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Abstract—We present a new shared-memory parallel algo-
rithm and implementation called FASCIA for the problems of
approximate subgraph counting and subgraph enumeration.
The problem of subgraph counting refers to determining the
frequency of occurrence of a given subgraph (or template)
within a large network. This is a key graph analytic with
applications in various domains. In bioinformatics, subgraph
counting is used to detect and characterize local structure (motifs)
in protein interaction networks. Exhaustive enumeration and
exact counting is extremely compute-intensive, with running
time growing exponentially with the number of vertices in the
template. In this work, we apply the color coding technique
to determine approximate counts of non-induced occurrences
of the subgraph in the original network. Color coding gives a
fixed-parameter algorithm for this problem, using a dynamic
programming-based counting approach. Our new contributions
are a multilevel shared-memory parallelization of the counting
scheme and several optimizations to reduce the memory footprint.
We show that approximate counts can be obtained for templates
with up to 12 vertices, on networks with up to millions of vertices
and edges. Prior work on this problem has only considered
out-of-core parallelization on distributed platforms. With our
new counting scheme, data layout optimizations, and multicore
parallelism, we demonstrate a significant speedup over the
current state-of-the-art for subgraph counting.

Index Terms—subgraph counting; motifs; color coding

I. INTRODUCTION

Subgraph isomorphism and its variants (tree isomorphism,
subgraph enumeration, subgraph counting, motif finding, fre-
quent subgraph identification) are fundamental graph analysis
methods used to identify latent structure in complex data sets.
They have far-reaching uses, including several applications in
bioinformatics [1], [2], chemoinformatics [3], online social
network analysis [4], network traffic analysis, and many other
areas. The problem of counting and listing the occurrences
of a certain subgraph (or a template) within a large graph,
commonly termed subgraph enumeration, is widely used in
many applications.

Subgraph isomorphism is an NP-complete decision prob-
lem. Subgraph counting and enumeration are also computa-
tionally very expensive. An algorithm based on exhaustive
enumeration and exploring the neighborhood of every vertex
in the graph requires O(nk) time, where n is the number
of vertices in the graph, and k is the number of vertices in
the template. The current best-known algorithm for obtaining
exact counts and enumerating an arbitrary template within a

graph is O(n
ωk
3 ), where ω is the exponent of fast matrix

multiplication [5]. The color coding technique by Alon, Yuster,
and Zwick [6] reduces the running time of subgraph counting
for bounded treewidth templates with constant treewidth, using
a probabilistic algorithm, to O(m ·2k ·ek · log 1/δ

ε2 ), where m is
the number of edges in the graph, and δ and ε are confidence
and error parameters, respectively (i.e., the estimated count is
within c(1± ε) with probability (1− 2δ), where c is the exact
count). The color coding technique forms the basis for our
work.

A. Our Contributions

We present a new parallel implementation FASCIA of the
color coding based subgraph counting algorithm. The key
computational phase in color coding is a dynamic program-
ming approach to determine the counts of the template in the
original graph. The dynamic programming phase is dependent
on the subgraph structure. Our new implementation abstracts
the main data structure used for maintaining counts with
subproblems (subtemplates in this case, for the bottom-up
dynamic programming scheme). This lets us experiment with
various representations for the data structure, including several
hash-based and array-based schemes. We use a combinato-
rial number-based indexing scheme to simplify the original
subgraph counting method. We also investigate subgraph
partitioning heuristics to reduce memory utilization and/or
improve computation times. We currently fully support arbi-
trary undirected tree templates, but can also handle tree-like
graphs templates with triangles. We quantify error incurred
through comparisons with an exhaustive search approach.
We also apply this counting strategy to motif finding and
graphlet degree distribution estimation with several large-scale
networks. Our implementation currently exploits multicore
parallelism through OpenMP threading, and we achieve a 12×
parallel speedup for the largest experiment considered (12-
vertex template, graph with 31.2 million edges).

II. BACKGROUND

Subgraph isomorphism is formally defined as the decision
problem of whether or not an input graph GT can be embedded
onto a graph G, such that there is a one-to-one mapping
of every vertex and edge within GT to a vertex and edge
within G. If there exists such a mapping, it is said that
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Fig. 1. Consider the query subgraph (or template) GT and the graph G
shown above. There is just one induced subgraph in G that is isomorphic to
GT , but there are 10 non-induced subgraphs isomorphic to the template.

