
The Pennsylvania State University
The Graduate School
College of Engineering

IRREGULAR GRAPH ALGORITHMS ON MODERN MULTICORE,

MANYCORE, AND DISTRIBUTED PROCESSING SYSTEMS

A Dissertation in
Computer Science & Engineering

by
George M. Slota

© 2016 George M. Slota

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

May 2016

The dissertation of George M. Slota was reviewed and approved∗ by the following:

Kamesh Madduri
Assistant Professor of Computer Science & Engineering
Dissertation Advisor, Chair of Committee

Mahmut Kandemir
Professor of Computer Science & Engineering

Wang-Chien Lee
Associate Professor of Computer Science & Engineering

Soundar Kumara
Professor of Industrial & Manufacturing Engineering

Siva Rajamanickam
Senior Member of Technical Staff, Sandia National Laboratories
Special Member

Raj Acharya
Professor & Director, School of Electrical Engineering and Computer Science
Department Chair

∗Signatures are on file in the Graduate School.

ii

Abstract

Graph analysis is the study of real-world interaction data, be it through biological
or chemical interaction networks, human social or communication networks, or
other graph-representable datasets pervasive throughout the social and physical
sciences. Due to increasing data sizes and complexities, it is important to develop
efficient and scalable approaches for the algorithms, tools, and techniques used to
study such data. Efficient utilization of the increasing heterogeneity and complexity
of modern high performance computing systems is another major consideration for
these efforts.

The primary contributions of this thesis are as follows: First, parallel and scalable
solutions to several basic graph analytics are presented. An implementation of the
color-coding algorithm for subgraph isomorphism is introduced as Fascia (Fast
Approximate Subgraph Counting and Enumeration). Using several optimizations
for work avoidance, memory usage reduction, and cache/data movement efficiency,
Fascia demonstrates up to a five orders-of-magnitude per-core speedup relative to
prior art. Fascia is able to calculate the counts of subgraphs up to 10 vertices on
multi-billion edge graphs in minutes on a modest 16 node cluster and use these
counts for a variety of analytics. Using Fascia’s baseline approach, FastPath
is also introduced to find minimum weight paths in weighted networks. The
Multistep method is next introduced as an approach for graph connectivity,
weak connectivity, and strong connectivity, with a generalization of Multistep
also presented for graph biconnectivity. The Multistep approaches are shown
to demonstrate a 2-7× mean speedup relative to the prior state-of-the-art. A
graph partitioner called PuLP (Partitioning using Label Propagation) is also
introduced along with a general distributed graph layout strategy, DGL. PuLP
was specifically designed to partition small-world graphs having skewed degree
distributions, such as social interaction networks and web graphs. PuLP is able
to partition such graphs an order of magnitude faster and with a fraction of the
memory of other comparable partitioners (ParMETIS, PT-Scotch) while giving
comparable partitions in terms of cut quality and balance. Additionally, this thesis

iii

presents how using techniques derived from these efforts, a suite of distributed
graph analytics could be implemented and applied to the largest publicly-available
web crawl of 3.5 billion pages and 130 billion links. End-to-end execution of analysis
using these implementations completing in 20 minutes on only 256 nodes of the
Blue Waters supercomputing system.

Throughout this thesis, analyses of the algorithms and subroutines that comprise
the Multistep, Fascia/FastPath, and PuLP/DGL implementations is under-
taken. Common optimizations are then identified (e.g., multiple levels of queues
to match the memory hierarchy, techniques for non-blocking and asynchronous
updates to shared data, efficient distributed communication patterns, among oth-
ers) and their effects on performance are quantified. It is demonstrated how the
optimization techniques can be utilized when processing under the higher degree
of parallelism available in modern manycores (GPUs, Intel Xeon Phis) as well as
how the techniques can be extended for more general-purpose graph processing in
both the shared- and distributed-memory spaces. Also under consideration is the
state of current hardware trends, with the goal of identifying how to modify and
extend these general optimizations for forthcoming high performance computing
architectures. Additionally, new optimizations and potential further research areas
are introduced which might also be applicable for accelerating graph processing on
these future systems.

iv

Table of Contents

List of Figures xii

List of Tables xvi

List of Algorithms xx

Acknowledgments xxii

Chapter 1
Introduction 1
1.1 Overview of Graph Problems Considered 2
1.2 Thesis Organization . 4

Chapter 2
Fascia Subgraph Counting 7
2.1 Introduction . 7
2.2 Color-coding and Subgraph Counting 7
2.3 Related Work . 9
2.4 Color-coding Implementations . 9

2.4.1 Subgraph Counting with Fascia 9
2.4.2 Color-coding Implementation Optimizations 12

2.4.2.1 Combinatorial Indexing System 12
2.4.2.2 Memory Utilization Optimizations 12
2.4.2.3 Template Partitioning 14

2.4.3 Shared-Memory Parallelism 15
2.4.4 Distributed Memory Parallelism 15

2.4.4.1 Distributed Counting 15
2.4.4.2 Partitioned Counting Algorithm 16
2.4.4.3 Table Compression 17

2.5 Results and Analysis . 18

v

2.5.1 Experimental Setup . 18
2.5.2 Single-node performance . 20

2.5.2.1 Running times vs. template size 20
2.5.2.2 Parallel Scaling . 22
2.5.2.3 Reduction in Memory Use 22
2.5.2.4 Error Analysis . 24

2.5.3 Multi-node performance . 25
2.5.3.1 Running times vs. template size 25
2.5.3.2 Parallel Scaling . 26

2.5.4 Comparisons to Recent Work 27
2.6 Conclusions . 28

Chapter 3
Subgraph-based Graph Analysis 29
3.1 Introduction . 29
3.2 Background . 29

3.2.1 Motif Finding . 29
3.2.2 Graphlets . 30

3.2.2.1 Graphlet Frequency Distance 30
3.2.2.2 Graphlet Degree Distribution 31
3.2.2.3 Graphlet Degree Signature Similarity 32

3.2.3 Clustering . 32
3.3 Experimental Setup . 33

3.3.1 Networks Analyzed . 33
3.3.2 Templates Analyzed . 34

3.4 Results of Network Analysis . 34
3.4.1 Motif Finding . 34
3.4.2 Relative Treelet Frequency Distances 35
3.4.3 Treelet Degree Distribution Agreements 37
3.4.4 Clustering Using Treelet Frequency Counts 39
3.4.5 Node and Edge Deletion and Edge Rewiring 39
3.4.6 Comparisons to Recent Work 42

3.5 Conclusions . 43

Chapter 4
Fast-Align Network Alignment 44
4.1 Introduction . 44
4.2 Network Alignment . 44
4.3 Background . 46

4.3.1 Graphlets . 46

vi

4.3.1.1 Graphlet Degree Signature Similarity 46
4.3.2 Treelets . 47
4.3.3 GRAAL . 47
4.3.4 Alignment Evaluation . 49

4.4 Experimental Setup . 50
4.5 Results . 51

4.5.1 Execution Times . 51
4.5.2 Alignment Analysis . 52

4.6 Conclusions . 55

Chapter 5
FastPath Minimum Weight

Path Finding 56
5.1 Introduction . 56
5.2 Related Work . 57
5.3 Enumerating low-weight simple paths with FastPath 57

5.3.1 Experimental Setup . 60
5.4 FastPath performance . 60
5.5 Conclusions . 63

Chapter 6
Multistep Method for

Graph Connectivity 65
6.1 Introduction . 65
6.2 Strongly Connected Components 65

6.2.1 Contributions . 66
6.3 Background . 67

6.3.1 Strongly Connected Components 67
6.3.1.1 Serial Algorithms 67
6.3.1.2 Forward-Backward 68
6.3.1.3 Color Propagation 69
6.3.1.4 Other Parallel SCC Approaches 70

