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Abstract
Graph Neural Networks (GNNs) have been shown to be suscepti-
ble to backdoor poisoning attacks, which pose serious threats to
real-world applications. Meanwhile, graph reduction techniques
have recently emerged as effective methods for accelerating GNN
training on large-scale graphs. However, the development of graph
reduction techniques for large graphs does not yet address how
these methods might interact with the potential risks of data poi-
soning attacks against GNNs, particularly in relation to existing
backdoor attacks. This paper conducts a thorough examination of
the robustness of graph reductionmethods in scalable GNN training
in the presence of state-of-the-art backdoor attacks. We performed
a comprehensive robustness analysis across six coarsening methods
and six sparsification methods for graph reduction, under three
GNN backdoor attacks against three GNN architectures. Our find-
ings indicate that the effectiveness of graph reduction methods in
mitigating attack success rates varies significantly, with some meth-
ods even exacerbating the attacks. Through detailed analyses of
triggers and poisoned nodes, we interpret our findings and enhance
our understanding of how graph reduction influences robustness
against backdoor attacks. These results highlight the critical need
for incorporating robustness considerations in graph reduction for
scalable GNN training.

CCS Concepts
• Security and privacy→ Software and application security;
• Computing methodologies→Machine learning.
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1 Introduction
Graphs are powerful data representations that can be utilized to
model entities and their relationships within a wide range of do-
mains such as social networks, biology, recommendation systems
and financial networks. Graph Neural Networks (GNNs) [12, 16, 30]
have recently been widely used on this graph data for various
machine learning tasks, including node classification [34], graph
classification [9] and link prediction [18]. It has been shown to
achieve state-of-the-art performance and has found extensive ap-
plications such as drug discoveries [28], traffic forecasting [31] and
personalized recommendation [32].

Although GNNs have shown success in various domains, they
have been shown to be vulnerable to data poisoning attacks [42–44].
Bymanipulating the dataset in training time through adding/removing
edges, perturbing node features, or injecting malicious nodes, these
attacks are able to manipulate model prediction and performance.
In this paper, we focus on backdoor poisoning attacks [6, 33, 39, 41],
which aim to inject a hidden backdoor into the victim GNN model
by implanting specific triggers in the training samples. While per-
forming normally on clean inputs, the model trained on poisoned
graphs associates the trigger with the target class, leading tomisclas-
sification when the trigger is present. As GNNs are progressively
utilized in security-critical functions like anomaly detection [29],
malware [5], and trojans [37], graph backdoor attacks have posed
a significant threat [1, 2]. Their power and danger lie in their gen-
eralizability, affecting any input containing the specific trigger, and
their persistent nature, enduring within the model throughout its
operational life. This allows attackers to have precise control over
the target and the ability of ongoing exploitation.

On the other hand, real-world applications [36, 38] often pose
substantial scalability challenges for GNNs, given the vast size of
graph data they need to process. For example, the PubMed [27]
graph, often cited in research, is considered a large graph with
19,717 nodes, while a snapshot of Twitter social graph in 2010 [17]

https://doi.org/10.1145/3689932.3694762
https://doi.org/10.1145/3689932.3694762


AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuxuan Zhu et al.

consists of millions of users and edges. A 𝐾-layer GNN learns
node representations by iteratively aggregating features from a
node’s 𝐾-hop neighborhood, which exponentially increases the
size of the neighborhood computation graph with each additional
layer. This exponential growth causes considerable memory re-
quirements during the training phase, as the mini-batch Stochastic
Gradient Descent (SGD) necessitates the loading of large neighbor-
hood computation graphs for each sample in the batch. To address
this scalability challenge, graph reduction methods such as coars-
ening [14] and sparsification [11, 19, 26, 35], which have long been
employed in large graph computations, have emerged as promis-
ing approaches to reduce the size of computation graphs, enabling
more scalable GNN training with limited GPU memory [8, 21, 40].

While graph reduction for scalable GNN training has garnered
significant interest recently, the impact of these methods on the
robustness against backdoor attacks remains largely unexplored.
Current graph reduction methods are integrated into GNN training
system primarily to improve scalability without considering the
presence of state-of-the-art backdoor attacks [6, 33, 41]. However,
the coarsening and sparsification processes alter the graph structure,
which can inadvertently influence the dynamics of backdoor attacks.
These structural changes may disrupt or preserve trigger structures
within a reduced graph, potentially mitigating or even exacerbating
the attack effectiveness, as demonstrated in our study. The absence
of comprehensive studies on this issue highlights a crucial gap in
our understanding of the security implications of graph reduction in
scalable GNN training. Bridging this gap is vital for developingmore
robust GNN systems that are not only resilient to adversarial threats
but also efficient and scalable—qualities essential for managing
large graph data in real-world applications such as social networks,
recommendation systems, and anomaly detection.

Therefore, in this paper, we conduct extensive empirical studies
to examine the impact of graph reduction on the robustness of GNN
against SOTA backdoor attacks [6, 33, 41]. We evaluate the attack
success rate (ASR) of three backdoor attacks against GNN training
with six graph coarsening and six sparsification methods across
various datasets, GNN architectures, graph reduction ratios and
attack costs. Additionally, we conduct a detailed analysis of changes
in poisoned nodes and triggers to quantify the impact of graph
reduction on backdoor attacks, providing in-depth insight into how
the reduction can either mitigate or exacerbate attack effectiveness.
To the best of our knowledge, we are the first to investigate the
robustness effect of graph reduction for GNN against backdoor
attacks. The main contributions of this paper are:
1. Mitigation Effect: We demonstrate the mitigation effect of
graph reduction against existing backdoor attacks. Graph reduction
can help reduce ASR by more than 10% to 40%, which highlights
its dual benefits: it improves scalability but also can serve as a
viable defense mechanism that significantly weakens the impact of
backdoor attacks. We also analyze the impact of multiple factors
on the robustness effect of graph reduction, including the attack
budget, model architecture, and various reduction methods.
2. Risk of Sparsification: We find that graph sparsification may
inadvertently enhance the effectiveness of backdoor attacks, in-
creasing ASR by approximately 10% to 20%. This poses a security
concern for scalable GNN training systems that use sparsification
as a reduction strategy.

3. Node Level Analysis: We provide in-depth insights into the
robustness effects of graph reduction by quantifying the resulting
changes of triggers due to graph reduction. We further analyze the
distribution of successful and failed poisoned nodes, demonstrating
that graph coarsening effectively mitigates vulnerabilities in low-
degree nodes, while sparsification does not.

Our results and analysis advocate for a more security-aware
approach in the application of graph reduction techniques for GNN
training. This approach will ensure that enhancements in compu-
tational efficiency and scalability do not compromise the security
of GNN systems, particularly when facing sophisticated backdoor
attacks. Such considerations are essential for developing GNN ap-
plications that are both efficient and secure in real-world scenarios.

2 Background and Related Work
2.1 Graph neural network (GNN)
Graph Neural Networks (GNN) have emerged as a powerful frame-
work for learning graph representations that capture node features
and graph topology. Typical GNN models follow a message-passing
framework proposed by Gilmer et al. [10], where nodes iteratively
exchange information with their immediate neighbors across mul-
tiple iterations or layers. At each layer, each node aggregates mes-
sages from its adjacent nodes and uses the aggregated information
to update node representations. GNNs are effectively applied to
both node classification and graph classification tasks. In node clas-
sification, GNNs predict the labels of individual nodes using their
specific node representations. For graph classification, GNNs typ-
ically aggregate the representations of all nodes within a graph
to form a signal graph-level representation, which is then used to
determine the label of the entire graph.

Various GNN architectures have been developed to enhance
the capabilities of graph representation learning. Kipf et al. [16]
introduced Graph Convolutional Networks (GCN), which extend
the concept of convolution to graph data. Attention mechanisms
have also been integrated into GNNs, exemplified by the Graph
Attention Network (GAT) proposed by Veličković et al. [30]. GAT
leverages the self-attention of neighbor nodes for the aggregation.
By weighting the contributions of neighbors, it enhances model
flexibility and expressiveness without being solely dependent on
the graph structure. GraphSAGE, proposed by Hamilton et al. [12],
represents another advancement by sampling fixed-size neighbor-
hoods to learn node embeddings, enabling GNNs to scale to large
graphs efficiently.