GT is isomorphic to G. Subgraph counting, which is the
focus of this paper, is to count the total number of such
possible embeddings. If we obtain counts for different simple
subgraphs for multiple networks, we can then use these counts
to compare and characterize the local and global structures of
these networks.

The difference between induced and non-induced subgraph
mappings is given in Figure 1. For an induced mapping, there
exists no edge between any of the vertices in G to which GT
is mapped, except for where that edge correspondingly exists
within GT . A non-induced mapping can include such extra
edges. The color coding technique (discussed below) counts
non-induced occurrences of the subgraph. Counting non-
induced subgraphs is challenging because template-specific
graph pruning heuristics cannot be used. Enumerating non-
induced subgraphs is also desirable in practice because real-
world networks may include spurious edges or may be missing
some edges. The counts obtained for non-induced occurrences
can be much larger than the induced subgraph occurrence
counts.

A. Motif Finding

The term motif is used to describe a subgraph with a
higher than expected occurrence in a network. Motif counting
within protein-protein interaction (PPI) and other biomolecular
networks, by enumerating all possible subgraphs up to a
given size, is of important consideration within the field of
bioinformatics. Direct comparison of biological networks, such
as through the minimum number of vertex/edge deletions to
make the networks isomorphic, is a computationally chal-
lenging (NP-hard) problem. Additionally, although networks
may share similar global topology, local structure may differ
considerably. By comparing the frequency of appearance of
possible subgraphs, it is argued that insight into network struc-
ture can be obtained. Motif frequency distribution analysis
is also commonly utilized for similar reasons within social
network analysis.

B. Graphlet Degree Distributions

Graphlet degree distribution [7] is a method for compari-
son of biological networks. A graphlet degree, analogous to
vertex degree, can be thought of as the number of graphlet

embeddings in the graph that contain a given vertex, where
graphlet is another term for a subgraph. A graphlet frequency
distribution is the count of vertices within a network that have
a certain graphlet degree over the entire graph (i.e., 10 vertices
have a graphlet degree of 7, 12 vertices have a graphlet degree
of 5, etc.).

C. Color Coding

The color coding technique can be used to get an approx-
imate count of the number of embeddings of a certain input
template (template here being synonymous with the subgraph
pattern) in a large graph. The algorithm is based on random
coloring of a graph. The number of colorful embeddings
(embeddings where each vertex in the template has a different
color) in the graph are then counted, and that count is then
scaled by the probability that the template is colorful.

What makes color coding so powerful is that it allows for
a dynamic programming-based algorithm for counting when
the template has a bounded treewidth. When the template
is partitioned through single edge cuts, the count of the
full template at a given vertex, for a given color set, is
simply the sum of the counts of the sub-templates produced
by the cut with all possible color mappings. It is possible
to fully partition a tree template down to single vertices,
which allows for a very fast bottom-up counting approach.
While the algorithm is also applicable to any template that
can be partitioned through a single cut, there is a tradeoff
between allowing more complex input templates and a less
efficient dynamic programming phase. Additionally, although
the algorithm theoretically allows for directed templates and
networks, we currently only analyze undirected templates and
networks for simplicity. A more detailed overview of the
algorithm is given in the next section.

D. Related Work

The color coding scheme forms the basis for several recent
serial and parallel implementations. Alon et al. [2] developed
a parallel implementation for motif counting in biomolecular
networks. They calculate subgraph counts for all templates up
to 10 vertices on networks of about 2,400 vertices on an 8 CPU
server in 12 hours. Zhao et al. designed a parallel color coding-
based subgraph enumeration method targeting distributed-
memory platforms called PARSE [8]. They present efficiency
and scalability results on a cluster with 400 CPUs, using
templates of up to 10 vertices, and graphs with up to 20 million
vertices. Zhao et al. further expand the algorithm for labeled
templates using their Hadoop-based SAHAD scheme [9]. End-
to-end processing times are under an hour for vertex-labeled
templates up to 12 vertices, on networks of 9 million vertices.

Several other subgraph enumeration and counting algo-
rithms focus on non-induced occurrences, although the MODA
algorithm for biological motif detection by Omidi et al. is
able to count both induced and non-induced occurrences
simultaneously [10]. Other popular algorithms and software
for biological motif detection through searching induced sub-
graph occurrences includes mfinder by Kashtan et al. [11],



Algorithm 1 Subgraph counting using color coding.
1: Partition input template T (k vertices) into subtemplates

using single edge cuts.

2: Determine Niter ≈ ek log 1/δ

ε2
, the number of iterations

to execute. δ and ε are input parameters that control
approximation quality.