6.3.2 Connected and Weakly Connected Components 70
6.4 Applying the Multistep Method 71

6.4.1 Trim Step . 71
6.4.2 Breadth-First Search . 72
6.4.3 Color Propagation . 73
6.4.4 Serial Step . 75
6.4.5 Connected Components and Weakly Connected Components 75

6.5 Experimental Setup . 76

vii

6.6 Experimental Results . 77
6.6.1 Strongly Connected Component Decomposition 78
6.6.2 Connected and Weakly Connected Component Decomposition 81

6.7 Conclusion . 82

Chapter 7
Biconnectivity Algorithms for Multicore 83
7.1 Introduction . 83
7.2 Biconnected Components . 83

7.2.1 Contributions . 84
7.3 Background . 85

7.3.1 Hopcroft-Tarjan Algorithm 85
7.3.2 Tarjan-Vishkin Parallel Algorithm 86

7.3.2.1 Cong-Bader TV-Filter Algorithm 87
7.3.3 Related Work . 88

7.4 New Parallel Algorithms . 89
7.4.1 BFS-based BiCC method . 89

7.4.1.1 Identifying Biconnected Subgraphs 92
7.4.1.2 Parallelization . 95
7.4.1.3 Algorithm Analysis 95

7.4.2 Coloring-based BiCC Method 96
7.4.2.1 Identifying BiCC with Color Propagation 97
7.4.2.2 Parallelization . 99
7.4.2.3 Algorithm Analysis 100

7.5 Experimental Setup . 100
7.6 Results . 101

7.6.1 Execution times and Scaling 101
7.6.2 Breadth-First Search Analysis 102
7.6.3 Color Propagation Analysis 104
7.6.4 Performance impact of root vertex choice 106

7.7 Conclusions . 107

Chapter 8
Graph Processing on Manycores 108
8.1 Introduction . 108
8.2 Manycore Processing . 108
8.3 Portable Graph Algorithms for Manycore 112

8.3.1 The Kokkos Programming Model 112
8.3.2 Breadth-first Search . 112
8.3.3 Color Propagation . 113

viii

8.3.4 Strongly Connected Components 113
8.4 Optimization Methodologies . 114

8.4.1 Thread Teams, Local Synchronization, Shared and Global
Memory . 115

8.4.2 Hierarchical Exploration to Improve SM Utilization 116
8.4.3 Loop Collapse for Better Load Balance 118

8.4.3.1 Local Manhattan Collapse 119
8.4.3.2 Global Manhattan Collapse 120

8.5 Performance Analysis and Discussion 121
8.5.1 Experimental Setup . 121
8.5.2 BFS Performance . 123
8.5.3 Color Propagation Performance 124
8.5.4 SCC Evaluation and Performance Portability 125
8.5.5 Comparisons to Prior Work 129

8.6 Conclusions . 130

Chapter 9
Complex Small-world Graph Partitioning 131
9.1 Introduction . 131
9.2 Graph Partitioning . 131
9.3 Preliminaries: The Graph Partitioning Problem 134
9.4 PuLP: Methodology and Algorithms 136

9.4.1 Label Propagation . 136
9.4.2 PuLP Overview . 137
9.4.3 PuLP Initialization . 139
9.4.4 PuLP Vertex Balancing and Total Edge Cut Minimization . 140
9.4.5 PuLP Edge Balancing and ECmax Minimization 143
9.4.6 Algorithm Parallelization and Optimization 147

9.5 Results and Discussion . 147
9.5.1 Experimental Setup . 147
9.5.2 Performance Evaluation . 148
9.5.3 Execution Time and Memory Utilization 149
9.5.4 Edge Cut and Maximal Per-Part Edge Cut 153
9.5.5 Justification for Algorithmic Choices 158
9.5.6 Re-balancing Single Constraint Single Objective Partitions . 161
9.5.7 DIMACS 10th Implementation Challenge Comparison 161

9.6 Related Work . 163
9.7 Conclusions . 164

ix

Chapter 10
Distributed Graph Layout 166
10.1 Introduction . 166
10.2 Distributed Graph Processing and Layout 166
10.3 DGL: Distributed Graph Layout 169

10.3.1 Partitioning . 169
10.3.2 Ordering . 171

10.4 Parallel Graph Computations . 172
10.4.1 Distributed PageRank . 173
10.4.2 Subgraph Counting . 174
10.4.3 SSSP and BFS . 175
10.4.4 Distributed RDF Stores and SPARQL Query Processing . . 176

10.5 Experimental Setup . 177
10.6 Results and Discussion . 179

10.6.1 DGL Performance Evaluation 179
10.6.2 PageRank Performance . 184
10.6.3 Subgraph Counting Performance 186
10.6.4 Execution Timelines . 188
10.6.5 SSSP and BFS Performance 189
10.6.6 SPARQL Query Processing 191

10.7 Related Work . 193
10.8 Conclusions . 194

Chapter 11
Distributed Graph Processing 195
11.1 Introduction . 195
11.2 Graph Processing on HPC . 195
11.3 Design Choices and Optimization 198

11.3.1 I/O and pre-processing . 198
11.3.2 Partitioning Strategy . 199
11.3.3 Distributed Graph Representation 200
11.3.4 Implemented Algorithms . 201

11.3.4.1 Algorithm Overviews 202
11.3.4.2 PageRank-Like Algorithms 203
11.3.4.3 BFS-like Algorithms 205

11.3.5 MPI+OpenMP . 206
11.4 Data and Setup . 208
11.5 Performance Results . 211

11.5.1 End-to-end Analytic Execution Time 211
11.5.2 Weak and Strong Scaling . 212

x

11.6 Comparison to Prior Work . 215
11.6.0.1 Further Comparisons 217
11.6.0.2 Other Related Work 217

11.7 Web Graph Analysis . 218
11.7.1 Computing Global Statistics 218
11.7.2 Centrality Measures . 219
11.7.3 Community Structure . 220
11.7.4 K-core Distribution . 222

11.8 Conclusion . 222

Chapter 12
Concluding Remarks 224
12.1 Summary of Contributions . 224
12.2 Future Directions . 226

Bibliography 228

xi

List of Figures

2.1 Select templates used in performance analysis. 19
2.2 All possible 7 vertex undirected tree-structured templates. 20
2.3 Fascia running times on templates of size 5, 7, 10, and 12 vertices,

on the Portland and Orkut networks, for a single iteration, with
inner loop parallelism. 21

2.4 Fascia running times on templates of size 5, 7, 10, and 12 on
the H. pylori, S. cerevisae, and H. sapiens PPI networks for 100
iterations with outer loop parallelism. 21

2.5 Parallel scaling from 1 to 16 cores of the U12-2 template on the
Portland network for a single iteration with inner-loop parallelism
(left) and parallel scaling for 100 iterations of all 10 vertex templates
on the H. pylori network with both inner and outer scaling (right). . 23

2.6 Peak memory use reduction on the unlabeled and labeled Portland
network with the improved table (left), and memory use reduction
that results from using an improved table and hash table on the PA
Road network (right). 23

2.7 Error obtained with the 3 and 5 vertex path templates on the Enron
network after a small number of iterations (left) and the average
error over all possible 7 vertex templates on the H. pylori network
after 1 to 10 K iterations (right). 24

2.8 Running times on 16 nodes of Compton of tested 5, 7, and 10 vertex
templates on the sk-2005 and Twitter networks for a single iteration
with partitioned counting and inner loop parallelism. 26

2.9 Parallel scaling from 1 to 16 nodes of the U12-2 template on Orkut
network and the U7-2 template on the sk-2005 network for a single
iteration with partitioned counting and inner loop parallelism. . . . 26