2.2 Graph Reduction
GNN reduction is a data-preprocessing approach that has long been
utilized to address the scalability of large graph computation and
storage efficiency by reducing graph size. Recently, it has been
exploited as a promising solution for accelerating GNN training [21,
40]. Typically, there are two types of graph reduction methods:
graph coarsening and sparsification.
Graph Coarsening: Graph coarsening is a technique that reduces
the size of a graph while preserving its structural properties. It is
applied to large graphs to reduce computational complexity. Given
a graph𝐺 , this approach produces a coarsened graph𝐺 ′ bymerging
𝐺 ’s nodes in the same local clusters into a “super-node” and merges
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𝐺 ’s edges connecting two super-nodes to a “super-edge”. 𝐺 ′ thus
has fewer nodes and edges than𝐺 . To preserve the graph spectrum,
previous works [23],[22] proposed coarsening algorithmswith spec-
tral approximation guarantees. In addition, there are coarsening
approaches that aim to preserve different graph properties, such as
electrical properties [7] and connectivity information [25]. Recent
work [14] proposed applying graph coarsening for scalable GNN
training, showing a significant reduction in memory costs without
a noticeable accuracy loss.
Graph Sparsification: Graph sparsification is a natural approach
to accelerate GNN training by removing less-important edges while
preserving all nodes. It typically aims to find a sparsified𝐺 ′ that can
well approximate the properties of the original graph𝐺 . Existing
methods typically preserve graph structural properties by selecting
edges to retain based on criteria such as node degree [11] and node
similarity [26, 35] or by relying on probabilistic methods [19].

2.3 Graph Poisoning and Backdoor Attack
Graph poisoning attacks aim to degrade the performance of GNNs
or mislead the model by modifying the graph structure (e.g., by
adding or removing edges) or node features during training time.
There are two types of attacks: 1) targeted attacks [42, 44], which
aim to misclassify a specific target node; 2) non-targeted attacks [20,
43], which aim to degrade the overall model performance. Back-
door poisoning attack is a special type of targeted poisoning attack,
designed to compromise GNN models by associating a particular
trigger pattern with a target class. During the training phase, this
attack involves attaching a trigger to a poisoned node and altering
its label. This attack ensures that the model performs normally on
clean inputs but misclassifies any input containing the trigger as
belonging to the target class. SBA (Subgraph Backdoor Attack) [41]
is a subgraph-based backdoor attack for graph classification. It
generates random subgraphs as universal triggers using the Erdös-
Rényi (ER) model and implants the subgraph trigger into multiple
locations in the target graph. It has two variants, SBA-Samp and
SBA-Gen [41], which differ in their node feature generation. SBA-
Samp generates node features for triggers by randomly sampling
from the training graph, whereas SBA-Gen generates them from
a Gaussian distribution. GTA (Graph Trojan Attack) [33] adap-
tively generates subgraph triggers for different samples by using
neural networks. To enhance evasiveness, this attack involves em-
bedding a trigger into the target graph by identifying a subgraph
within it that is similar to the trigger, and then replacing the similar
subgraph with the trigger. It applies to both graph and node classifi-
cation tasks. A recent attack UGBA (Unnoticeable Graph Backdoor
Attacks) [6] utilizes node representation clustering to determine
crucial representative nodes to be poisoned against node classifica-
tion. It employs an unnoticeable constraint to generate subgraph
triggers, which ensures the feature similarity among trigger nodes
and poisoned nodes, effectively countering prune-based defenses.

3 Methodology
3.1 System Assumption
In this paper, we focus on node classification tasks in the inductive
setting, which are widely applied in the real world and are particu-
larly relevant for applications involving large-scale graphs [36, 38].

We consider two primary reduction methods: graph coarsening and
sparsification. A graph is denoted by 𝐺 = (𝑉 , 𝐸, 𝑋 ) where 𝑉 is the
set of vertices, 𝐸 is the set of edges, and 𝑋 is the feature matrix
(i.e., 𝑋 ’s 𝑖-th row is the feature vector of node 𝑣𝑖 ∈ 𝑉 ). Using graph
reduction methods, graph acceleration system can be represented
by a function 𝑓 (𝐺) = 𝐺 ′ where 𝐺 ′ = (𝑉 ′, 𝐸′, 𝑋 ′) is a coarsened or
sparsified graph transformed from 𝐺 .

For graph coarsening, we follow the framework proposed in [14].
The coarsened graph𝐺 ′ has |𝑉 ′ | < |𝑉 | and |𝐸′ | < |𝐸 |. It is obtained
from 𝐺 by first computing a partition 𝑃 = {𝐶1,𝐶2, . . . ,𝐶𝑛} of 𝑉 ,
i.e., the clusters 𝐶1 . . .𝐶𝑛 are disjoint and cover all the nodes in
𝑉 . Each cluster 𝐶𝑖 becomes a “super-node” in 𝐺 ′ and the “super-
edge” between two super-nodes𝐶𝑖 ,𝐶 𝑗 has weight equal to the total
number of edges connecting nodes in between 𝐶𝑖 and 𝐶 𝑗 . Let 𝑃 be
the partition matrix where 𝑃𝑖 𝑗 = 1 if vertex 𝑖 belongs to cluster
𝐶 𝑗 otherwise 0. A normalized partition matrix 𝑃 = 𝑃𝐶−1/2 where
𝐶 is a diagonal matrix with entries 𝐶𝑖𝑖 is the number of vertices
in 𝐶𝑖 . Accordingly, 𝑋 ′ = 𝑃𝑇𝑋 . For node classification, the node
labels of 𝐺 ′ is computed by 𝑌 ′ = argmax(𝑃𝑇𝑌 ), which means that
a super node’s label is the dominating label in the cluster. There are
various coarsening methods to determine the partition 𝑃 , each with
different objectives such as preserving structural integrity [15] or
spectral properties [7].

For graph sparsification [11, 19, 26, 35], the sparsified graph 𝐺 ′

has 𝑉 ′ ⊆ 𝑉 , 𝑋 ′
𝑉 ′ = 𝑋𝑉 ′ and |𝐸′ | < |𝐸 |. It is obtained from 𝐺 by

removing unimportant edges based on specific metrics designed to
preserve the structural properties of the graph. The features and
labels remain unchanged for the nodes retained by the sparsifica-
tion. Different sparsification methods employ various strategies
to identify unimportant edges, using approaches such as random
selection, degree-based selection [11], or node similarity [35].

For a graph coarsening method, we define coarsening ratio 𝑐
the ratio of the number of nodes in the coarsened graph 𝐺 ′ to the
number of nodes in the original graph𝐺 , i.e., 𝑐 = |𝑉 ′ |/|𝑉 |. Similarly,
the sparsification ratio 𝑠 is defined as the ratio of the number
of edges in the sparsified graph 𝐺 ′ to the number of edges in 𝐺 ,
i.e., 𝑠 = |𝐸′ |/|𝐸 |. We refer to both as reduction ratios in a general
context.

3.2 Attack Model
As the settings of the existing graph backdoor attacks [6, 33, 41], it
is assumed that the adversary can only access the training data and
poison certain training samples. The adversary has no control over
graph reduction and GNN training systems and has no knowledge
about the target GNNmodels. They are capable of attaching triggers
and labels to nodes in the training graph. These same triggers can
also be injected into test graphs during inference time to manipulate
the model prediction. Figure 1 illustrates the attack scenario under
graph reduction.
Graph Backdoor Parameters: A graph backdoor attack uses adap-
tive subgraphs as triggers, which are injected into the training
graph. It involves selecting 𝑛𝑝 nodes from the graph as poisoned
nodes. A subgraph trigger is then attached to each of these nodes
through an edge, and their labels are changed to a target label cho-
sen by the attacker. Thus, a backdoor attack involves three types of
parameters:
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• Trigger size: The number of nodes in a trigger is regarded as
trigger size. We denote trigger size as 𝑡 .

• Poisoning ratio: During the training stage, 𝑛𝑝 nodes get poi-
soned. Poisoning ratio is the fraction of the number of poisoned
nodes to the total number of nodes 𝑛 in the original graph. We
denote the poisoning ratio as 𝜌 = 𝑛𝑝/𝑛.

• Trigger synthesis method: This involves generating subgraph
triggers of a specified size 𝑡 using various attack methods. In this
paper, we consider four state-of-the-art graph backdoor attacks,
SBA-Samp [41], SBA-Gen [41], GTA [33] and UGBA [6].
The attack budget or cost is determined by the poisoning ratio

and trigger size. The adversary operates under a limited attack
budget, because the injection process can be costly, particularly in
scenarios like social networks involving fake accounts and social
engineering. Additionally, extensive modifications to large graphs
can be easily detected.

+
+

-+
-

Clean Graph

Poisoning + --
+

-+-
-

Poisoned Graph

Graph
Reduction

+

-+

GNN
Training

Backdoored
GNNReduced Graph

Figure 1: Backdoor attack on GNN under graph reduction.