3: for i = 1 to Niter do
4: Randomly assign to each vertex v in graph G a color

between 0 and k − 1.
5: Use a dynamic programming scheme to count colorful

non-induced occurrences of T .
6: end for
7: Take average of all Niter counts to be final count.

which uses random sampling to search for motifs up to 6
vertices in size, FANMOD by Wernicke [12], which uses an
improved sampling method to decrease sampling bias and
enhance scaling, and more recently, G-Tries by Ribeiro and
Silva [13], which implements the g-trie data structure to
represent collections of subgraphs.

III. FASCIA

We now introduce FASCIA (Fast Approximate Subgraph
Counting and Enumeration), which is our implementation
of the color coding-based subgraph enumeration algorithm,
currently optimized for shared-memory workstations. In this
section, we will discuss our new improvements on Alon et al.’s
technique, including the subtemplate coloring abstraction, our
memory-saving dynamic table layout strategy and fast hashing
methods, as well as partitioning heuristics and parallelization.

A. Color Coding Technique Description

Algorithm 1 outlines the color coding technique. There are
three main steps: template partitioning, random coloring, and
the dynamic programming count phase. The FASCIA dynamic
programming phase is described in Algorithm 2. The coloring
and dyanmic programming steps are repeated for as many
iterations as is initially specified. In order to guarantee an
error bound of ε with confidence δ, we would need to run
Niter iterations as is defined in Algorithm 1. However, the
number of iterations necessary in practice is far lower, as we
will demonstrate in a later section.

In the input template partitioning phase, a single vertex is
first specified to be the root of the template. A single edge
adjacent to the root is cut, creating two children subtemplates.
The child subtemplate containing the original root vertex is
termed as the active child, with its root specified again as the
original root vertex. The other child will be termed as the
passive child, with its root as the vertex that was connected to
the original root vertex through the edge that was cut. We now
have two rooted subtemplates. We recursively continue to cut
these subtemplates down to single vertices, keeping track of
the partitioning tree, where each subtemplate greater than one
vertex in size has both an active and passive child subtemplate.

All subtemplates will have a single parent. This tree can be
traced from the bottom up to the original template, which is
how we will perform the dynamic programming step of the
color coding algorithm. We also sort them in the order in which
the subtemplates are accessed, in order to minimize memory
usage.

The graph G is next randomly colored. For every vertex
v ∈ G, we assign a color between 0 and k − 1, where k is
the maximum number of colors. k needs to be greater than or
equal to the number of vertices in T . We will consider k equal
to the size of T now for simplicity. Consider first a naı̈ve table
structure. We need to be able to store any arbitrary count for
any arbitrary vertex for any arbitrary color set. For a given
subtemplate S of size h, a color set can be considered the
mapping of h unique color values to each vertex in S. We
create a three dimensional tabular structure and initialize all
values to zero. We can then proceed to the inner loops, which
contain the dynamic step of the algorithm.

Algorithm 2 details the inner nested loops that we have
for the algorithm. The outermost loop will perform, in order,
the bottom-up count for each subtemplate, tracing along the
partition tree that we created previously. For every single
subtemplate, we will then consider every single vertex v ∈ G.
If our subtemplate is a single vertex, we know that its count
at v is 0 for all possible k color sets of a single vertex, except
for the color set that consists of the color equal to the color
randomly assigned to v, where it is 1.

If our subtemplate S of size h is larger than a single vertex,
we know that it must have an active (a) and passive (p) child.
We then look at all possible color sets C of size h with unique
values. The count for this color set at v, which we will later
store in our table at table[S][v][C], is initialized to zero. Next,
we will consider for every neighbor, u, of v, the counts of a
rooted at v and p rooted at u. We will then split C into Ca
and Cp, which are the mappings onto the active and passive
child of the colors in C. The count for S rooted at v with
color set C is then the sum over all u and over all possible
Ca and Cp of table[a][v][Ca]·table[p][u][Cp].

Once we have run through as many iterations as initially
specified, we can then take the average over all counts to be
our estimate for the total number of embeddings in the graph.
We return this value and the algorithm is complete.