3.1 Relative frequencies of all seven vertex treelets on five different
networks. 35

xii

3.2 Treelet frequency distances between all tested networks. Darker
implies a lower distance or higher similarity. 36

3.3 Treelet degree distribution agreements between all tested networks.
Darker implies a higher agreement. 38

3.4 Treelet counts after 5%, 10%, 20%, 50%, and 75% vertices are
deleted. 40

3.5 Treelet counts after 5%, 10%, 20%, 50%, and 75% edges are deleted. 41
3.6 Subgraph counts after 5%, 10%, 20%, 50%, and 75% edges are

rewired. 41

4.1 All possible graphlets and orbits. From [1]. 46
4.2 Execution times for both Fascia and GRAAL to count several

networks. 52
4.3 Edge correctness across all network alignments with the α parameter

fixed at 0.8. 53
4.4 Edge correctness across all alignments with a variable α parameter. 54
4.5 Edge correctness across all alignments with a variable α parameter. 54

5.1 Absolute running times for 500 iterations of finding path lengths 4
through 9 using the Hüffner et al. baseline and heuristic methods,
as well as FastPath in serial and on 16 cores. 61

5.2 Speedup for FastPath from 1 to 16 cores for path lengths 4 through
9. 61

5.3 Sample minimum-weight paths of path length five found in the
MINT Human PIN using FastPath (top) and FASPAD (bottom).
The path weight is 0.0211329 in both cases. 62

6.1 Finding SCCs: Parallel scaling of Multistep and Hong et al.
relative to Tarjan’s serial algorithm. 79

6.2 Left: Proportion of time spent in each subroutine of the Multistep
algorithm. Right: Comparing possible trimming procedures (S:
Simple, N: None, C: Complete) in Multistep for several networks. 79

6.3 Approximate weak scaling of Multistep compared to color propa-
gation and naïve FW-BW on R-MAT graphs. 80

6.4 Finding CCs: Parallel scaling of Multistep CC, Ligra, and MS-
Coloring relative to the serial DFS approach. 81

6.5 Finding WCCs: Comparison of WCC-Multistep and MS-Coloring
scaling relative to the serial DFS approach. 81

xiii

7.1 Parallel scaling of BFS and Coloring approaches as well as Cong
and Bader’s implementation relative to the serial Hopcroft-Tarjan
algorithm. 103

7.2 Per-step execution time breakdown of the BiCC-BFS approach. . . 104
7.3 Per-step breakdown of the Coloring approach. 105

8.1 BFS performance in terms of GTEPS (left) and speedup vs. Baseline
(right) on a Tesla K40M using Manhattan-Local (ML), Manhattan-
Global (MG), and Hierarchical (H) loop collapse strategies. 123

8.2 Impact in terms of GTEPS (left) and speedup vs. Baseline (right) of
various optimization strategies (Manhattan Collapse (M), coalescing
(C), team-scan (S), and local primitives (L)) on a Tesla K40M BFS
performance. 124

8.3 Color propagation performance in terms of GTEPS (left) and
speedup vs. Baseline (right) on a Tesla K40M using Manhattan-
Local (ML), Manhattan-Global (MG), and Hierarchical (H) loop
collapse strategies. 125

8.4 Cross-platform performance comparison of SCC implementations. . 127

9.1 Scaling for each partitioner in terms of execution time versus number
of cores (top), total memory utilization versus number of cores (2nd
from top), execution time versus number of computed parts (3rd
from top), and memory utilization versus number of computer parts
(bottom). 152

9.2 Quality metrics of total cut edge ratio (top) and scaled maximum
per-part edge cut ratio (bottom) for PuLP-M, PuLP-MM and
METIS-M. 154

9.3 Comparison of PuLP, PuLP-M, and PuLP-MM with regards to
execution time, edge cut, and max per-part cut to demonstrate the
effects of more complex constraints and objectives on execution. . . 157

9.4 Per-iteration performance of PuLP-MM in terms of total edge cut,
max per-part edge cut, vertex imbalance, and edge imbalance when
computing 64 parts of amazon. 160

9.5 Using PuLP-MM to re-partition single objective single constraint
partitions computed with KaFFPa-FS. Shown are graphs amazon
(top) and webbase (bottom) plotted with edge cut (left) and max
per-part cut (right) versus number of parts. 162

9.6 Edge cut versus number of parts for a few select representative
instances from the 10th DIMACS Challenge for PuLP, METIS,
KaFFPa-fast, and KaFFPa-fastsocial. 163

xiv

10.1 Bandwidth of Blue Waters for various memory and MPI benchmarks. 179
10.2 Communication speedup of the PageRank implementation on 16

nodes with various partitioning options (top) and computation
speedup of PageRank with various ordering strategies (bottom). . . 184

10.3 Speedups achieved with subgraph counting for total communica-
tion time of the various partitioning strategies relative to random
partitioning, all with random ordering. Additionally, the speedups
for the RCM and DGL orderings relative to random ordering with
PuLP multi objective partitioning. The bottom plot gives total
end-to-end execution time in terms of the initial partitioning, total
computation time, and total communication time. 186

10.4 Subgraph counting (top, single color-coding iteration with a 10-
vertex template) and PageRank (bottom, 10 iterations) execution
timelines on 16 tasks and 32 threads with (left to right) random,
single and multi-constraint METIS, and PuLP-MM partitioning
strategies. Random ordering was used in all cases. 188

10.5 Communication time of SSSP implementation on 64 nodes with
various partitioning options (top) and computation time of SSSP
with various ordering strategies (bottom). 190

10.6 Communication time of BFS implementation on 16 nodes with
various partitioning options (top) and computation time of BFS
with various ordering strategies (bottom). 191

11.1 Weak scaling of R-MAT and GNP graphs of scale 25 to 32 size
running on 8-1024 nodes of Blue Waters. 213

11.2 Strong scaling of the Web Crawl graph as well as R-MAT and GNP
graphs of equivalent size running Label Propagation on 256-4096
nodes of Blue Waters. 213

11.3 Minimum, maximum, and average per-task execution time ratio of
computation, communication, and idle times for scaling from 256 to
4096 nodes on Blue Waters. 214

11.4 Comparison of our code running on Compton to various popular
graph analytic frameworks. 216

11.5 Cumulative vertex versus in and out edge fraction for the web crawl
and random graph. 219

11.6 Frequency plot of community structure 222
11.7 Cumulative fraction of vertices versus approximate k-core values. . . 223

xv

List of Tables

2.1 Network sizes and average and maximum degrees and approximate
diameter for all networks used in our analysis. 19

3.1 Networks analyzed in this study: categories, counts, and sizes in
terms of the maximum and minimum numbers of vertices (n) and
edges (m) for each network category. 33

4.1 12 networks comprising the 8 alignments that were used for testing.
The four bottom networks were all aligned to the Human1 network. 50

5.1 Network sizes and average and maximum degrees and approximate
diameter for the networks used in our analysis. 60

5.2 The lowest weight paths obtained with FastPath for several net-
works and path lengths, along with its z-score calculated using the
mean and standard deviation of a random sample of paths. 63

6.1 Information about test networks. Columns are # vertices, # edges,
average and max. degree, approximate diameter, # of (S)CCs, and
size of the largest (S)CC. 77

6.2 Comparison of serial Tarjan’s algorithm with parallel Multistep,
Hong et al. , Naïve FW-BW, and color propagation, running on 16
cores. 78

7.1 Network sizes and parameters for all networks. The columns are
#vertices, #edges, average and max-degree, approximate diameter,
of BiCCs and size of the largest BiCC. 101

7.2 Execution time (seconds) result comparison between the serial
Hopcroft-Tarjan algorithm, TV-Filter algorithm on 32 threads, and
the new BFS-BiCC and Color-BiCC approaches on 32 threads. . . . 102

xvi

7.3 Execution time (in seconds) comparison between the serial algorithm,
a standard BFS run, and the BFS-BiCC algorithm. Additionally, a
ratio of the average number of edges examined during the inner-loop
BFS is given. 103

