) matching (Match_RM)
and Sorted Heavy-Edge Matching (Match_SHEM) for merge
pairs during coarsening. All variables and algorithmic de-
tails are the same, except for the differences in how the
CM-Graph adjacency structure is accessed and how merges
are performed versus how the METIS code builds a new
coarsened graph. We compile both codes with 64 bit in-
teger types and —03 optimization using g++ (Ubuntu
9.4.0-1ubuntul 20.04.2) for adirect comparison. For
our parallel tests, we are able to compile CM-Graph with 32
bit types to fit more test instances into GPU memory. We use
nvcce Cuda compilation tools, release 10.1,
V10.1.243 for the GPU codes and the above g++ with
—fopemp for the parallel CPU code.

A. Memory Savings

Our first experiment is the total peak memory usage during
coarsening. We compare our method against METIS using
the two discussed access patterns, with Random Matching
and coarsening utilizing the “linked adjacency” method (Al-
gorithm 1) and Sorted Heavy-Edge Matching utilizing the
“adjacency construction” method (Algorithm 2).

)
>
o
S

7501 % METIS
. CM-Graph

j,_%.%.z.%.%.%

Maximum Memory (GB
nN (o2
g 8

o

« b ‘:3
& 54 FO S & '
\5 & & & & & s
N O\éz T I SR g
& & F FE R
& v o
<) @O ¥

Fig. 2. Maximum memory utilization of METIS and CM-Graph measured
when performing Sorted Heavy-Edge Matching and coarsening.

We plot the results for Sorted Heavy-Edge Matching (the
results are similar for Random Matching) in Figure 2. We
note that our approach saves a significant amount of memory,
averaging a somewhat consistent savings of 2.7x across all
tests. This savings is primarily due to not having the overhead
of storing a graph structure for each coarsening level.

B. Serial Performance

We next consider performance in terms of time to solution.
We output the time for coarsening using both Random and
Sorted Heavy-Edge Matching, and we plot the results for all
datasets in Figure 3.

Random

% METIS
. CM-Graph

2000 +

1000

2
R e
2 SHEM
©
)
5 4000
S
3000
20001
0._-dJJm—%a
e} Qb \<:>
& & W»é‘%&&*‘@ﬂ,@
Ny \4\\ Q/ Neg N & Q7 » &7 7
N o S *C\Q}% f(\\ X O?? \(8\ \?,SQ?
< 00@ ®O\/ v@

Fig. 3. Coarsening time comparison between METIS and CM-Graph for
Random and Sorted Heavy-Edge Matching (SHEM) and coarsening.

We note with surprise that our approach can actually save
a significant amount of time in addition to memory overheads
when performing direct adjacency accesses during Random
Matching and coarsening. We note that this savings is at-
tributable to not having to reconstruct a new graph on each
level. For Random Matching-based coarsening, we observe
an average speedup of 4.8x (geometric mean of 2.0x). We
note the performance is quite variable across instances, from
nearly a 2x slowdown on n1pkkt240 to a 28X speedup on
mycielskian20, with a higher speedup on more irregular
inputs.

For Heavy-edge Matching, we note an average and less
variable slowdown of approximately 2.2x with our method.
This is attributable to the extra work of having to expand the
entire linked adjacency chain and perform the edge weight
reductions on each level. In the case of Sorted Heavy-Edge
Matching, we need to reduce edge weights over every unique
C.Head[v] in the adjacency chain. Whether this tradeoff
between time-to-solution and memory overhead is “worth
it” will be naturally application-specific. On GPUs or other
memory-constrained devices, such a tradeoff might make sense
in order to keep all algorithmic data in device memory.

C. Farallel Performance

We now consider our approaches for fine-grained paral-
lelization of adjacency expansion. We compare our serial
method on CPU (baseline for speedups), coarse-grained par-
allelization on CPU (CPU-Coarse), and our two fine-grained
parallelizations on GPU (GPU-Hash, GPU-Sort) using par-
allelized implementations of Heavy-Edge Matching. During
testing, we also noticed performance differences for GPU-
Hash and GPU-Sort based on vertex degree, with the sorting
method being more performant for large degree vertices and
hashing being faster for low degree vertices. Hence, we also
implemented a basic heuristic (GPU-Combined), where we
assign vertices with degrees higher than the warp size of 32
for sorting and vertices with lower degrees for hashing.