B. Combinatorial Indexing System

We now discuss some of the improvements in our imple-
mentation over the baseline algorithm. We represent color sets
as a single integer. This representation considerably simplifies
table accesses and stores for any arbitrary color set of arbitrary
size. It also avoids having to explicitly define, manipulate,
and pass arrays or lists of color set values. In order to
ensure that each combination of colors is represented by a
unique index value, these values are calculated based on a
combinatorial indexing system. For a subtemplate S of size h
with k possible colors, the color set C would be composed of
colors c1, c2, . . . , ch, each of possible (unique and increasing)



Algorithm 2 The dynamic programming routine in FASCIA.
1: for all sub-templates S created from partitioning T , in

reverse order they were created during partitioning do
2: for all vertices v ∈ G do
3: if S consists of a single vertex then
4: Set table[S][v][color of v] := 1
5: else
6: S consists of active child a and passive child p
7: for all colorsets C of unique values mapped to S

do
8: Set count := 0
9: for all u ∈ N(v), where N(v) is the neighbor-

hood of v do
10: for all possible combinations Ca and Cp

created by splitting C and mapping onto a
and p do

11: count +=
12: table[a][v][Ca]·table[p][u][Cp]
13: end for
14: end for
15: Set table[S][v][C] := count
16: end for
17: end if
18: end for
19: end for
20: templateCount =

∑
v

∑
C

table[T ][v][C]

21: P = probability that the template is colorful
22: α = number of automorphisms of T
23: finalCount = 1

P ·α · templateCount

values 0, 1, . . . , k − 1, the corresponding index I would be
I =

(
c1
1

)
+
(
c2
2

)
+ · · ·+

(
ch
h

)
.

In the innermost loops of the algorithm, we also look at
all color sets Ca and Cb created by uniquely distributing the
colors of C to the two children subtemplates of the partitioned
S. By precomputing all possible index values for any given
color set C of size h and any given sub-color set of size
1, . . . , h − 1, we are able to replace explicit computation
of these indexes with memory lookups. This reduces the
necessary number of operations on these innermost loops by
a considerable factor. It also allows these loops to exist as
simple for loops incrementing through the index values, rather
than the slower and more complex loops required with the
handling of an explicit color set. The total storage requirements
of the complete set of indexes is proportional to 2k, and the
representation only takes a few megabytes even for templates
of size 12 vertices.

C. Memory Utilization Optimizations

A major consideration in the color coding algorithm is the
memory requirement for the tabular storage of counts. This
table grows proportional to n

(
k
k
2

)
(n is the number of vertices

in the graph, and k is the number of vertices in the template).
For k = 12 and n = 2, 000, 000, this could mean up to 32 GB

of memory necessary to determine a subgraph count using this
algorithm. To this effect, we have implemented a number of
different techniques for saving memory.

We initialize our table as a three-dimensional array. The first
dimension is for each subtemplate generated through our initial
template partitioning. We organize the order of the partitioning
tree so that at any instance, the tables and counts for at most
four subtemplates need to be active at once. Using the bottom-
up dynamic programming approach for counting means that
once the counts for a parent subtemplate are completed, the
stored counts for the active and passive children can be deleted.
We can also exploit symmetry in the template by analyzing
possible rooted automorphisms that exist in the partitioned
subtemplates. An obvious example can be seen in template
U7-2 shown in Figure 2. We reorganize the parent/child
relationships in the partitioning tree so that only one of the
automorphic subtemplates needs to be analyzed, as the counts
will be equivalent for both.

The second dimension in the table is for every vertex in the
full graph. For our dynamic table, we only initialize storage for
a given vertex v if that vertex has a value stored in it for any
color set. This also allows a boolean check to be done when
calculating new subtemplate counts for a given vertex. Since
the counts for that vertex are based on the active child’s count
at v and the passive child’s counts at u ∈ N(v), we can avoid
considerable computation and additional memory accesses if
we see that v is uninitialized for the active child and/or u is
uninitialized for the passive child. As we will discuss later,
partitioning the graph in a certain way allows considerable
algorithmic speedup by exploiting this further.

The third and innermost dimension of our table is for
the counts for each coloring value. As discussed, these
values are set and read based on the combinatorial num-
ber system index for the specific coloring. By organizing
the table in this way, accesses can be quickly done as
table[subtemplate][vertex][color index]. This storage fol-
lows the loops of the algorithm, which can help reduce cache
misses on the innermost loops.

We have also developed a hashing scheme that can be used
in the place of a three-dimensional array for high-selectivity
templates. The key values used are calculated for vertex v and
color set C as follows, where vid is the numeric identifier of
the vertex, I is the color set’s combinatorial index, and Nc
is the total number of color set combinations for the current
subtemplate: key = vid · Nc + I . Calculating the key in this
way ensures unique values for all combinations of vertices
and color sets. Additionally, if we initialize and resize the
hash table to simply be a factor of n · Nc, where n is the
number of vertices in G, we can utilize a very simple hash
function of (key mod n). This gives a relatively uniform
distribution across all possible hash indexes based on the initial
random coloring of G. This hashing scheme will generally
save memory over the previous method when a template occurs
with high regularity rooted at certain vertices within G, but
with low regularity relative to the number of possible color
sets.