7.4 Execution time (in seconds) comparison between the serial algorithm,
a color propagation algorithm for connected components, and the
Color-BiCC algorithm. Additionally, the total number of color
propagations divided by the number of edges in the network is
reported. 105

7.5 Speedups resulting for both the BFS and coloring algorithms with
the heuristically-chosen root vertex compared to the average result
over 20 randomly selected root vertices. 106

8.1 Information about test networks. Columns are # vertices, # edges,
average and max. degree, # of SCCs, # number of nontrivial SCCs,
and size of the largest SCC. 122

8.2 Cross-architectural performance comparison of best variants. 128

9.1 PuLP inputs, parameters, and subroutines. 138
9.2 Test graph characteristics after preprocessing. # Vertices (n), #

Edges (m), average (davg) and max (dmax) vertex degrees, and
approximate diameter (D̃) are listed. The bottom ten graphs are
all web crawls, while the top five are of various types. B = ×109,
M = ×106, K = ×103. 148

9.3 Comparison of execution time of serial and parallel (16 cores) PuLP-
MM algorithm with serial METIS-M, KaFFPa-FS, ParMETIS (best
of 1 to 256 cores), computing 32 parts. The “All” speedup compares
parallel PuLP-MM to the best of the rest. 150

9.4 PuLP efficiency: Maximum memory utilization comparisons for
generating 32 parts. 151

9.5 Performance for each partitioner and graph as the geometric mean of
the ratio of produced edge cut (EC) and max per-part cut (ECmax)
relative to the best for across each network and number of generated
parts. 155

9.6 Comparison of the two quality metrics, EC and ECmax for PuLP-
MM and METIS-M when computing 512 parts. The % improvement
shows relative improvement in quality for PuLP-MM with respect
to METIS-M quality. 156

xvii

9.7 Comparison of the multiple variants of algorithmic choices on quality
in terms of edge cut (top) and max per-part cut (bottom) relative
to PuLP-MM. 159

10.1 Test graph characteristics after preprocessing. Graphs belong to
three categories, OSN: Online social networks, WWW: Web crawl,
RDF: graphs constructed from RDF data. # Vertices (n), # Edges
(m), average (davg) and max (dmax) vertex degrees, and approximate
diameter (D̃) are listed. B = ×109, M = ×106, K = ×103. 178

10.2 PuLP-MM and METIS-M partitioning time with 16-way and 64-
way partitioning. PuLP-MM uses multi-constraint multi-objective
partitioning. METIS-M uses multi-constraint single-objective parti-
tioning. 181

10.3 Average partitioning characteristics across all graphs. Geometric
mean of vertex balance Vmax, edge balance Emax, improvement over
random partitioning for edge cut ratio EC and max per-part edge
cut ECmax, and the mean improvement (decrease) in the average
total number of connected components for all parts (#CCs) are
shown. The best values for each of the last three columns are in
bold font. 181

10.4 DGL serial reordering time with 16-way and 64-way partitioning. . 182
10.5 Ordering performance for DGL, RCM, and Random in terms co-

location ratio (Co-loc. Ratio) and log sum of gap distances (Gap
Sum Ratio) for 16-way and 64-way partitioning, averaged across the
five different partitioning strategies. 183

10.6 Speedups of various partitioning and ordering strategies versus
random partitioning and random ordering for the PageRank counting
benchmark. 184

10.7 Speedups of various partitioning and ordering strategies versus
random partitioning and random ordering for the subgraph counting
benchmark. 186

10.8 Speedups of various partitioning and ordering strategies versus
random partitioning and random ordering for the SSSP counting
benchmark. 190

10.9 Speedups of various partitioning and ordering strategies versus
random partitioning and random ordering for the BFS counting
benchmark. 191

10.10Distributed RDF store replication ratios using various partitioning
strategies. An undirected 2-hop guarantee is enforced. Lower values
are better and best value for each graph and parts count is in bold. 192

xviii

10.11Total query times in seconds relative for the various partitioning
and ordering strategies, summed over all 3 graphs with 16 parts. . . 193

11.1 Distributed Graph Representation. 200
11.2 Real world and generated graphs used during experiments. 210
11.3 Parallel performance for various stages of graph construction. 211
11.4 Exec. Times on 256 Nodes of Blue Waters. 212
11.5 The top 10 web pages according to different centrality indices (*

Harmonic, PageRank centrality rankings are approximate). 220
11.6 The top 10 communities ordered by vertex count, as given by our

clustering output. The top half shows the list after 10 iterations,
and the bottom list is after 30 iterations. 221

xix

List of Algorithms

2.1 Subgraph counting using color coding. 10
2.2 The dynamic programming step in Fascia. 11
2.3 Dynamic programming routine with distributed counting. 16
2.4 Fascia Fully Partitioned Counting Approach. 16
4.1 GRAAL Alignment Algorithm . 48
5.1 FastPath: Enumerating low-weight simple paths using color-coding. 58
6.1 Forward-Backward Algorithm . 68
6.2 Color Propagation Algorithm . 69
6.3 Pseudocode for MS-Coloring . 74
7.1 Hopcroft-Tarjan biconnectivity algorithm to identify articulation

points. 85
7.2 Recursive DFS used in Hopcroft-Tarjan algorithm. 86
7.3 Tarjan-Vishkin algorithm to identify articulation points. 86
7.4 Cong-Bader algorithm to identify articulation points. 88
7.5 BFS-based algorithm to identify articulation points in BiCC decom-

position. 91
7.6 Truncated BFS subroutine in the BFS-ArtPts algorithm. 91
7.7 BFS-based algorithm to perform BiCC decomposition. 93
7.8 Truncated BFS subroutine in BFS-BiCC to identify articulation

points and track component vertex set. 94
7.9 Color propagation-based algorithm to perform BiCC decomposition. 98
7.10 Initialize the LCA for all neighbors using parents and level information. 99
8.1 A template followed by several serial and parallel graph algorithms

operating on a sparse graph G(V,E). m = |E|, n = |V |, and
m = O(n log n). 109

8.2 Color Propagation pseudocode. 114
8.3 Hierarchical Expansion. 117
8.4 Local Manhattan loop collapse. 119
8.5 Global Manhattan loop collapse. 120
9.1 Baseline label propagation algorithm. 137

xx

9.2 PuLP multi-constraint multi-objective algorithm. 137
9.3 PuLP BFS-based partition initialization procedure. 140
9.4 PuLP single objective vertex-constrained label propagation stage. . 141
9.5 PuLP single objective vertex constrained refinement stage. 143
9.6 PuLPmulti-objective vertex and edge-constrained label propagation

stage. 144
9.7 PuLP multi-objective vertex and edge-constrained refinement stage. 146
10.1 Label Propagation Algorithm . 170
10.2 PuLP Multi-Constraint Multi-Objective Algorithm Overview . . . 171
10.3 DGL BFS-based vertex ordering algorithm. 173
10.4 Distributed PageRank . 174
10.5 Subgraph counting Fully Partitioned Counting Approach. 175
11.1 Distributed PageRank . 204
11.2 Distributed BFS . 207
11.3 Distributed PageRank initialization demonstrating OpenMP thread

queuing. 209

xxi

Acknowledgments

I would first and foremost like to thank my advisor Kamesh Madduri for giving me
the opportunity to return to Penn State and complete my PhD. His assistance and
guidance has made this research possible. I also thank him for guiding me towards
challenging problems to work on and for inspiring my interest in the research
contained in this thesis. He has also gone above and beyond in assisting with my
professional development and opening up many new opportunities.

I would also like to thank Siva Rajamanickam of Sandia National Labs for
acting as my mentor during the past three years. He has also done exceptionally
well at guiding my development as a researcher. He has also made available the
personal and technical expertise and equipment of Sandia, which has undoubtedly
greatly helped with the bulk of work that went into this document.