3.3 Evaluation Framework
The evaluation of the effectiveness of backdoor attacks typically
involves twometrics: attack success rate (ASR), defined as the per-
centage of target nodes that are successfully predicted as the target
class, and average clean accuracy (ACC), defined as the percent-
age of correct predictions on clean test nodes. Using these metrics,
we perform our empirical measurements and studies across three
key tasks: robustness effect analysis, trigger analysis, and poisoned
node analysis. These tasks collectively aim to comprehensively
assess how graph reduction influences the efficacy of backdoor
attacks within GNNs.
Robustness Effect Analysis: To understand the impact of graph
reduction on robustness, we first establish baselines for ASR and
ACC for attacks against GNN training without graph reduction for
each backdoor attack. We then measure and compare the ASR and
ACC of these attacks under graph reduction as shown in Figure 1,
applying different reduction methods and varying reduction ratios,
i.e., coarsening ratio and sparsification ratio. For a comprehensive
understanding, we evaluate the effectiveness of attacks under graph
reduction across various GNN architectures, trigger sizes, poisoning
ratios, and reduction methods.

Furthermore, to provide an in-depth explanation of our observa-
tions and understanding of the interaction between graph reduction
and backdoor attacks, we conduct detailed node-level analyses fo-
cusing on trigger changes and poisoned nodes.
Trigger Analysis: The goal of trigger analysis is to quantify the
disruption of triggers due to graph reduction to understand how
graph reduction affects backdoor attacks.

For graph coarsening, the trigger nodes may be merged into
a super-node with the label of the dominant group in the cluster

and features averaged from the original nodes, which could com-
pletely dissolve the trigger structure. Therefore, we consider three
metrics: merging ratio, label change ratio, and feature distance, to
understand the effect of coarsening on backdoor triggers.
• Merging ratio (𝑚) measures the percentage of triggers that are
consolidated into fewer super-nodes than the trigger size 𝑡 after
coarsening. A higher merging ratio suggests that the trigger’s
effectiveness may be significantly compromised, as its unique
structure is largely lost within the reduced graph.

• Label change ratio (𝑙) measures the percentage of nodes ini-
tially labeled with the target label due to the poisoning attack,
that revert to their original labels after coarsening. A higher la-
bel change ratio suggests that coarsening effectively mitigates
the attack by restoring the original labels, thus weakening the
adversary’s influence.

• Feature distance (𝑑) is calculated as the L2 norm between the
average features of the trigger nodes and the attacking (i.e., at-
taching) nodes. A decrease in feature distance indicates that
coarsening has disrupted the feature characteristics of the trig-
ger, potentially reducing its efficacy in executing the attack.

For graph sparsification, while the node features and labels are not
changed, only the edges are altered. The removal of edges could
disconnect the trigger nodes from the poisoned nodes, potentially
neutralizing the attack like Prune. Therefore, we measure prune
ratio, defined as the percentage of triggers disconnected from poi-
soned nodes. However, it might also eliminate benign edges and
nodes, making the attack easier within a sparsified neighborhood.
To capture this dual effect, we measure post-sparsification poi-
soning ratio, defined as the ratio of poisoned nodes that remain
connected to trigger nodes after sparsification, relative to the size
of the sparsified graph.
Poisoned Node Analysis: To discern how graph reduction im-
pacts poisoned target nodes differently, we analyze the distribution
of nodes where attacks succeeded and failed, focusing on their de-
gree, 2-hop subgraph density, labels, and the impact of different
model architectures. By comparing these distributions between sce-
narios where backdoor attacks occur without graph reduction and
scenarios with graph reduction for GNN training, we aim to under-
stand how poisoned models behave differently at testing time. This
analysis helps to illuminate the nuanced effects of graph reduction
strategies on the robustness of GNNs against backdoor attacks.

4 Experiment
In this section, we present our empirical results and analysis. We
first introduce the experiment setup (Section 4.1) and demonstrate
the scalability benefit of graph reduction for GNN (Section 4.2).
Then, we present robustness effect analysis for graph coarsening
(Section 4.3) and graph sparsification (Section 4.4), trigger analysis
(Section 4.5) and poisoned node analysis (Section 4.6).

4.1 Experimental Settings
Datasets: We use four common datasets of different scales for
GNN node classification: Cora [3], Pubmed [27], DBLP [4] and
OGB-arxiv [13]. These datasets collectively span a diverse array of
domains, including computer science and biomedical research, and
vary significantly in size and complexity. Cora, a small-scale dataset,
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may not necessarily require graph reduction, but we include it for
comprehensiveness to provide a broad perspective across different
dataset sizes. Detailed statistics of these datasets are provided in
Table 12 in Appendix.
GNN Models: Our methodology is agnostic to the specific ar-
chitecture of GNN classifiers. We demonstrate the universality of
our approach using three well-established GNN classifiers, namely,
GCN [16], GraphSAGE [12], and GAT [30].
GNN Reduction Methods: We use six graph coarsening methods,
which include three methods discussed in [22]: Variation Neigh-
bourhoods (VN ), Variation Cliques (VC), Variation Edges (VE), along
with three other methods: Heavy Edge Matching (HE) [23], Alge-
braic JC [25], and Kron [7]. For sparsification, we use six common
methods, including Random Edge (RE), Random Node Edge (RNE),
Local Degree (Degree) [11], Local Similarity (Simi) [26], Forest Fire
(Fire) [19], and Scan[35]. A detailed description of these methods
can be found in Appendix A.1. By default, we present the results
using VN as the default method for graph coarsening method and
RNE for graph sparsification, unless otherwise specified.
Backdoor Attacks:We consider four attack methods: GTA [33],
UGBA [6], and two SBA variants SBA-Samp and SBA-Gen [41]. We
use their open-source implementations for evaluation. UGBA has
demonstrated superior performance compared to other backdoor
attacks. As reported in [6], it can achieve over 90% attack success
rate against two traditional defense strategies, including Prune and
Prune+LD, where Prune simply removes edges connecting two
nodes with low cosine similarity on their features, and Prune+LD
additionally discards the labels of the nodes linked by dissimilar
edges. We use UGBA as the default attack due to its superior per-
formance against prune-based defenses.
Evaluation: Our evaluation protocol follows the previous work [6].
We randomly select 10% of the dataset to be used as target nodes
for attack performance evaluation and 10% as clean test nodes to
evaluate clean accuracy, i.e., the prediction accuracy of backdoored
models on normal samples. The remaining 80% of nodes will be
used as training graph𝐺 , including 20% as the labeled training node
set and 10% as validation set, and 50% unlabeled nodes. Experiments
on each target GNN architecture were conducted five times. We
report the average results of backdooring three GNN architectures,
resulting in a total of 15 runs.

4.2 GNN Training with Graph Reduction
We first validate that graph reduction significantly improves scala-
bility while only causing minimal accuracy loss in our experiment
scenarios. The results demonstrate the substantial benefits of graph
reduction for processing large-scale graphs and establish a clear
baseline from which to evaluate robustness.

We evaluated model accuracy during training across three GNN
models (GCN, GAT, GraphSAGE), in a benign setting without ad-
versaries. The results are provided in Table 1 and 2. We observed
that, in general, within a wide range of reduction ratios, graph
reduction causes only slight accuracy loss compared to the original
model accuracy trained without reduction indicated by ‘Orig.ACC’.
For example, on Pubmed, with a ratio 50% for both coarsening and
sparsification, the accuracy changes only slightly, between -0.9%
and +0.4%. However, there are exceptions; for Cora, due to its small

Table 1: Accuracy (%) of Different Coarsening Methods with
a Coarsening Ratio of 30%|50%|70%|90% Respectively.

Dataset (Orig.Acc) VN VE VC
Cora (83.3) 75.6 |78.9 |81.8 |83.5 71.9 |80.0 |82.7 |83.9 69.0 |80.3 |83.1 |83.3
Pubmed (84.9) 84.3 |84.5 |84.9 |84.9 82.8 |84.0 |84.8 |84.9 82.9 |84.1 |84.6 |85.0
DBLP (84.1) 79.7 |80.8 |82.8 |84.0 75.1 |81.6 |83.0 |83.9 76.6 |81.6 |83.2 |83.7
OGB-arxiv (64.1) 61.9 |63.3 |63.9 |64.1 61.3 |63.4 |64.3 |64.3 61.6 |63.3 |64.3 |64.4

JC HE Kron
Cora (83.3) 72.9 |81.7 |83.5 |83.0 74.2 |80.4 |83.9 |84.4 72.6 |82.2 |83.9 |84.4
Pubmed (84.9) 83.9 |84.4 |84.7 |84.9 83.1 |84.1 |84.9 |84.9 84.0 |84.5 |84.8 |84.9
DBLP (84.1) 79.5 |82.3 |83.6 |83.8 76.1 |81.8 |83.3 |83.9 73.1 |80.9 |83.4 |83.9
OGB-arxiv (64.1) 62.1 |63.7 |64.1 |64.4 61.6 |63.8 |64.3 |64.3 61.9 |64.2 |64.3 |64.3

Table 2: Accuracy (%) of Different Sparsification Methods
with a Sparsification Ratio of 30%|50%|70%|90% Respectively.