D. Template Partitioning

We have also explored various template partitioning strate-
gies for FASCIA. When possible, we utilize a one-at-a-time
approach to partitioning. There are two primary reasons why
this is done. The running time of the two innermost loops
of the algorithm are dependent on

(
k
Sn

)
·
(
Sn

an

)
, where k is

the number of colors, Sn is the number of vertices in the
subtemplate we are getting the count for, and an is the number
of vertices in the active child of that subtemplate (note that(
Sn

an

)
=
(
Sn

pn

)
, where pn is the number of vertices in the passive

child). The running time of the algorithm grows equivalently
to the sum over all

(
k
Sn

)
·
(
Sn

an

)
for every different Sn and an at

each step in the partitioning tree. A one-at-a-time approach can
minimize this sum for larger templates (except when exploiting
rooted symmetry), as the larger multiplicative factors tend to
dominate with a more even partitioning.

However, we still observe faster performance from our
algorithm when doing a one-at-a-time partitioning approach as
opposed to exploiting template symmetry. This is due to the
fact that by using this approach and setting the active child as
the single partitioned vertex at each step when possible, we
can reduce the total number of color sets at each vertex v in
the graph G we even have to look at by a factor of k−1

k . The
count at each v is dependent on the count for the active child
with a given color set, and only one color set for a single vertex
subtemplate exists that has a non-zero count: the coloring of
v.

E. Parallelization

We support two modes of multithreaded parallelism, and
the choice is dependent on graph size. For large graphs,
we parallelize the loop that calculates counts for all vertices
v ∈ G. However, for small graphs and small templates, the
multithreading overhead begins to dominate the execution time
for each iteration. Therefore, in this instance, we perform
multiple outer loop iterations concurrently. Each thread has its
own dynamic table and does a full count. The counts are then
collected and averaged after the specified number of iterations
is completed. Due to the fact that each thread initializes its own
table, the memory requirements increase linearly as a function
of the number of threads. However, for smaller graphs where
this outer loop parallelization works better, the vertex counts
are small enough that this is unlikely an issue, even while
running on a system with limited memory.

IV. EXPERIMENTAL SETUP

We analyze FASCIA across a wide range of different net-
works with sizes ranging from 252 vertices and 399 edges
to about 1.6 million vertices and 31 million edges. Since
execution time is expected to scale as 2k, we use a variety
of templates, with k ranging from 3 to 12.

We run most of our experiments on a dedicated shared-
memory compute node running CentOS Linux. This node
has two 8-core 2.6 GHz Intel EM64T Xeon E5 (Sandy
Bridge microarchitecture) processors and 64 GB of DDR3-
1333 memory. We use the Intel C compiler (version 12.1.0)

to build our code, with the -O3 optimization and OpenMP
library support.

For select tests and comparisons with serial software that
required Microsoft Visual Studio, we used a workstation with
an Intel Core i5-2400 3.1 GHz quad-core processor, 8 GB
memory, and running Windows 7 Professional.

A. Networks

We used three large social networks, an Erdős-Rényi
G(n, p) random graph, a network of roads in Pennsylvania,
a small electrical circuit, and four different biological PPI
networks in our analysis. The biological networks were ob-
tained from the Database of Interacting Proteins, and include
networks for three unicellular organisms (E. coli, S. cerevisiae
(yeast), H. pylori), and the more complex C. elegans (round-
worm) [14]. The electrical circuit network is the s420 circuit
from the ISCAS89 Benchmark Suite [15]. The Pennsylvania
road network was obtained from the Stanford Network Anal-
ysis Project (SNAP) large network database [16], [17]. The
three social networks used were an email network created
from data from the Enron Corporation [16], [18], a February
2009 snapshot of the Slashdot community [16], both also
retrieved from the (SNAP) [17] database, and a large synthetic
social contact network modeled after the city of Portland,
from the Virginia Tech Network Dynamics and Simulations
Science Laboratory (NDSSL) [19]. We also considered vertex
labels on the Portland network, specifying two genders and
four different age groupings for eight total different labels,
based on demographic information supplied along with the
contact network. The G(n, p) random graph was modeled
after the size and average degree of the Enron network. We
considered all networks as undirected and only analyzed the
largest connected component. Additional details about the
networks are given in Table I.