I’d further like to thank the National Center for Supercomputing Applications
and the Blue Waters project for offering me the Blue Waters Graduate Fellowship
during my previous academic year as well as continued use of the Blue Waters
supercomputing system. This assistance has enabled a considerable amount of
research that would have otherwise not been possible.

Thanks are also extended to my mom, dad, and other family and friends.
There is no doubt that I would not have made it through almost nine years of
undergraduate and graduate schooling without your continued emotional support.

In addition, the following acknowledgment towards the grants and funding has
made my degree and this research possible:

This research is part of the Blue Waters sustained-petascale computing project,
which is supported by the National Science Foundation (awards OCI-0725070, ACI-
1238993, and ACI-1444747) and the state of Illinois. Blue Waters is a joint effort
of the University of Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications. This work is also supported by NSF grants ACI-
1253881, CCF-1439057, and the DOE Office of Science through the FASTMath
SciDAC Institute. Sandia National Laboratories is a multi-program laboratory

xxii

managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

xxiii

Dedication

To Cheebs.

xxiv

Chapter 1 |
Introduction

This thesis explores the topic of graph analytics through novel algorithm develop-
ment, implementation methodologies for modern systems, and applications from
a broad reach of disciplines. Graph in this context refers to the mathematical
construct which models pairwise relationships between discrete objects. Graph
analytics forms an essential aspect of the study of biology, chemistry, physics, social
networks, and numerous other sources of graph-structured data within the scientific
realm [1–5]. The mathematical and computational difficulties associated with
analyzing highly dimensional and complex graphs is widely recognized, and it is
correspondingly listed as one of DARPA’s 23 toughest mathematical challenges [6].
The general problem of computation at a massive scale is also considered on that
list. Modern security concerns additionally create a definite need for real-time
analysis of large and variable data [7]. Developing fast and scalable approaches for
graph analysis is necessary in order to tackle these challenges.

This thesis will explore the development of algorithms and implementations
for basic graph problems such as subgraph isomorphism and its variants, graph
connectivity and traversal, and graph partitioning, as they form a foundation
upon which a lot of graph analysis techniques are built. A major theme of this
thesis is graph implementation techniques for modern high performance computing
architectures, such as multicore and manycore processors and highly parallel dis-
tributed systems. The overarching goal of this thesis was to determine how to best
improve the parallel efficiency of irregular graph computations through exploiting
the architectural features of modern hardware.

1

1.1 Overview of Graph Problems Considered
One of the longstanding computational problems in graph theory is subgraph
isomorphism [8], which is determining if a smaller graph is contained within a larger
one. Subgraph isomorphism and its variants are extremely useful for analyzing
large graphs [2]. For instance, counting and enumerating the occurrences of a
repeating substructures in a graph is how one might determine the number and
location of certain interaction types within a social network or financial transaction
network [3]. Finding frequently occurring subgraphs, or motifs, enables important
information about the data to be retrieved without any prior knowledge as to the
structure of the data [4]. Anomaly detection allows the discovery of unwanted or
irregular patterns in the data, such as erroneous operation of an electrical network
or the attempted penetration of a secure computer system [5]. One of the primary
difficulties with analyzing large graphs is that several of the aforementioned problems
are considered NP-Hard. Using heuristic-based algorithms, it is not uncommon
for graphs with only millions of edges and nodes to take hours to search, even
using fast and massively parallel algorithms [9]. However, state-of-the art heuristics
and approximation algorithms still demonstrate considerable promise for these
problems; consider that on even moderate scale problems of hundreds of thousands
of edges, an approximation algorithm can improve execution times for subgraph
counting from over an hour and a half in the naïve case to under half of a second
with minimal error [10]. As such, one of early goals of this thesis effort was to
develop a subgraph counting tool and suite of analytics to allow fast and memory
efficient subgraph-based analysis of modern real-world datasets.

Another important graph-theoretic set of problems is those that deal with
graph connectivity. Graph connectivity and its related problems, such as weak
connectivity, strong connectivity, and biconnectivity, are useful preprocessing or
analytic steps for web and social graph analysis [11–14], model verification [15],
and scientific computing [16]. Although these connectivity problems have solutions
computable through optimal linear time serial algorithms [17, 18], these algorithms
involve depth-first search as a central subroutine, which isn’t parallelizable and
doesn’t scale to modern real-world graph sizes. In previous decades, a number of
efficient parallel algorithms were introduced for these problems [15,19,20]. However,
for problems on large real-world irregular data, such as computing the strongly

2

connected components of a crawl of the Italian .it domain, parallel execution times
using a prior approach are nearly half an hour; using a modern approach, this time
can be reduced to under two seconds [21]. Therefore, a second area of this thesis
research was to develop new approaches for these problems with modern multicore
architectures in mind to enable scalable analysis and preprocessing of such graphs.

One major problem involving graph analytics is that, due to the structure
common to most emerging real-world graphs (poor locality of memory access, high
complexity, etc.), the efficient parallelization of most graph algorithms on emerging
platforms is very challenging. Advanced hardware architectures utilizing many
simple cores in a shared memory environment, such as GPUs or the Intel Xeon Phi,
pose a large set of challenges for algorithm designers to overcome [22–26]. Since
many-core GPUs and coprocessors now power the world’s fastest supercomputers
alongside multicore CPUs, the importance of tackling such challenges is considerable.
As such, this thesis considered how best to design graph algorithms that are effective
on new many-core architectures and heterogeneous environments. This thesis
includes a thorough investigation of the performance of graph algorithms, such as
graph traversal, components decomposition, and color propagation, running on
multicore and manycore systems and an analysis in how to best exploit the highly
threaded and computationally-focused nature of modern manycore hardware to
ensure high performance of these and other memory-intensive algorithms.

When analyzing massive graphs in distributed memory architectures, an initial
and highly important question is, how must one organize the data structures
representing a real small-world graph (web crawl, social network, etc.) on a cluster
of multicore nodes, with each node having 32-64 GB memory? Fully replicating the
data structures on each process is infeasible for massive graphs. A graph topology-
agnostic partitioning will lead to severe load imbalances when processing graphs
with skewed degree distributions. Additionally, current partitioning tools [27–29]
often don’t optimize for the objectives and constraints important for the high
performance of small-world graph computations, nor do they scale to the sizes of
modern real-world datasets. Further, intra-node vertex ordering after partitioning
can also have a considerable effect on execution times of complex analytics [30].
This thesis investigated the effects of small-world graph layout on graph analytic
performance and subsequently developed partitioning and ordering strategies under
such considerations.

3

Recently, a large number of openly-available parallel graph-analytic frame-
works have been introduced with the stated goal of high scalability (GraphX [31],
GraphLab and its variants [32–34], FlashGraph [35], Giraph [36], etc. [37–39]).
However, in practice, most of these frameworks fail to demonstrate performance
better than optimized serial code in a large cluster while failing to even being able
process graphs larger than would fit in memory of a typical workstation (GraphX,
GraphLab, and most others) [40], demonstrate strong performance but require spe-
cialized hardware (FlashGraph), or only give reasonable performance at a very large
scale (Giraph) [41]. Combing lessons learned throughout earlier research efforts on
optimizing shared- and distributed-memory graph computations, a final aspect of
this thesis deals with creating a general-purpose distributed graph computation
approach that shows performance and scalability at all computational scales from
a single node to thousands of nodes.

The fact that graph-structured data is so universal means that these research
directions are useful to almost all fields within the social and physical sciences. Due
to the large graphical datasets commonly collected for many fields, it is necessary to
develop new parallel graph algorithms and techniques in order to allow analysis of
these massive data sets on modern multicore, manycore, and distributed processing
systems. This thesis work aims towards a better understanding of the world through
enabling the analysis of large amounts of scientific graphical data.