Dataset (Orig.Acc) RNE RE Simi
Cora (83.3) 80.2 |81.9 |82.7 |82.9 80.8 |83.4 |83.8 |83.6 82.7 |83.1 |84.0 |83.9
Pubmed (84.9) 85.0 |85.0 |85.1 |85.1 85.2 |84.7 |85.2 |85.0 84.9 |84.8 |85.0 |85.0
DBLP (84.1) 83.1 |83.3 |83.4 |83.9 83.3 |83.7 |84.0 |84.1 83.8 |84.0 |83.9 |83.8
OGB-arxiv (64.1) 55.4 |59.2 |63.1 |64.1 60.7 |62.5 |63.5 |64.0 62.4 |63.3 |63.8 |64.0

Degree Forest Fire Scan
Cora (83.3) 80.8 |80.9 |81.8 |83.5 79.6 |80.8 |82.3 |83.0 81.0 |83.1 |82.9 |83.4
Pubmed (84.9) 85.0 |85.1 |85.1 |85.0 85.3 |85.3 |85.3 |85.2 84.9 |85.0 |84.9 |84.9
DBLP (84.1) 83.7 |83.9 |83.9 |84.1 83.2 |83.5 |83.6 |83.7 83.0 |83.9 |84.0 |84.1
OGB-arxiv (64.1) 62.4 |63.2 |63.7 |64.0 61.1 |62.8 |63.6 |63.8 61.0 |62.7 |63.6 |64.1

scale, it has an accuracy drop of up to 7% when 𝑐 = 0.3, while OGB-
arxiv, the largest one, even up to a 9% drop in accuracy at a low
sparsification ratio 𝑠 = 0.3. Nonetheless, by selecting appropriate
reduction ratios, we can generally minimize the impact on accuracy
within 2% drop, while significantly reducing memory costs. We
measured memory utilization during GNN training, and notably,
for large datasets Physics and OGB-arxiv, graph reduction with
𝑐 = 0.3 or 𝑠 = 0.3 reduces memory consumption by more than
50%. Further details are provided in Appendix Table 13 and 14 for
coarsening and sparsification, respectively.

4.3 Robustness Effect Analysis for Coarsening
In this section, we present the results of robustness effect of graph
coarsening against backdoor attacks.

4.3.1 Attack mitigation with graph coarsening. Table 3 shows our
experiment results on four datasets using VN with various coars-
ening ratios under different attacks (GTA, UGBA, SBA-Samp and
SBA-Gen) with a fixed attack budget (trigger size 3 and poisoning
ratio 5%). The reason for this choice of attack budget is that UGBA
has been shown to be highly effective with small trigger size 𝑡 = 3
and poisoning ratio 𝜌 = 5% while maintaining a minimal clean
accuracy drop for being stealthy, as shown in our Table 4 in the
later section. Therefore, we use this setting as default. Furthermore,
we evaluated two defense mechanisms from previous work [6] to
demonstrate the comparative or stronger attack mitigation effects
of graph coarsening compared to these existing defenses.

We focus on graph coarsening ratios that ensure an accuracy
drop within 2%. From the table, we can see that in these cases, ASRs
of GTA and UGBA are effectively reduced by up to 40% for large
datasets. For example, on Pubmed, with a coarsening ratio 𝑐 = 0.3,
the ASR for GTA drops from 85.96% to 44.43%, and for UGBA, the
ASR decreases from 83.07% to 57.32%. For the small dataset Cora,
graph coarsening reduces the ASR of GTA from 67.25% to 63.20%
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Table 3: ASR (%)|ACC (%) results with attack setting 𝑡 = 3,
𝜌 = 5%. Methods that keep the accuracy drop within 2% while
also having the lowest ASR are highlighted in bold.

Datasets Defense
Clean
Graph GTA UGBA SBA-Samp SBA-Gen

Cora

None 83.09 67.25 |83.88 93.38 |85.25 39.70 |86.66 58.25 |86.41
Prune – 44.28 |72.51 91.39 |78.66 18.94 |85.56 29.40 |85.56

Prune+LD – 33.55 |78.25 93.30 |78.90 18.94 |85.56 29.27 |85.65
c=0.9 – 63.20 |81.51 88.95 |85.08 32.26 |85.87 54.98 |86.27
c=0.7 – 51.33 |78.88 67.87 |83.80 37.34 |84.91 53.11 |84.22
c=0.5 – 43.64 |72.29 49.84 |81.01 31.88 |84.96 43.03 |83.13
c=0.3 – 43.61 |65.67 35.76 |75.29 29.17 |81.80 39.80 |82.96

Pubmed

None 86.86 85.96 |84.93 83.07 |85.67 32.14 |84.74 24.97 |86.00
Prune – 92.21 |85.55 81.81 |84.88 22.36 |86.08 20.77 |86.08

Prune+LD – 73.25 |85.99 82.62 |85.21 22.31 |86.05 20.69 |86.07
c=0.9 – 67.46 |84.91 73.97 |85.51 33.02 |84.95 25.22 |86.07
c=0.7 – 48.23 |83.95 66.36 |85.31 28.22 |83.52 25.55 |85.83
c=0.5 – 45.67 |83.82 57.32 |85.21 26.32 |83.20 26.42 |85.73
c=0.3 – 44.43 |83.13 56.77 |84.46 24.61 |80.86 27.93 |84.85

DBLP

None 84.40 76.00 |84.07 80.26 |84.38 32.14 |84.74 42.24 |84.75
Prune – 96.88 |82.72 82.36 |82.57 15.65 |83.95 15.08 |84.11

Prune+LD – 90.40 |82.41 87.54 |82.50 15.43 |84.11 15.05 |84.11
c=0.9 – 64.21 |83.34 75.17 |84.43 33.02 |84.95 41.32 |84.76
c=0.7 – 59.64 |81.27 70.76 |83.45 28.22 |83.52 37.19 |83.97
c=0.5 – 56.32 |78.54 63.54 |80.88 26.32 |82.00 38.36 |82.22
c=0.3 – 53.62 |74.32 62.84 |77.98 24.61 |80.86 34.04 |80.51

OGB
-arxiv

None 65.50 37.02 |59.86 73.35 |63.84 0.03 |65.71 0.02 |65.84
Prune – 0.16 |62.46 72.07 |61.58 0.01 |66.06 0.03 |65.89

Prune+LD – 0.28 |62.46 66.95 |62.92 0.01 |66.12 0.02 |65.89
c=0.9 – 34.06 |52.13 63.54 |63.09 0.03 |65.70 0.02 |65.83
c=0.7 – 37.01 |55.53 49.96 |61.69 0.05 |64.80 0.02 |65.27
c=0.5 – 29.45 |46.86 45.83 |61.25 0.05 |64.62 0.03 |64.50
c=0.3 – 14.13 |39.72 28.43 |60.54 0.04 |64.04 0.00 |64.08

at 𝑐 = 0.9, and the ASR of UGBA from 93.38% to 49.84% at 𝑐 = 0.5.
Moreover, graph coarsening is shown to mitigate the ASRs of GTA
and UGBAmore effectively than two traditional defenses, including
Prune and Prune+LD. In particular, the previous work [6] reported
that UGBA achieves over 90% attack success rate against these two
defenses. Our study shows that with graph coarsening, UGBA’s
ASR can be reduced by 10% up to 40%.

In contrast, the Prune and Prune+LD methods achieve a better
mitigation effect on the SBA-Samp/Gen attack than graph coarsen-
ing. This is because, in the SBA method, trigger node features are
either randomly generated based on the statistical properties (mean
and standard deviation) of the original features or directly sampled
from the original feature set. The Prune and Prune+LD methods,
which remove triggers based on node feature similarity, are more
effective under these conditions. The random feature generation in
SBA makes it easier for the Prune and Prune+LD methods to detect
the feature discrepancies between the triggers and the attacking
nodes, thus allowing for more targeted removal of injected triggers.

In summary, the effectiveness of graph coarsening in reducing
ASR varies across different attack methodologies. Notably, coarsen-
ing significantly diminishes the ASR of the state-of-the-art attack
UGBA, which typically exhibits high success rates against Prune-
based defenses. This impact of coarsening extends across various
datasets, proving particularly potent in large-scale datasets such as
Pubmed, DBLP and OGB-arxiv, where, in some instances, its defen-
sive capabilities surpass traditional methods like Prune. Overall, our
experimental results demonstrate the dual benefit of coarsening
that improves the scalability of GNN training for large-scale
graphs and concurrently enhances their resilience to back-
door attacks.
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Figure 2: Impact of Graph Coarsening on ASR with Trigger
Size 3 and Poisoning Ratio 5%.