Network n m davg dmax Source

Portland 1,588,212 31,204,286 39.3 275 [19]
Enron 33,696 180,811 10.7 1383 [16]–[18]
G(n, p) 33,696 181,044 10.7 27
Slashdot 82,168 438,643 10.7 2510 [16], [17]

PA Road Net 1,090,917 1,541,898 2.8 9 [17]
Elec. Circuit 252 399 3.1 14 [15]

E. coli 2,546 11,520 9.0 178 [14]
S. cerevisiae 5,021 22,119 8.8 289 [14]

H. pylori 687 1,352 3.9 54 [14]
C. elegans 2,391 3,831 3.2 187 [14]

TABLE I
NETWORK SIZES AND AVERAGE/MAXIMUM DEGREES FOR ALL NETWORKS

USED IN OUR ANALYSIS.

B. Templates

While analyzing execution times and scaling on the larger
networks, we considered two different templates with 3, 5, 7,
10, and 12 vertices. For each size, one template is a simple path
and the other one is a more complex structure. The path-based
templates are labeled as U3-1, U5-1, U7-1, U10-1, and U12-1.
The other templates and their labels are shown in Figure 2.
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Fig. 2. Some of the templates used in our analysis.

For motif finding, we looked at all possible tree templates of
size 7, 10, and 12. k = 7, 10, and 12 would imply 11, 106,
and 551 possible tree topologies, respectively.

V. RESULTS

In this section, we highlight performance results achieved
running FASCIA. We analyze FASCIA in terms of execution
time and memory usage for subgraph counting with differ-
ent templates and networks. Wherever possible, we picked
networks and templates so that we can compare our results
with prior work. Since color coding gives an approximation to
the count, we also looked at approximation error for different
template and graph sizes. We also demonstrate how subgraph
counting can be used as a graph analytic, by applying it to
the problems of motif finding and graphlet degree distribution
applications.

A. Execution Time and Memory Usage

We report parallel execution times with several unlabeled
templates on the largest network in our collection, the Portland
network, in Figure 3. The reported times are for a single
iteration of the dynamic programming-based counting scheme.
As expected, the time is strongly correlated with the number of
vertices in the template. By monitoring performance counter
data, we identified that more than 90% of time is spent in step
12 of Algorithm 2, which are the dynamic programming table
read accesses.

The single iteration time for smaller templates is extremely
low, making it feasible to obtain realtime count estimates.
Even for the large templates of size 12, the time was still
around 2-4 minutes. We estimate that it would require several
days for the brute-force exhaustive count approach on the
large templates. The U12-2 template took the longest time
as expected. This template was explicitly designed to stress
subtemplate partitioning and is therefore gives a practical
upper bound for our running times. Another observation was
that the running time was fairly independent of the template
structure, particularly for the smaller templates. Even for the
larger 12-vertex templates, there is just a 2× variation in
running time.

The results for labeled templates are shown in Figure 4.
Labels here refer to integer vertex attributes that are applied to
the template as well as the graph. Counting labeled templates
in labeled graphs is significantly faster than the unlabeled case
because labels help prune the search space by decreasing the
overall number of possible embeddings. Our dynamic pro-
gramming scheme and graph representation exploit labels, and
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Fig. 3. Execution times for 10 templates on the Portland network.
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Fig. 4. Execution times for all 10 templates with vertex labels on the Portland
network.

we see a commensurate speedup. We do not do an exhaustive
analysis with labeled templates, since the cardinality of the
label set and the distribution of labels to vertices strongly
influence running time. We assume randomly-assigned labels.
It is easier to analyze performance with unlabeled templates.
Unlabeled templates are also more directly applicable to the
problems of motif finding and graphlet degree distribution
analysis.

We next report execution times for FASCIA for motif finding
on four protein interaction networks. For processing all tree
templates of 7 vertices (11 of them), execution times per
iteration on every network were well under a second. For all
templates of 10 vertices (106 different templates), the running
times were in the order of seconds, and for 12 vertices (551
templates), the times increased to a few minutes at most. The
complete results are given in Figure 5.