For fine-grained parallelization on GPU, we assign a warp
of 32 threads to each vertex for adjacency expansion. We run
256 threads on CPU, which is the maximum supported by
our hardware. We compare speedups against serial times for
adjacency expansion. The core Sorted Heavy-Edge Matching
and coarsening algorithm for all tests is otherwise the same.
Optimizing the coarsening algorithm itself is not the focus of
this current effort, though incorporating our methods within
an optimized GPU framework [2] will make for interesting
future work.

1004

< CPU-Coarse

S 754

w GPU-Hash

2 5. GPU-Sort

o

3 GPU-Combined

(%{ 251
|] e

> N \Y Q
@ S S
RS

Q'
A4 N Q 7
%) 2 Q RS
& N (,)\'7/ &
X ?
Q
G
&

Fig. 4. Parallel speedup for coarsening with CM-Graph comparing CPU
coarse parallelization and GPU fine parallelization of our adjacency expansion
algorithms within Sorted Heavy Edge Matching. Speedups are relative to serial
CPU adjacency expansion.

Given in Figure 4 is the speedup of our parallelization
approaches relative to serial. Of particular note is how our
GPU-Combined heuristic is considerably more performant
on the larger inputs (size of input increases from left to
right), with an overall average speedup versus serial of 43X,
while most other methods have comparably modest speedups.
Though not shown for space, we also note that maximum
memory utilization is relatively low, being only marginally
higher that what is needed for expanding the maximum degree
super-vertex, even with a high thread concurrency. These
observation are attributable to the fact that most of these inputs
have particularly skewed degree distributions with a lot of low
degree vertices and a few very high degree vertices. The input
mawi_201512020330 also has this characteristic, though

it has vertices with degrees of the order of the total number
of vertices, which dominates its processing time. This overall
suggests that our heuristic and overall methods are quite
effective, and nontrivial parallelization strategies are necessary
to get optimal performance for coarsening these benchmarks in
general. Additional analysis and optimization of our heuristic
combined with variable thread counts based on vertex degrees
is a very good direction for future work.

twitter

kmer_A2a nlpkkt200 -# mawi —t arabic

1.004

Scaled Time

o o o o
o N o ~
S a1 S (3
L L L L

1 2 3 4 5 6 7 8 9 10
Coarsening Level
Fig. 5. Scaled coarsening time versus coarsening level for Sorted Heavy Edge

Matching on representative test instances. The plotted time values are relative
to the slowest iteration for each instance.

Our final experiments measure time per coarsening level,
plotted in Figure 5 for representative instances. We scale
the time per level proportionally to the maximum per-level
time for each input after running heavy-edge matching and
coarsening for a fixed 10 levels. We note that our method
accelerates as the graph coarsens, with the 10th level running
20x faster than the 1st level for the more regular inputs. This
indicates that it will not be prohibitive to directly run a graph
partitioning or other algorithm directly on a coarsened graph
using CM-Graph in some instances, instead of instantiating a
new coarsened representation. An obvious next step is direct
integration of partitioning algorithms after coarsening.

IV. CONCLUSIONS

We implemented CM-Graph as a low-overhead data struc-
ture for shared-memory graph coarsening. CM-Graph empiri-
cally offers a several-fold savings in memory and is relatively
lightweight, offering either a 2x speedup or 2x slowdown in
real-world applications, depending on how the adjacency struc-
ture needs to be accessed. We also introduce a parallelization
of our method for GPU, which similarly offers competitive
performance. Future work is considering extending this work
to distributed memory, further optimizing our GPU algorithms,
and utilizing this method for graph partitioning.

V. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
under Grant No. 2047821 and by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) Program through the FASTMath Insti-
tute under Contract No. DE-SC0021285 at the Rensselaer
Polytechnic Institute, Troy NY.

REFERENCES

[1] M. Kumar, A. Sharma, and S. Kumar, “A unified frame-
work for optimization-based graph coarsening,” Journal
of Machine Learning Research, vol. 24, no. 118, pp. 1-
50, 2023.

M. S. Gilbert, S. Acer, E. G. Boman, K. Madduri, and

S. Rajamanickam, “Performance-portable graph coars-

ening for efficient multilevel graph analysis,” in 2021

IEEE International Parallel and Distributed Processing

Symposium (IPDPS). 1EEE, 2021, pp. 213-222.