4.3.2 ASR and ACC v.s. Coarsening ratio. To better understand
how the coarsening ratio affects ASR and ACC for existing back-
door attacks, we show the ASR and ACC of UGBA under various
coarsening ratios for four datasets in Figure 2. ‘Baseline_ACC’ and
‘Baseline_ASR’ represent UGBA’s ACC and ASRwithout coarsening
poisoned training dataset, while ‘Coarsen_ACC’ and ‘Coarsen_ASR’
refer to the ACC and ASR when coarsening is applied. With coars-
ening, we can see a significant decrease in ASR compared to Base-
line_ASR, especially as the coarsening ratio decreases. Meanwhile,
Coarsen_ACC remains relatively constant regardless of changes in
the coarsening ratio 𝑐 . For example, within only a 2% accuracy drop
from Baseline_ACC, Pubmed’s ASR decreases by 30% at 𝑐 = 45%
and OGB-arxiv’s ASR decreases by 37% at 𝑐 = 25%. These results in-
dicate the effective mitigation of graph coarsening against backdoor
attacks, suggesting its viability as a layer of defense.

4.3.3 Impact of trigger size and poisoning ratio. To understand how
the robustness effect of graph coarsening changes with backdoor
attack cost, we further tested UGBA with different poisoning ratios
(5%, 10%, 15%) and trigger sizes (3, 6, 9) under different coarsening
ratios.

Table 4 shows the ACC results. The ‘𝑐(ACC%)’ column indicates
the baseline accuracy of the model trained without poisoning, under
different coarsening ratios. It is clear that a higher poisoning ratio
𝜌 or a larger trigger size 𝑡 leads to a lower ACC under a given
coarsening setting. Given coarsening ratios that ensure the baseline
accuracy loss within 2% from the no-poisoning no-coarsening case,
the clean accuracy under UGBA attack remains close to the baseline
accuracy. Within these scenarios, the ACC of UGBA, when using a
larger 𝑡 and a higher 𝜌 , tends to be more sensitive to changes in the
coarsening ratio on large datasets. For example, for OGB-arxiv with
𝜌 = 10%, when c changes from 0.9 to 0.3, ACC for 𝑡 = 3 decreases
by 5%, but for 𝑡 = 9 it decreases by 27%, a significantly larger drop.
This effect is likely due to the coarsening process consolidating
features of injected nodes with original nodes, where a greater
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Table 4: ACC (%) under UGBA attack with a trigger size of
3|6|9 respectively. ‘Null’: no coarsening performed.

datasets 𝑐(ACC%) 𝜌 = 5% 10% 15%

Cora

Null(83.1) 85.2 |84.8 |84.0 84.9 |81.1 |85.3 83.3 |80.5 |60.7
0.9(86.9) 85.1 |84.7 |83.5 84.0 |80.1 |84.9 83.1 |78.6 |63.4
0.7(85.1) 83.8 |84.9 |82.3 78.9 |77.7 |81.6 77.0 |72.8 |63.1
0.5(83.4) 81.0 |81.0 |78.2 73.9 |72.4 |77.3 71.3 |62.3 |48.6
0.3(79.5) 75.2 |71.5 |71.2 64.8 |70.8 |72.6 59.8 |46.2 |38.3

Pubmed

Null(86.9) 85.6 |85.5 |85.6 85.5 |85.4 |85.5 85.2 |85.1 |85.3
0.9(84.8) 85.5 |85.4 |85.4 85.4 |85.5 |85.4 85.2 |85.3 |85.1
0.7(84.6) 85.3 |85.2 |85.0 85.4 |85.1 |85.2 84.9 |85.1 |85.1
0.5(84.5) 85.2 |84.6 |84.8 84.7 |84.4 |84.6 84.2 |84.4 |84.5
0.3(83.4) 84.4 |83.5 |84.1 83.7 |83.3 |83.6 82.7 |82.6 |83.0

DBLP

Null(84.4) 84.3 |84.5 |84.6 84.5 |84.5 |84.4 84.2 |84.2 |83.8
0.9(84.6) 84.4 |84.2 |84.3 84.2 |84.2 |84.1 83.8 |83.6 |83.5
0.7(83.7) 83.4 |83.4 |84.2 83.5 |83.3 |83.2 83.1 |82.8 |82.2
0.5(80.7) 80.8 |81.9 |81.3 80.6 |80.3 |79.9 79.3 |78.5 |76.1
0.3(77.6) 77.9 |77.5 |78.8 78.5 |77.5 |77.4 76.8 |76.4 |71.5

OGB
-arxiv

Null(65.5) 63.8 |61.4 |61.0 62.9 |63.2 |56.4 63.4 |60.3 |55.5
0.9(64.5) 63.1 |58.5 |60.1 62.1 |63.3 |49.8 62.8 |58.8 |48.8
0.7(64.0) 61.7 |56.2 |57.1 60.1 |63.1 |37.2 61.1 |53.9 |38.8
0.5(63.6) 61.2 |53.3 |54.8 59.5 |61.9 |32.1 60.5 |51.2 |28.6
0.3(63.6) 60.5 |50.0 |47.7 57.1 |57.6 |22.2 59.3 |46.5 |18.6

Table 5: ASR under UGBA attack. ‘*’ denotes the entry that
has ACC drop more than 2% compared to the accuracy on
clean data without poisoning or coarsening.

Pubmed DBLP OGB-arxiv
𝑡 𝑐 𝜌=5% 10% 15% 5% 10% 15% 5% 10% 15%

3

70% 0.67 0.6 0.56 0.63 0.69 0.66 0.48 0.50 0.64
75% 0.68 0.62 0.60 0.65 0.69 0.67 0.46 0.47 0.55
80% 0.68 0.64 0.67 0.66 0.73 0.70 0.49 0.50 0.57
85% 0.70 0.67 0.70 0.68 0.76 0.73 0.56 0.50 0.60
90% 0.72 0.73 0.74 0.70 0.76 0.74 0.51 0.54 0.61
Null 0.84 0.86 0.87 0.75 0.85 0.87 0.81 0.79 0.69

6

70% 0.64 0.55 0.51 0.68 0.67 0.63 0.52 * 0.54 * 0.59 *
75% 0.66 0.58 0.57 0.71 0.67 0.64 0.51 * 0.49 * 0.50 *
80% 0.67 0.62 0.63 0.72 0.69 0.67 0.53 * 0.53 * 0.57 *
85% 0.67 0.65 0.65 0.73 0.74 0.70 0.62 * 0.55 * 0.58 *
90% 0.68 0.72 0.71 0.76 0.73 0.72 0.57 * 0.56 * 0.58 *
Null 0.83 0.86 0.85 0.83 0.85 0.90 0.77 * 0.77 * 0.75 *

9

70% 0.55 0.54 0.52 0.63 0.68 0.63 0.51 * 0.50 * 0.54 *
75% 0.60 0.57 0.56 0.66 0.69 0.64 0.51 * 0.47 * 0.49 *
80% 0.62 0.60 0.62 0.68 0.71 0.67 0.52 * 0.49 * 0.57 *
85% 0.63 0.63 0.65 0.68 0.75 0.70 0.61 * 0.50 * 0.58 *
90% 0.65 0.70 0.71 0.71 0.75 0.72 0.56 * 0.53 * 0.61 *
Null 0.83 0.86 0.87 0.78 0.89 0.90 0.73 * 0.70 * 0.80 *

number of injected nodes results in more divergence in the feature
distribution, leading to substantial accuracy loss.

Table 5 presents ASR results of UGBAwith coarsening ratios that
ensure clean accuracy drop within 2% compared to the accuracy
in scenarios without poisoning or coarsening. These coarsening
ratios include 70%, 75%, 80%, 85%, 90% across three large datasets:
PubMed, DBLP, and OGB-arxiv. Under the same coarsening set-
ting, increasing the trigger size from 3 to 9 does not significantly
change the ASR. An interesting observation for the PubMed and
DBLP datasets is that under coarsening ratios 70%, 75%, 80%, ASR
decreases slightly as poisoning ratio 𝜌 increases. A possible expla-
nation is that a higher poisoning ratio introduces a greater number
of nodes, which in turn increases the likelihood that trigger nodes
will be merged with other nodes when graph coarsening is applied
at the same ratio. Table 8 in Section 4.5 further supports this ex-
planation by showing a slightly higher trigger merging ratio for
a higher poisoning ratio on Pubmed. Nevertheless, it is clear that
with a higher poisoning ratio, the mitigation effect of coars-
ening decreases, and a lower coarsening ratio is required to
be more effective for reducing ASR.
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Figure 3: Impact of Graph Coarsening on ASR with different
GNN models. A light-colored line represents the baseline
ASR under no coarsening.