A primary consideration with methods based on the color
coding technique, or dynamic programming in general, is
memory utilization. Figure 6 gives the peak memory require-
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Fig. 6. Peak memory usage with the U3-2, U5-2, U7-2, U10-2, and U12-2
templates on the Portland network with naive and improved memory handling.

ment of the dynamic table on the Portland network for the
naı̈ve method (initializing all storage regardless of need), our
improved version (initializing vertices only when necessary),
and our improved version run with a labeled template. We
note about a 20% decrease in peak memory usage using our
method with unlabeled templates. With a labeled graph and
template, the memory requirements decrease by over 90%.
Note that non-induce subgraph counts can be very high (low
selectivity) in general. Thus, a 20% saving in the unlabeled
case is also considerable. A large reduction can be seen for
labeled templates as well as for all highly-selective templates.
Note that these results were obtained using our one-at-a-time
partitioning approach. Exploiting the inherent symmetry in
U7-2 or U12-2 when partitioning would decrease memory
usage even further, but with a tradeoff in execution time.

Further reductions in memory requirements are possible
using our fast hashing scheme. As we have abstracted the
dynamic programming table, we can experiment with various
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Fig. 7. Peak memory usage with the U3-1, U5-1, U7-1, U10-1, and U12-1
templates on the PA road network with the hash table as well as naı̈ve and
improved memory handling.

representations. We expect the hash table to perform favorably
over the array implementation when a template shows very low
vertex selectivity, and this may be seen on networks with a
low average vertex degree. Figure 7 gives the peak memory
usage while counting the U3-1, U5-1, U7-1, U10-1, and U12-
1 templates on the PA road network using our hash table, our
array structure, and the naı̈ve implementation. Our improved
array method shows about a 2-7% reduction in memory
requirements compared to the naı̈ve method, while our hashing
scheme shows up to a 90% memory usage reduction with the
U12-1 template. For the smaller templates of 3 to 5 vertices,
there is minimal to no improvement.

B. Parallelization

We next report parallel scaling for a large template. Figure 8
is a representative instance. It gives the execution times for the
U12-2 template on the Portland network. The parallelization
here is through partitioning the vertices such that each thread
computes the counts independently for a subtemplate (loop at
line 3 of Algorithm 1). We achieve good parallel scaling up to
16 cores, and this is due to the efficient table accesses (lines 4,
12, 15 of Algorithm 2), and careful NUMA-aware initialization
of the table. Overall, there is about a 12× improvement over
the serial code, and this is considering aggregate time for
processing all subtemplates for this large template.

It is beneficial to parallelize across the entire count (line 3
of Algorithm 1) for smaller graphs, as memory requirements
are not an issue and parallelization over a small number of
vertices incurs relatively high overhead. The speedup with
this approach is illustrated in Figure 9, which shows a com-
parison between the iteration execution times on the Enron
network with inner loop parallelization as well as outer loop
parallelization across the entire count (the number of cores
given is the total number of independent counts being executed
concurrently). Both the total execution and the per-iteration
times are given for outer loop parallelization. In this instance,
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Fig. 9. Execution times with inner and outer loop parallelization for the U7-2
template on the Enron network.

we observe about a 6× parallel speedup versus the serial code
with outer loop parallelization, while the parallel speedup is
only about 2.5× using inner loop parallelization.

C. Comparison to other schemes

To our knowledge, this is the first work to analyze unlabeled
templates of size 12 on large (vertex count in millions)
networks. Our memory-efficient dynamic table representations
enables this on a modest workstation. With the MapReduce-
based SAHAD, Zhao et al. [9] report single iteration execution
time for an unlabeled 10-vertex template on a 2.1 million
vertex network, using a 16 node, 512-core cluster, to be
approximately 25 minutes. FASCIA has been able to do counts
for 10-vertex templates in about half a minute and 12-vertex
templates in under 3.5 minutes on the slightly smaller Portland
network. The iteration time with SAHAD with labeled 12-
vertex templates is reported to be about 15 minutes. FASCIA’s
execution time for a 12-vertex labeled template on a single
node with the Portland network, using a similar labeling
methodology, is under one second.

We further compare FASCIA to MODA [10], which is a
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Fig. 10. Approximation error on Enron network (n = 33, 696, m =
180, 811) with the U3-1 and U5-1 templates.

recent open-source network analysis tool that reports counts
for non-induced subgraph occurrences. We compile and exe-
cute MODA on the Windows 7 system previously described,
and we run FASCIA and our naı̈ve exact count implementation
on the same system. We run all of our code serially for this
instance to get a direct comparison. We use the electrical
circuit network and set the number of iterations to 1,000 for
FASCIA, which gives us a final average error of about 1%.
Retrieved total execution for all possible 7 vertex templates
is about 147 seconds for the naı̈ve algorithm, 32 seconds for
MODA, and 22 seconds for FASCIA. Both MODA and FASCIA
show considerable improvement over the naı̈ve algorithm in
terms of execution time, while FASCIA shows about a 33%
improvement over MODA. However, MODA is unable to scale
to much larger networks, and we were unable to determine
counts for any of the other networks we analyzed.