1.2 Thesis Organization
The following content of this thesis document is organized into 10 chapters in about
4 related sections. Chapters 2-5 discuss subgraph counting and related problems
on multicore and distributed systems as well as some of its applications; Chapters
6-8 discuss graph connectivity algorithms and their implementation on multicore
and manycore processors; Chapters 9 and 10 discuss small-world graph partitioning
and vertex ordering approaches for graph layout in distributed memory; Chapter
11 discusses implementation and optimization approaches for massive scale graph
analysis and its application towards analyzing the current (as of early 2016) largest
publicly available web crawl.

More specifically, Chapters 2-5 examines subgraph counting, subgraph counting
applications for graph analysis, minimum and maximum weighted path finding,

4

and graph alignment. The content of these chapters is composed from the following
papers and presentations:

• Fast Approximate Subgraph Counting and Enumeration, published
at the 2013 International Conference on Parallel Processing (ICPP13). [10]

• Complex Network Analysis using Parallel Approximate Motif Count-
ing, published at the 28th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS14). [42]

• Parallel Color-Coding, published in Parallel Computing, Systems & Ap-
plications. [43]

• Fascia: Fast Approximate Subgraph Counting and Enumeration,
poster presentation at the 2013 SIAM Workshop on Network Science (NS13).

• Characterizing Biological Networks Using Subgraph Counting and
Enumeration, presented at the 16th SIAM Conference on Parallel Processing
for Scientific Computing (PP14).

Chapters 6-8 look at the problems of connectivity, weak and strong connectivity,
biconnectivity, and the implementation of a subset of these and related algorithms
in manycore GPU and Xeon Phi environments. The content of these chapters is
composed from following papers and presentations:

• BFS and Coloring-based Parallel Algorithms for Strongly Con-
nected Components and Related Problems, published at the 28th IEEE
International Parallel and Distributed Processing Symposium (IPDPS14). [21]

• Simple Parallel Biconnectivity Approaches for Multicore Platforms,
published at the IEEE Conference on High Performance Computing (HiPC
2014). [44]

• High-performance Graph Analytics on Manycore Processors, pub-
lished at the 29th IEEE International Parallel and Distributed Processing
Symposium (IPDPS15). [45]

• Computing Strongly Connected Components in Modern Architec-
tures, presented at the 2013 SIAM Annual Meeting (AN13).

5

• Parallel Strongly Connected Components in Shared Memory Ar-
chitectures, presented at the 16th SIAM Conference on Parallel Processing
for Scientific Computing (PP14).

Chapters 9-10 introduce the PuLP partitioner for complex partitioning of
small-world graphs and the DGL layout strategy for distributed graph processing.
These chapters were composed from the following papers and presentations:

• Complex Network Partitioning Using Label Propagation, currently
under review. [46]

• PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for
Small-World Networks, published at the 2nd IEEE Conference on Big
Data (BigData 2014). [47]

• Distributed Graph Layout for Scalable Small-World Network Anal-
ysis, currently under review. [30]

• PuLP: Fast and Simple Complex Network Partitioning, presented
at the Dagstuhl Seminar 14461, High-performance Graph Algorithms and
Applications in Computational Science.

• Parallel Complex Network Partitioning, poster presentation at the 2014
IEEE International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC14).

Chapter 11 details an end-to-end methodology for distributed processing of
large-scale real world graphs, an implementation methodology for several distributed
and scalable graph analytics, and applying both for analyzing real-world data. The
content of this chapter is composed from the following paper:

• A Case Study of Complex Graph Analysis in Distributed Memory:
Implementation and Optimization, to be published at the 30th IEEE
International Parallel and Distributed Processing Symposium (IPDPS16). [48]

6

Chapter 2 |
Fascia Subgraph Counting

2.1 Introduction
This chapter describes the implementation of a known fast approximate algorithm
for the problem of subgraph counting and enumeration. We perform a parallel
implementation designed for shared-memory multicore processors and describe
several optimization techniques applicable both to our specific code as well as
is generalizable to other algorithms for which the approximation technique is
applicable. Our approaches run both orders-of-magnitude faster and use orders-
of-magnitude less memory than prior work, which allows the analysis of networks
much larger than previously possible.

2.2 Color-coding and Subgraph Counting
The color-coding method is a simple and elegant graph-theoretic strategy that
gives fixed parameter tractable algorithms for several NP-hard and NP-complete
problems. Color-coding was first proposed by Alon, Yuster, and Zwick [49]. In this
chapter, we present efficient shared- and distributed-memory parallelizations of this
strategy for subgraph counting. We use new data structures and optimizations to
reduce peak memory utilization and inter-processor communication. We also create
the software tool Fascia, which uses parallel color-coding and subgraph counting
to solve several subgraph-based graph analytic problems.

Subgraph counting is the problem of counting the number of occurrences of
a template or subgraph within a larger graph. This problem is a variant to the

7

classical NP-complete [50] subgraph isomorphism problem. Other related problems,
such as subgraph enumeration, tree isomorphism, motif finding, frequent subgraph
identification, etc. are all fundamental graph analysis methods to identify latent
structure in complex data sets. They have applications in bioinformatics [4, 51, 52],
chemoinformatics [53], online social network analysis [54], network traffic analysis,
and many other areas.

Subgraph counting and enumeration are compute-intensive problems. A naïve
algorithm, which exhaustively enumerates all vertices reachable in k hops from
a vertex, runs in O(nk) time, where n is the number of vertices in the network
and k is the number of vertices in the subgraph. For large networks, this running
time complexity puts a constraint of the size of the subgraph (value of k). If
k is larger than 2 or 3, exact counting becomes prohibitively expensive. Thus,
there has been a lot of recent work on approximation algorithms. Approaches are
generally based on sampling or on exploiting network topology. Sampling-based
methods analyze a subset of the network and extrapolate counts based on the
observed occurrences and network properties. Some tools based on sampling are
MFINDER [55], FANMOD [56], and GRAFT [57]. The other class of methods
impose some constraint on the network or transform the network so that the possible
search space is restricted. Examples of tools imposing constraints on the network
are NEMO [58] and SAHAD [9]. Tools based on the color-coding method belong
to the second category, and this forms the basis of our current work.

The color-coding method for this problem uses a dynamic programming scheme
to generate an approximate count of a given non-induced tree-structured sub-
graph/template (also referred to as a treelet) in O(m · 2k) time, where m is the
number of edges in the network. The algorithm can be informally stated as follows:
every node in a network is randomly colored with one of at least k possible colors.
The number of colorful embeddings of a given input template is then counted, where
colorful in this context means that each node in the template embedding has a
distinct color. The total embedding count is then scaled by the probability that any
given embedding of the template is colorful, in order to generate an approximation
for the total number of possible embeddings. This colorful embedding counting
scheme avoids the prohibitive O(nk) bound seen in exhaustive search.

8

2.3 Related Work
Subgraph counting has recently emerged as a widely-used graph analytic in various
domains, especially the biological and social sciences. Pržulj has demonstrated that
graphlets—all 2-5 vertex induced undirected subgraphs—are a useful analytic for
biological network comparisons [51]. Pržulj and Milenkovič et al. have extended this
work to several other subgraph-based comparative metrics [1, 59, 60]. Bordino et al.
used counts of both small undirected and directed subgraphs, similar to graphlets,
to cluster networks of various types (e.g. citation networks, road networks, etc.) [61].

Alon et al. implemented color-coding subgraph counting to demonstrate its
applicability for finding large tree-structured motifs in biological networks [52].
Zhao et al. implemented distributed color-coding subgraph counting for large graphs
via both MPI and MapReduce, with applications in social network analysis [9, 62].
Color-coding can also be used to count and enumerate cycles, cliques, and bounded
treewidth subgraphs [49].