4.3.4 Impact of GNN Architectures. Although the ACCs remain
relatively consistent under coarsening across three different GNN
architectures in our experiments, the ASRs vary significantly. Figure
3 shows the ASR curves under various coarsening ratios on four
datasets for GCN, CAT, and GraphSage, respectively. As we can see,
the ASRs obtained with GraphSAGE and GAT are lower than those
with GCN. For instance, on Pubmed Dataset, when 𝑐 = 70%, the
ASR of GCN drops from 86% to 81%, while the ASR of GraphSAGE
drops from 81% to 49% and the ASR of GAT drops from 82% to
68%. In the OGB-arxiv dataset, the ASR of GCN drops from 86% to
75%, while the ASR of GAT drops from 60% to 27% and the ASR of
GraphSAGE drops from 96% to 55%.

Our result demonstrates that graph coarsening mitigates the
ASRs for GraphSAGE andGATmore effectively than for GCN.
This discrepancy may be because that GCN aggregates information
from all neighboring nodes, while GAT and GraphSAGE sample
features from only a subset of neighboring nodes. After coarsening,
only some triggers are retained in the graph, making GraphSAGE
less likely to aggregate information from trigger nodes and causing
GAT to pay less attention to these nodes.

4.3.5 Impact of different coarsening methods. To understand the
differences in robustness effects among specific coarseningmethods,
we tested six methods including VN, VC, VE, Heavy Edge Matching,
Algebraic JC, and Kron. Figure 4 presents UGBA’s ASR under these
different methods on Pubmed, DBLP and OGB-arxiv datasets, under
three GNN architectures, respectively. The baseline ASR in the
figure is the ASR under no coarsening.

From the results, we observe that on both datasets, the ASR for
the GCN model is only marginally reduced compared to the reduc-
tions seen with GAT and GraphSage. The impact of different
coarsening methods on ASR reduction varies. The VC and VE
methods have close and consistently overall good performance in
mitigating attacks. Specifically, for Pubmed (Figure 4a), VC and
VE outperform others on the GAT model. Unlike the straightfor-
ward amalgamation of adjacent nodes, VC and VE target specific
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Figure 4: ASR Under Different Graph Coarsening Methods.

structural components, such as cliques and edges, potentially dis-
rupting trigger structures more effectively. However, on a larger
dataset OGB-arxiv, as shown in Figure 4c, the HE and JC methods
outperform others on the GAT model, which may suggest that
non-spectrum-based coarsening methods can be more effective at
reducing ASR in such large poisoned graphs.

4.4 Robustness Effect with Graph Sparsification
This section follows the same methodology to investigate the effect
of graph sparsification as in the previous section on graph coarsen-
ing. We examine six sparsification methods introduced in Section
4.1. Given that both coarsening and sparsification exhibit similar
trends in their effects under different GNN architectures and attack
costs, we focus here solely on presenting the ASRs and discussing
the unique characteristics of sparsification.

4.4.1 Results. Table 6 presents the ASR and ACC results using
RNE for sparsification on different datasets under different back-
door attacks. Compared with the coarsening result given in Table 3,
the ASR mitigation is less significant for sparsification when using
sparsification ratios that maintain a drop in ACC within 2%. On
datasets such as Cora, Pubmed, sparsification has demonstrated
better mitigation effects than Prune and Prune+LD methods. On
the Cora dataset, the ASR of UGBA decreases from 93.38% to 75.1%
at 𝑠 = 0.3, and on the Pubmed dataset, the ASR for UGBA decreases

Table 6: ASR(%) | ACC(%) results with attack setting 𝑡 = 3,
𝜌 = 5%. Methods that keep the accuracy drop within 2% while
also having the lowest ASR are highlighted in bold.

Datasets Defense
Clean
Graph GTA UGBA SBA-Samp SBA-Gen

Cora

None 83.09 84.55 |83.88 93.38 |85.25 45.76 |86.66 58.25 |86.41
Prune – 44.28 |72.51 91.39 |78.66 18.94 |85.56 29.40 |85.56

Prune+LD – 33.55 |78.25 93.30 |78.90 18.94 |85.56 29.27 |85.65
s=0.9 – 99.90 |84.93 93.65 |84.41 47.72 |87.28 58.20 |86.40
s=0.7 – 94.82 |82.79 91.07 |84.56 36.04 |85.43 42.95 |85.31
s=0.5 – 89.83 |82.93 86.93 |83.01 30.14 |85.30 37.90 |85.09
s=0.3 – 86.27 |79.87 75.10 |82.17 21.53 |84.32 26.69 |84.59

Pubmed

None 86.86 85.96 |84.93 83.07 |85.67 32.14 |84.74 24.97 |86.00
Prune – 92.21 |85.55 81.81 |84.88 22.36 |86.08 20.77 |86.08

Prune+LD – 73.25 |85.99 82.62 |85.21 22.31 |86.05 20.69 |86.07
s=0.9 – 90.09 |85.49 81.61 |85.48 19.00 |86.10 19.95 |86.02
s=0.7 – 91.63 |85.49 76.61 |85.31 16.89 |86.00 17.07 |85.95
s=0.5 – 92.32 |85.31 66.91 |85.25 15.79 |86.08 18.21 |85.88
s=0.3 – 97.65 |84.25 57.89 |85.02 14.80 |85.96 16.13 |85.95

DBLP

None 84.40 91.30 |84.07 87.97 |84.38 32.14 |84.74 42.24 |84.75
Prune – 96.88 |82.72 82.36 |82.57 15.65 |83.95 15.08 |84.11

Prune+LD – 90.40 |82.41 87.54 |82.50 15.43 |84.11 15.05 |84.11
s=0.9 – 84.39 |84.17 82.83 |84.50 30.15 |84.92 18.51 |84.52
s=0.7 – 84.98 |84.02 84.40 |84.34 19.31 |84.38 12.51 |84.43
s=0.5 – 85.25 |83.51 86.21 |83.87 16.08 |84.04 15.27 |83.96
s=0.3 – 90.31 |83.30 85.94 |83.39 14.67 |83.92 15.22 |83.83

OGB
-arxiv

None 65.50 60.16 |59.86 73.35 |63.84 0.03 |65.71 0.02 |65.84
Prune – 0.16 |62.46 72.07 |61.58 0.01 |66.06 0.03 |65.89

Prune+LD – 0.28 |62.46 66.95 |62.92 0.01 |66.12 0.02 |65.89
s=0.9 – 61.06 |61.46 86.04 |62.42 0.02 |65.03 0.05 |65.06
s=0.7 – 63.16 |60.44 90.14 |60.73 0.00 |62.52 0.00 |62.53
s=0.5 – 64.15 |58.24 75.14 |58.02 0.00 |59.64 0.00 |59.65
s=0.3 – 66.86 |51.51 48.42 |54.51 0.00 |55.60 0.00 |55.92

from 83.07% to 57.89% at 𝑠 = 0.3. In contrast, we observe a signifi-
cant increase of ASR for the GTA attack under graph sparsification
for Cora, Pubmed even within only 2% ACC drop. We further exam-
ine the separate results for different models under UGBA attack and
show the results in Figure 5. On the PubMed dataset, the ASR typi-
cally decreases as the sparsification ratio decreases across all three
GNNmodels. However, on DBLP, we can also see that ASR increases
compared to the baseline ASR. For example, using the Forest Fire
method of sparsification on the GAT model results in an increase in
ASR by more than 15%. On the larger dataset OGB-arxiv, as shown
in Figure 5c, the ASR also increases by at least 10% on the GAT
model with RNE sparsification method. This highlights that spar-
sification, under specific configurations, may inadvertently
enhance the effectiveness of backdoor attacks. Therefore, it is
crucial to carefully evaluate and apply sparsification-based graph
reduction when designing security-aware scalable GNN training
systems.

4.5 Trigger Analysis
In this section, we present the result of the trigger analysis for
graph coarsening and sparsification, respectively.

4.5.1 Graph Coarsening. We perform the trigger analysis to under-
stand how graph coarsening affects triggers injected by backdoor
attacks. Table 7 presents the results of three metrics defined in Sec-
tion 3.3. The merge ratio (𝑚) indicates a substantial proportion of
triggers being merged into super nodes, which could dilute the in-
tended effect of the triggers. For example, on Pubmed, a coarsening
ratio of 0.3 results in a merge ratio of 86.93%, indicating significant
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Figure 5: ASR Under Different Graph SparsificationMethods.