D. Error Analysis

We next analyze the accuracy of the color coding approach
with the number of iterations run. Accuracy was assessed on
the Enron graph for up to 10 iterations with the U3-1 and
U5-1 templates. These results are summarized in Figure 10.
The observed error falls under 1% for both networks after
only three iterations. This represents less than a second
of processing for both templates. In comparison, the exact
counts required to calculate the errors needed over 5 hours of
processing time to complete. We notice that error decreases
with increasing network size and average degree, but increases
with an increasing template size. In general, the greater the
number of template embeddings that exist within the graph,
the lower the error. A low error on large graphs after only a
few iterations was also previously demonstrated with SAHAD
and PARSE [8], [9].

The accuracy of the algorithm for motif finding was also
assessed on the H. pylori network for various iteration counts
across all 11 possible 7-vertex templates. Figure 11 gives
average errors across all templates resulting from processing
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Fig. 12. Motif finding counts after various iterations on the H. pylori network.

up to 10,000 iterations. The errors given here are larger
than what was observed on the Enron graph. The reason for
this is likely due to the H. pylori graph being considerably
smaller than the Enron graph, so that the random coloring and
subsequent count scaling has a much larger effect on the final
estimate. However, the average error still falls well below 1%
after only 1,000 iterations.

E. Comparative analysis using motif counts

With motif finding, the goal is to obtain relative magnitudes
of counts and compare them to what is expected on a random
graph. From Figure 12, which shows the exact counts and
estimated counts after 1 and 1,000 iterations, it is observed
that even after a single iteration the relative magnitudes of
counts for all templates are within reasonable bounds. The
important difference to note is that the exact counts required
hours of processing while the counts for 1,000 iterations were
computed in seconds.

Figure 13 shows an overlay of approximate counts after
1,000 iterations for all 7-vertex tree templates, on all 4 PPI
networks. Due to the varying sizes of the networks, the counts
were all scaled by each of the networks’ averages. From
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Fig. 13. Motif finding for size 7 templates on all PPI networks.
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Fig. 14. Motif finding for size 7 templates on the Portland, Slashdot, Enron,
PA road, and random networks.

this, we are able to observe the relative frequencies of each
subgraph. Our observation is consistent with the one made
by Alon et al. [2], that the motif distribution of the three
unicellular organisms is similar, and the more complex C.
elegans motif profile stands out.

We also perform a similar analysis for the social, road, and
random networks. These results are depicted in Figure 14, with
templates 1 and 2 being very discriminative.

F. Graphlet Degree Distributions

FASCIA can also be applied to determine graphlet degree
distributions. Figure 15 shows the varying graphlet degree
distributions with the central orbit of the U5-2 template (vertex
with degree of 3) on the Enron, Portland, slashdot, and random
networks, respectively. Total processing time for all these
networks was under 30 seconds.

To explore the efficacy of using the color coding algorithm
for determining graphlet degree distributions, a graphlet degree
distribution agreement value was calculated for the E. coli
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Fig. 15. Graphlet degree distribution for template U5-2 on several networks.
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Fig. 16. Agreement of E. coli and Enron between their exact and estimated
graphlet degree distributions after various iterations.

and Enron networks between the exact distribution and that
obtained from the color coding algorithm. The distributions
were determined for the orbit specified previously on the U5-
2 template. Using a methodology presented by N. Pržulj [7],
we determine an agreement value after various numbers of
iterations. Figure 16 shows the result of this experiment. An
agreement value of 1.0 would be calculated with an exact
algorithm. However, we achieve reasonable results after about
1,000 iterations on both networks.

VI. CONCLUSIONS

This paper introduces FASCIA, a shared-memory implemen-
tation of the color coding technique for approximate subgraph
counting. We demonstrate significant speedup over prior im-
plementations, while decreasing memory consumption, sim-
plifying data layout, and reducing parallel overhead. We also
analyze the use of our algorithm to the applications of motif

finding and graphlet frequency distribution analysis. In future
work, we intend to combine the two OpenMP parallelization
strategies, and consider partitioning the dynamic programming
table for execution on a distributed-memory platform.
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