I. Safro, P. Sanders, and C. Schulz, “Advanced coarsening

schemes for graph partitioning,” Journal of Experimental

Algorithmics (JEA), vol. 19, pp. 1-24, 2015.

I. Dhillon, Y. Guan, and B. Kulis, “A fast kernel-based

multilevel algorithm for graph clustering,” in Proceedings

of the eleventh ACM SIGKDD international conference

on Knowledge discovery in data mining, 2005, pp. 629—

634.

Z. Huang, S. Zhang, C. Xi, T. Liu, and M. Zhou,

“Scaling up graph neural networks via graph coarsening,”

in Proceedings of the 27th ACM SIGKDD conference on

knowledge discovery & data mining, 2021, pp. 675-684.

M. Fahrbach, G. Goranci, R. Peng, S. Sachdeva, and

C. Wang, “Faster graph embeddings via coarsening,” in

international conference on machine learning. PMLR,

2020, pp. 2953-2963.

O. E. Livne and A. Brandt, “Lean algebraic multigrid

(lamg): Fast graph laplacian linear solver,” SIAM Journal

on Scientific Computing, vol. 34, no. 4, pp. B499-B522,

2012.

[8] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multi-
grid. Elsevier, 2000.

[9] J. W. Ruge and K. Stiiben, “Algebraic multigrid,” in
Multigrid methods. SIAM, 1987, pp. 73—130.

[10] J. Chen, Y. Saad, and Z. Zhang, “Graph coarsening:
from scientific computing to machine learning,” SeMA
Journal, vol. 79, no. 1, pp. 187-223, 2022.

[11] B. F. Auer and R. H. Bisseling, “Graph coarsening and

clustering on the gpu.” Graph Partitioning and Graph

Clustering, vol. 588, no. 223, p. 2, 2012.

C. Cai, D. Wang, and Y. Wang, “Graph coarsening

with neural networks,” arXiv preprint arXiv:2102.01350,

2021.

Y. Jin, A. Loukas, and J. JaJa, “Graph coarsening with

preserved spectral properties,” in International Confer-

ence on Artificial Intelligence and Statistics. ~PMLR,

2020, pp. 4452-4462.

C. Brissette, A. Huang, and G. Slota, “Parallel coarsening

of graph data with spectral guarantees,” arXiv preprint

arXiv:2204.11757, 2022.

, “Spectrum consistent coarsening approximates
edge weights,” SIAM Journal on Matrix Analysis and
Applications, vol. 44, no. 3, pp. 1032-1046, 2023.

[16] P. Sanders and C. Schulz, “Think locally, act globally:
Highly balanced graph partitioning,” in Experimental

(2]

(3]

(4]

(5]

(6]

(71

[12]

[13]

[14]

[15]

[19]

[20]

[23]

Algorithms, 12th International Symposium, SEA 2013,
Rome, Italy, June 5-7, 2013. Proceedings, vol. 7933.
Springer, 2013, pp. 164-175.

G. Karypis and V. Kumar, “Metis: A software package
for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matri-
ces,” 1997.

G. M. Slota, S. Rajamanickam, and K. Madduri, “A case
study of complex graph analysis in distributed memory:
Implementation and optimization,” in 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium
(IPDPS). 1EEE, 2016, pp. 293-302.

Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and
J. D. Owens, “Gunrock: A high-performance graph pro-
cessing library on the gpu,” in Proceedings of the 21st
ACM SIGPLAN symposium on principles and practice of
parallel programming, 2016, pp. 1-12.

X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and
Q.-S. Hua, “Graph processing on gpus: A survey,” ACM
Computing Surveys (CSUR), vol. 50, no. 6, pp. 1-35,
2018.

G. M. Slota, S. Rajamanickam, and K. Madduri, “High-
performance graph analytics on manycore processors,’
in 2015 IEEE International Parallel and Distributed
Processing Symposium. 1EEE, 2015, pp. 17-27.

G. M. Slota, J. W. Berry, S. D. Hammond, S. L.
Olivier, C. A. Phillips, and S. Rajamanickam, “Scalable
generation of graphs for benchmarking hpc community-
detection algorithms,” in Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, 2019, pp. 1-14.

T. A. Davis and Y. Hu, “The university of florida sparse
matrix collection,” ACM Transactions on Mathematical
Software (TOMS), vol. 38, no. 1, pp. 1-25, 2011.