Table 7: Merge Ratio (𝑚%), Label Change Ratio (𝑙%) and Fea-
ture Distance (𝑑) of UGBA Triggers under Different Coarsen-
ing Ratios. ‘Null’ indicates no coarsening.

Cora Pubmed DBLP OGB-arxiv
𝑚 𝑙 𝑑 𝑚 𝑙 𝑑 𝑚 𝑙 𝑑 𝑚 𝑙 𝑑

𝑐=0.3 63.9 21.5 1.5 86.6 2.9 0.8 80.4 14.5 0.6 86.3 16.5 32.5
𝑐=0.5 39.8 15.0 1.4 85.9 2.8 0.8 74.2 0.7 0.4 34.2 17.5 59.0
𝑐=0.7 18.5 10.3 1.8 84.1 2.3 0.8 66.4 0.6 0.5 2.5 15.8 79.0
𝑐=0.9 0.0 1.9 2.0 71.3 1.3 1.0 33.2 0.1 0.7 25.7 2.5 63.4
Null 0.0 0.0 2.4 0.0 0.0 1.5 0.0 0.0 2.0 0.0 0.0 44.2

merging of triggers. The label change ratio (𝑙) demonstrates a sig-
nificant reversion of poisoned labels to their original clean labels,
highlighting the robustness of graph coarsening in mitigating label
corruption. On the Cora dataset, a coarsening ratio of 0.3 results in
a label change ratio of 23.58%, indicating effective label restoration.
Lastly, the feature distance (𝑑) decreases as the coarsening ratio
decreases, suggesting that the features of the triggers are aggre-
gated with the attached nodes through coarsening. For instance,
compared to non-coarsened graph, on the DBLP dataset, a coars-
ening ratio of 0.5 results in a feature distance decrease from 2.01
to 0.94, indicating a significant alteration of the trigger’s features.
Our analysis explains the efficacy of graph coarsening in mitigating
poisoning attacks by disrupting the structural and feature charac-
teristics of triggers. Table 8 further shows trigger analysis results

Table 8: Trigger Analysis of UGBA under Different Poisoning
Ratio, on Pubmed with Coarsening Ratio 𝑐 = 70%.

𝑚(%) 𝑙 (%) 𝑑

𝜌=5% 84.14 2.3 0.8
𝜌=10% 85.86 1.72 0.94
𝜌=15% 85.8 1.19 0.84

Table 9: Trigger Analysis of GTA under Coarsening.

Cora Pubmed DBLP OGB-arxiv
𝑚 𝑙 𝑑 𝑚 𝑙 𝑑 𝑚 𝑙 𝑑 𝑚 𝑙 𝑑

c=0.3 67.6 19.6 23.7 86.6 2.9 38.4 80.4 14.5 106.5 86.3 16.5 2148.9
c=0.5 45.4 13.1 33.7 85.9 2.8 38.8 74.2 0.7 98.5 34.2 17.5 3852.7
c=0.7 20.4 10.3 35.0 84.1 2.3 40.0 66.4 0.6 110.7 2.5 15.7 4950.3
c=0.9 0.0 1.9 37.2 71.3 1.3 48.7 33.2 0.1 160.1 25.7 2.5 4099.8
Null 0.0 0.0 30.7 0.0 0.0 14.8 0.0 0.0 7.6 0 0 5031.2

under varying poisoning ratios on Pubmed. It reveals that a slightly
higher trigger merging ratio may be responsible for the decrease in
ASR observed in Section 4.3.3 as the poisoning ratio increases.

Table 9 shows the trigger analysis results for GTA. For SBA
attacks, see Appendix Table 15 and 16. Comparing these tables, we
have the following observations. First, for GTA and UGBA, as the
coarsening ratio decreases, the merge ratio increases. This explains
why the ASR decreases as the coarsening ratio decreases. For the
SBA-Gen and SBA-Samp triggers, the merge ratio often becomes
zero at higher coarsening ratios, meaning that triggers are not
merged into fewer super-nodes. This explains why coarsening often
does not work on SBA triggers. Second, when the coarsening ratio
is high (i.e., 𝑐 =0.7 or 0.9), the label change ratio remains relatively
low. This suggests that coarsening does not significantly clean the
poisoned labels given high coarsening ratios. Third, the feature
distance decreases as the coarsening ratio decreases in most cases.
However, the feature distance for SBA triggers remains relatively
stable, suggesting that SBA triggers are more resilient to feature
space disruptions caused by coarsening.

4.5.2 Graph Sparsification. Our results in Section 4.4 show that
graph sparsification is less effective in mitigating attacks than coars-
ening and the ASR does not necessarily decrease as the sparsifi-
cation ratio decreases. The trigger analysis results for UGBA, pre-
sented in Table. 10, provides further insight into this observation.
While the prune ratio increases as the sparsification ratio decreases,
the post-sparsification poisoning ratio remains very close to the ini-
tial poisoning ratio (default 5%) and, in many cases, even increases
slightly after sparsification. Table 11 presents the trigger analysis
results of GTA, which demonstrate similar trends to those observed
with UGBA. The results of SBA attacks can be found in Appendix
Table 17 and 18. For GTA, it is observed that the post-sparsification
poisoning ratio on the Cora dataset is higher than the default poi-
soning ratio. Particularly at 𝑠 = 0.9, with a low prune ratio and a
higher post-sparsification poisoning ratio, the ASR increased from
84.55% to 99.90%. This trend is consistent across other datasets, and
also applies to the SBA attack. In addition to the observed increase
in the poisoning ratio, graph sparsification maintains the poisoned
labels and features unchanged and may significantly reduce node
degrees. These factors combined elucidate why sparsification might
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Table 10: Prune Ratio (𝑝𝑟𝑢𝑛𝑒 %), Post-Sparsification Poisoning
Ratio (𝑠𝑝𝑎𝑟_𝜌 %) of UGBA Triggers under Different Sparsifi-
cation Ratios.

Cora Pubmed DBLP OGB-arxiv
𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌

𝑠=0.3 86.1 5.2 96.5 2.7 98.0 1.8 99.6 5.7
𝑠=0.5 50.0 5.7 87.1 4.4 88.1 3.5 96.4 6.0
𝑠=0.7 35.2 5.6 59.4 5.3 67.5 4.7 83.0 5.8
𝑠=0.9 11.1 5.5 24.0 5.7 26.7 5.4 42.3 5.4

Table 11: Trigger Analysis of GTA under Sparsification.

Cora Pubmed DBLP OGB-arxiv
𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌

𝑠=0.3 63.6 5.3 80.4 3.1 76.7 2.3 99.6 5.8
𝑠=0.5 39.7 5.2 67.1 4.3 54.7 3.8 96.0 5.9
𝑠=0.7 31.9 5.5 44.4 5.3 33.8 5.2 82.9 5.8
𝑠=0.9 12.4 5.4 20.4 5.8 11.7 5.5 41.6 5.4

inadvertently increase ASR, highlighting the need for careful con-
sideration when implementing sparsification in security-sensitive
contexts.

4.6 Poisoned Node Analysis
To understand how graph reduction affects poisoned nodes dif-
ferently, we collected a range of features for each targeted node.
These features included the node’s degree, the density of its 2-hop
subgraph, its ground truth label, and the target GNN model (GCN,
GAT, and GraphSAGE). We show our experiments on the Pubmed
dataset, which contains three labels (label 0, label 1, and label 2).
We use label 0 as the target label in UGBA. Figure 6a shows the dis-
tribution of these features for both the successfully attacked nodes
and failed nodes using UGBA in the case of no graph reduction.
The log(degree) and subgraph density are shown as normalized dis-
tributions. Figure 6b and 6c depict the distribution of these features
after coarsening and sparsification, respectively.

Comparing Figure 6b and 6c with Figure 6a, we can see that
graph coarsening effectively mitigates backdoor attacks on target
nodes with lower degrees, whereas sparsification yields a distri-
bution similar to that of the original UGBA (i.e., under no graph
reduction). This indicates that graph coarsening is more effective
at safeguarding lower-degree nodes than sparsification. Addition-
ally, the label distribution under graph coarsening reveals that this
method uniformly protects nodes with ground truth labels of both
1 and 2, underscoring its consistent effectiveness across different
node classes. Furthermore, the similarity of the distributions with
sparsification to those of the original UGBA indicates that sparsifi-
cation does not significantly alter the attack’s distribution patterns.