2.4 Color-coding Implementations

2.4.1 Subgraph Counting with Fascia

We first present the algorithmic details of applying the color-coding method for
tree-structured subgraph counting [10]. As shown in Algorithm 2.1, there are three
main phases in the algorithm: template partitioning, random coloring, and the
dynamic programming count phase. The pseudocode for the dynamic programming
phase is described in Algorithm 2.2. The coloring and dynamic programming
steps are repeated for multiple iterations to estimate the subgraph count. Alon et
al. [49] prove that to guarantee a count bound of C(1± ε) with probability 1− 2δ
(C being the exact count and ε being the error), we would need to run at most
Niter iterations, as defined in Algorithm 2.1. Using a topology-aware coloring
scheme [63–65], prior work has shown that a tighter upper bound can be obtained.
We observe that the number of iterations necessary to produce accurate global
counts on large networks is far lower in practice [9,10], and we will also demonstrate
this in Section 2.5.

In the input template partitioning phase, a single vertex is first specified to be

9

Algorithm 2.1 Subgraph counting using color coding.
1: Partition input template T (k vertices) into subtemplates using single edge

cuts.
2: Determine Niter ≈ ek log 1/δ

ε2 , the number of iterations to execute. δ and ε are
input parameters that control approximation quality.

3: for all it = 1 to Niter do . Outer loop parallelism
4: Randomly assign to each v ∈ G a color between 0 and k − 1.
5: Use a dynamic programming scheme to count colorful occurrences of T .
6: Take average count of all Niter counts to be final count.

the root of the template. A single edge adjacent to the root is cut, creating two
children subtemplates. The child subtemplate containing the original root vertex is
called the active child, with its root specified again as the original root vertex. The
other child will be termed as the passive child, with its root as the vertex that was
connected to the original root vertex through the edge that was cut. We now have
two rooted subtemplates. We recursively continue to cut these subtemplates down
to single vertices, keeping track of the partitioning tree, where each subtemplate
greater than one vertex in size has both an active and passive child subtemplate.
Every subtemplate has a parent. This tree can be traced from the bottom up to
the original template, which is how we will perform the dynamic programming
phase of the color coding algorithm. We also sort them in the order in which the
subtemplates are accessed, in order to reduce memory usage.

The graph G is next randomly colored. For every vertex v, we assign a color
between 0 and k − 1, where k is the maximum number of colors. k needs to be
greater than or equal to the number of vertices in T . We will consider k equal to
the size of T now for simplicity. It has been demonstrated that higher values of k
can decrease the required iterations for a given error bound [66]. However, note
that this considerably increases memory requirements as well.

Consider first a naïve table structure. We need to be able to store non-zero
counts for every vertex and for all possible color sets. For a given subtemplate Si
of size h, a color set can be considered the mapping of h unique color values to
each vertex in Si. We create a three dimensional tabular structure and initialize all
values to zero. We can then proceed to the inner loops, which contain the dynamic
programming-based counting step of the algorithm.

Algorithm 2.2 details the inner nested loops that we have for the algorithm. The

10

outermost loop will perform, in order, the bottom-up count for each subtemplate,
tracing along the partition tree that we previously created. For every subtemplate,
we will then consider every single vertex v ∈ G. If our subtemplate is of size 1, we
know that its count at v is 0 for all possible k color sets of a single vertex, except
for the color set that consists of the color equal to the color randomly assigned to
v, where it is 1.

Algorithm 2.2 The dynamic programming step in Fascia.
1: for all sub-templates Si created from partitioning T , in reverse order of their

partitioning do
2: for all vertices v ∈ G do . Inner loop parallelism
3: if Si consists of a single vertex then
4: table[Si][v][color of v] ← 1
5: else
6: Si consists of active child ai and passive child pi
7: for all color sets C of unique values mapped to Si do
8: count← 0
9: for all u ∈ N(v), where N(v) is the neighborhood of v do

10: for all Ca and Cp created by uniquely splitting C do
11: count ← count + table[ai][v][Ca]·table[pi][u][Cp]
12: table[Si][v][C] ← count

13: templateCount← ∑
v

∑
C

table[T][v][C]
14: P ← probability that the template is colorful
15: α← number of automorphisms of T
16: finalCount← 1

P ·α · templateCount

If the size of the subtemplate is greater than 1, we know that it must have an
active (ai) and passive (pi) child. We then look at all possible color sets C of size h
with unique values. The count for this color set at v, which we will later store in
our table at table[Si][v][C], is initialized to zero. Next, we will consider for every
neighbor, u, of v, the counts of ai rooted at v and pi rooted at u. We will then split
C into Ca and Cp, which are the mappings onto the active and passive child of the
colors in C. The count for Si rooted at v with color set C is then the sum over all
u and over all possible Ca and Cp of table[ai][v][Ca]·table[pi][u][Cp].

Once we have run through as many iterations as initially specified, we can
then take the average over all counts to be our estimate for the total number of
embeddings in the graph. We return this value and the algorithm is complete.

11

2.4.2 Color-coding Implementation Optimizations

We now discuss some improvements to the baseline algorithm presented in the
previous subsection. These include the representation of colorings through a
combinatorial index system, careful memory management, and partitioning the
input template to reduce work performed.

2.4.2.1 Combinatorial Indexing System

We represent a color set as a 32-bit integer. This representation considerably
simplifies table accesses and stores for any arbitrary color set of arbitrary size. It
also avoids having to explicitly define, manipulate, and pass arrays or lists of color
set values. In order to ensure that each combination of colors is represented by a
unique index value, these values are calculated based on a combinatorial number
system [67]. For a subtemplate Si of size h with k possible colors, the color set C
would be composed of colors c1, c2, . . . , ch, each of possible (unique and increasing)
values 0, 1, . . . , k−1, the corresponding index I would be I =

(
c1
1

)
+
(
c2
2

)
+ · · ·+

(
ch

h

)
.

In the innermost loops of the algorithm, we also look at all color sets Ca and Cb
created by uniquely distributing the colors of C to the two children subtemplates
of the partitioned Si. By precomputing all possible index values for any given
C, and any given sub-color set of size 1, . . . , h− 1, we are able to replace explicit
computation of these indexes with memory lookups. This considerably reduces the
number of indexing operations on these innermost loops. It also allows these loops
to exist as simple for loops incrementing through the index values, rather than the
slower and more complex loops required with the handling of an explicit color set.
The total storage requirements for the complete set of indexes is proportional to 2k,
and the representation only takes a few megabytes even for templates of size 12.

2.4.2.2 Memory Utilization Optimizations

A major consideration in the color-coding algorithm is the memory required for
tabular storage of counts. This table grows proportional to n

(
k
k
2

)
(n is the number

of vertices in the graph, and k is the number of vertices in the template). For
k = 12 and n = 2, 000, 000, this would mean that we require 32 GB of memory to
determine a subgraph count using this algorithm. We have thus implemented a
number of different memory-saving techniques to reduce the table size.

12

As previously mentioned, we initialize our table as a three-dimensional array.
The first dimension is for each subtemplate generated through our initial template
partitioning. We organize the order of the partitioning tree so that at any instance,
the tables and counts for at most four subtemplates need to be active at once. Using
the bottom-up dynamic programming approach for counting means that once the
counts for a parent subtemplate are completed, the stored counts for the active and
passive children can be deleted. We can also exploit symmetry in the template by
analyzing possible rooted automorphisms that exist in the partitioned subtemplates.
An obvious example can be seen in template U7-2 shown in Figure 2.1. We can
reorganize the parent/child relationships in the partitioning tree so that only one of
the isomorphic subtemplates needs to be analyzed, as the counts will be equivalent
for both.

The second dimension in the table is for every vertex in the full graph. For
our dynamic table, we only initialize storage for a given vertex v if that vertex
has a value stored in it for any color set. This also allows a boolean check to be
done when calculating new subtemplate counts for a given vertex. Since the counts
for that vertex are based on the active child’s count at v and the passive child’s
counts at u ∈ N(v), we can avoid considerable computation and additional memory
accesses if we see that v is uninitialized for the active child and/or u is uninitialized
for the passive child. As we will discuss later, partitioning the graph in a certain
way allows considerable algorithmic speedup by exploiting this further.