5 Conclusion and Future work
Our experiments withmultiple datasets and attack scenarios demon-
strate the effect of graph reduction in GNN robustness against ex-
isting backdoor attacks. Graph reduction tends to be more effective
in reducing ASRs when paired with GAT and GraphSage archi-
tectures compared to GCN, or when implemented with a lower
reduction ratio. Graph coarsening consistently mitigates backdoor
attacks effectively, although the efficacy can vary among different
coarsening methods. Specifically, graph coarsening is particularly
effective at protecting the most vulnerable nodes within a network,
notably low-degree nodes, whereas sparsification does not provide
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Figure 6: Analysis of Poisoned Node Distributions.

similar protection. In fact, graph sparsification may exacerbate vul-
nerabilities, as evidenced by increased ASRs that surpass those
in systems without any sparsification. This highlights a critical
concern: while sparsification may offer computational benefits, it
can also increase security risks, underscoring the need for careful
consideration of graph reduction strategies in the development of
secure GNN systems.

In our future work, we aim to evaluate a broader range of attack
types, including both evasion and poisoning attacks, within graph
reduction systems. We plan to explore the development of new
graph reduction algorithms that integrate robustness properties
with the goal of enhancing the mitigation effects against backdoor
attacks. This will include a particular focus on addressing and
circumventing the potential risks associated with sparsification,
ensuring that any reductions do not inadvertently increase the
system’s vulnerability to attacks. It is also interesting to see if there
exist more powerful attacks capable of overcoming the mitigation
effects of graph reduction.
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A Appendix
A.1 Descriptions of Graph Reduction Methods
In this paper, NetworKit[24], an open-source python toolkit is used
for the implementation of different reduction methods.
Graph Coarsening: Six methods for graph coarsening are listed
as follows:
• Variation Neighbourhoods (VN ), Variation Cliques (VC), Varia-
tion Edges (VE) [22]: These methods are predicated on spectral
principles. The process begins with calculating the graph Lapla-
cian matrix L. Given a target graph dimension 𝑛, the objective
is to derive a coarsened Laplacian matrix L𝑐 of dimension 𝑛 × 𝑛
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AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuxuan Zhu et al.

that approximates L with graph information loss 𝜖 below a pre-
determined threshold. The distinction among the VN, VC, and
VE methodologies lies in how they select node sets for contrac-
tion. For the VN strategy, each vertex along with its neighbors
forms a candidate set; for VC, all maximal cliques identified using
the Bron-Kerbosch algorithm are considered as separate candi-
date sets; and for VE, individual edges serve as candidate sets.
After sorting these sets based on cost, recursive computations
are performed. First, the candidate set with the lowest cost is
selected, and then the vertices within these sets are coarsened.
The recursion stops when the updated L𝑐 reaches the desired
size.

• Heavy Edge Matching: For the Heavy Edge Matching approach,
edge pairs are selected for contraction at each coarsening level by
computing the Maximum Weight Matching, wherein the weight
of an edge pair is determined based on the maximum vertex
degree within the pair [23]. This strategy tends to contract edges
peripheral to the main graph body, thereby preserving the core
structural integrity of the graph.

• Algebraic JC: It calculates algebraic distances as weights based
on each candidate set of edges, where the distances are computed
from test vectors, each of which is computed out of scans of the
Jacobi relaxation [25].

• Kron Reduction [7]: At each coarsening stage of the Kron Re-
duction method, a subset of vertices is selected, identified by
the positive entries of the Laplacian matrix’s final eigenvector.
Through Kron Reduction, the graph’s size is reduced, targeting
the preservation of its spectral characteristics for efficient analy-
sis of extensive networks.

Graph Sparsification:
• RandomEdge (RE): It simply selects edges to keep in the sparsified
graph uniformly at random.

• Random Node Edge (RNE): It uniformly selects both edges and
nodes to keep in the sparsified graph at random.

• Local Degree [11]: It ranks the neighboring nodes by their degree
and selects a fraction of the top-ranked neighbors while making
sure that each node retains at least one edge.

• Local Similarity [26]: It calculates the Jaccard similarity scores
between vertex and its neighbors, and select edges with the
highest similarity scores locally for inclusion in the sparsified
graph.

• Forest Fire [19]: It firstly chooses a random seed node, then itera-
tively adding neighbor nodes with the edge between them until
every node were selected.

• Scan[35]: It sorts the edges by calculating the SCAN similarity
score for all pairs of vertices in the graph and selects the edges
with the highest similarity scores for inclusion in the sparsified
graph.

A.2 Supplementary Tables

Table 12: Node Classification Dataset Description

Datasets #Nodes #Edges #Feature #Classes
Cora 2,708 5,429 1,443 7
Pubmed 19,717 44,338 500 3
DBLP 17,716 105,734 1,639 4
OGB-arxiv 169,343 1,166,243 128 40

Table 13: Memory Reduction with Coarsening for GraphSage

Dataset orig (MB) c=0.7 c=0.5 c=0.3
Cora 184 160 (↓12.8%) 145 (↓21.1%) 125 (↓31.9%)

Pubmed 373 320 (↓14.3%) 274 (↓26.6%) 233 (↓37.6%)
DBLP 1132 941 (↓26.9%) 781 (↓31.1%) 663 (↓41.5%)
Physics 19933 15539 (↓22.2%) 12185 (↓38.9%) 9554 (↓52.1%)

OGB-arxiv 1559 1229 (↓21.2%) 993 (↓36.4%) 759 (↓51.4%)

Table 14: Memory Reduction with Sparsification for Graph-
Sage

Dataset orig (MB) s=0.7 s=0.5 s=0.3
Cora 184 163 (↓11.3%) 148 (↓19.5 %) 131 (↓28.7 %)

Pubmed 373 305 (↓18.4%) 270 (↓27.7%) 234 (↓37.4%)
DBLP 1132 880 (↓22.7%) 743 (↓34.4%) 605 (↓26.6%)
Physics 19933 14367 (↓26.6%) 11428 (↓42.7%) 8218 (↓58.8%)

OGB-arxiv 1559 1229 (↓21.2%) 993 (↓36.3%) 759 (↓51.4%)

Table 15: Trigger Analysis of SBA-Gen under Coarsening.

Cora Pubmed DBLP OGB-arxiv
𝑚 𝑙 𝑑 𝑚 𝑙 𝑑 𝑚 𝑙 𝑑 𝑚 𝑙 𝑑

c=0.3 36.1 38.5 0.3 0.0 43.0 0.3 41.8 17.7 0.5 0.7 43.4 4.9
c=0.5 0.0 23.8 0.3 0.0 28.1 0.3 0.0 4.7 0.6 0 26.2 3.53
c=0.7 0.0 7.5 0.3 0.0 8.4 0.2 0.0 0.4 0.6 0 9.4 2.1
c=0.9 0.0 0.9 0.3 0.0 0.4 0.2 0.0 0.1 0.5 0.0 2.3 1.7
Null 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.5 0 0 1.4

Table 16: Trigger Analysis of SBA-Samp under Coarsening.

Cora Pubmed DBLP OGB-arxiv
𝑚 𝑙 𝑑 𝑚 𝑙 𝑑 𝑚 𝑙 𝑑 𝑚 𝑙 𝑑

c=0.3 36.1 38.5 0.3 0.0 43.0 0.3 41.8 17.7 0.5 0.7 43.4 4.82
c=0.5 0.0 23.8 0.3 0.0 28.1 0.3 0.0 4.7 0.6 0.0 26.2 3.5
c=0.7 0.0 7.5 0.3 0.0 8.4 0.2 0.0 0.4 0.6 0.0 9.4 2.1
c=0.9 0.0 0.9 0.3 0.0 0.4 0.2 0.0 0.1 0.6 0.0 2.3 1.6
Null 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.6 0.0 0.0 1.4

Table 17: Trigger Analysis of SBA-Samp under Sparsification.

Cora Pubmed DBLP OGB-arxiv
𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌

𝑠=0.3 57.9 5.8 74.5 2.7 77.9 2.4 99.2 5.7
𝑠=0.5 42.3 5.4 55.0 4.8 50.6 4.0 91.4 6.1
𝑠=0.7 25.0 5.7 36.9 5.7 32.7 5.3 66.4 5.9
𝑠=0.9 7.4 5.5 14.3 5.7 12.7 5.5 22.3 5.5

Table 18: Trigger Analysis of SBA-Gen under Sparsification.

Cora Pubmed DBLP OGB-arxiv
𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌 𝑝𝑟𝑢𝑛𝑒 𝑠𝑝𝑎𝑟_𝜌

𝑠=0.3 57.9 5.5 75.8 3.2 71.7 2.2 99.2 5.8
𝑠=0.5 45.5 5.4 51.7 4.5 50.3 4.2 92.1 6.0
𝑠=0.7 33.3 5.7 40.2 5.6 37.1 5.4 65.9 5.9
𝑠=0.9 6.6 5.4 13.4 5.8 12.9 5.5 22.7 5.5
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