The third and innermost dimension of our table is for the counts for each color
set value. As discussed, these values are set and read based on the combinatorial
number system index for the specific coloring. By organizing the table in this
way, accesses can be quickly done as table[subtemplate][vertex][color index]. This
storage follows the loops of the algorithm, which can help reduce cache misses on
the innermost loops.

We have also developed a hashing scheme that can be used in the place of a
three-dimensional array for high-selectivity templates. The key values used are
calculated for vertex v and color set C as follows, where vid is the numeric identifier
of the vertex, I is the color set’s combinatorial index, and Nc is the total number of
color set combinations for the current subtemplate: key = vid ·Nc + I. Calculating
the key in this way ensures unique values for all combinations of vertices and color
sets. Additionally, if we initialize and resize the hash table to simply be a factor

13

of n ·Nc, where n is the number of vertices in G, we can use a very simple hash
function of (key mod n). This gives a relatively uniform distribution across all
possible hash indexes based on the initial random coloring of G. This hashing
scheme will generally save memory over a simpler array-based scheme when a
template occurs with high regularity rooted at certain vertices within G, but with
low regularity relative to the number of possible color sets.

2.4.2.3 Template Partitioning

We also explore various template partitioning strategies. When possible, we employ
a one-at-a-time approach, where we partition a given subtemplate so that either
the active or passive child is a single vertex. There are two reasons why we do
this. The running time of the two innermost loops of the algorithm are dependent
on

(
k
hi

)
·
(
hi

ai

)
, where k is the number of colors, hi is the number of vertices in the

subtemplate we are getting the count for, and ai is the number of vertices in the
active child of that subtemplate (note that

(
hi

ai

)
=
(
hi

pi

)
, where pi is the number of

vertices in the passive child). The running time of the algorithm grows as the sum
over all

(
k
hi

)
·
(
hi

ai

)
, for every pair of hi and ai, at each step in the partitioning tree.

A one-at-a-time approach can minimize this sum for larger templates (except when
exploiting rooted symmetry), as the larger multiplicative factors tend to dominate
with a more even partitioning.

However, we observe faster performance with a one-at-a-time partitioning
approach over the symmetry-based template partitioning. This is due to the fact
that by setting the active child as the single partitioned vertex at each step when
possible, we can reduce the total number of color sets at each vertex v by a factor
of k−1

k
. The count at each v is dependent on the count for the active child with a

given color set, and only one color set for a single vertex subtemplate exists that
has a non-zero count: the coloring of v.

Also, note that the root selection can impact how the template can be partitioned
using the one-at-a-time approach. Our strategy is to randomly select a leaf vertex
as the initial root. After the first cut, we continue to greedily prune leaf vertices
whenever possible. We have not yet explored other ways of determining the root.
This might make for interesting future work.

14

2.4.3 Shared-Memory Parallelism

We support shared-memory parallelism in Fascia using the OpenMP programming
model and have two modes of multithreaded parallelism. The choice is left to the
user and is dependent on graph and template size. For large graphs, we parallelize
the loop that calculates counts for all vertices v ∈ G. Each thread is assigned a
unique set of vertices, for which it calculates and stores the next level of counts.
Because vertices are partitioned among threads, and given the tabular layout of
the counts table, there is no concurrent writes to shared locations.

However, for small graphs and small templates, the ratio of available parallel
work to the necessary serial computational portion is low, and multithreaded
performance suffers. Therefore, for this instance, we perform multiple outer loop
iterations concurrently, where each thread independently computes the full counts
for a subset of the total number of iterations. Each thread necessarily has its own
dynamic table. The counts are then collected and averaged after the specified
number of iterations is completed. Due to the fact that each thread initializes its
own table, the memory requirements increase linearly as a function of the number
of threads. However, for smaller graphs where this outer loop parallelization works
better, the vertex counts are small enough that this is unlikely an issue, even while
running on a system with limited memory.

While both inner and outer loop parallelism offer speedups over serial code, the
choice is dependent on graph and subgraph topology as well as the runtime system.
A hybrid strategy that combines both levels of parallelism is additionally possible.
A dynamic scheduler that determines the optimal parallel strategy for a given input
would make for interesting future work, but our current version of Fascia leaves
the choice as an input parameter to be given by the user.

2.4.4 Distributed Memory Parallelism

2.4.4.1 Distributed Counting

There are several avenues for distributed-memory parallelization of color-coding
subgraph counting. Just as we implemented an outer loop method in shared-
memory, we can extend this to distributed memory. A chunk of iterations of the
outer loop can be assigned to a task. The inner-loop shared-memory parallelization

15

can be complementarily performed. We refer to this hybrid parallelization strategy
as distributed counting, and pseudocode is given in Algorithm 2.3.

Algorithm 2.3 Dynamic programming routine with distributed counting.
for it = 1 to Niter do in parallel . MPI task-level parallelism

Color G(V,E) with k colors
Initialize 3D count table
for all Si in reverse order of partitioning do

for all v ∈ V do in parallel . thread-level parallelism
Update count table for template Si
using child subtemplate counts

2.4.4.2 Partitioned Counting Algorithm

For modest-sized graphs (more than 2 million vertices) and large templates (k > 10),
memory utilization quickly becomes problematic with distributed counting. We have
therefore also implemented a distributed graph partitioning-based approach, where
each task performs counts of a subset of all vertices, to reduce per-task memory
requirements further. A description of the algorithm is given in Algorithm 2.4.

Algorithm 2.4 Fascia Fully Partitioned Counting Approach.
Partition subgraph S using single edge cuts
for it = 1 to Niter do

Color G(V,E) with k colors
for all Si in reverse order of partitioning do

Init table[Si][Vr][·] for Vr (vertex partition on task r)
for all v ∈ Vr do . Thread-level parallelism

for all c ∈ Ci do
Compute all table[Si][v][c]

〈N, I,B〉 ← Compress(table[Si][Vr][·])
All-to-all exchange of 〈N, I,B〉
Update table[Si][VrN

][·] based on information received

Countr ← Countr +
Vr∑
v

CT∑
c
Table[T][v][c]

Count← Reduce(Countr)
Scale Count based on Niter and colorful embed probability

The graph is partitioned in a one-dimensional manner among the MPI tasks,
with each task storing Vr vertices and their adjacencies. For every Si, we only

16

initialize the current table for the task’s specific subset of vertices Vr. We compute
all the counts for the subset of vertices for the current subtemplate. We then
compress the table in the Compressed Sparse Row (CSR) format (details in the
next subsection), with N denoting the array of count values, I the color mapping
indexes, and B containing the start offsets for each vertex. The compressed table
is ordered according to the ordering of tasks that have v ∈ Vr in their one-hop
neighborhood (VrN

), as only these vertices are required in calculating the counts for
each Si, and we want to reduce communication costs. We distribute the counts in
an all-to-all fashion among all r nodes, so that each node now has the child counts
required to compute counts for the new parent template.

For the final Si, i.e., the original template T , each task computes the final count
for the template for their subset of vertices. We simply keep a running sum of
the counts for each task, for every iteration. After all iterations are completed,
we perform a global reduction of the sum from all nodes, scale the value by the
number of iterations and probability that the template is colorful, to get the final
count estimate. Note that no additional approximations are introduced during this
procedure, and so a count produced with say, 15 MPI tasks, will be the same as
the count generated by the serial algorithm (assuming the random graph colorings
are seeded with the same value).

2.4.4.3 Table Compression

Due to the large memory footprint of the dynamic programming-based arrays, the
partitioned approach also incurs a substantial inter-node communication cost. We
reduce the total volume of data transferred by using a compressed sparse row (CSR)
representation for storing the non-zero counts. The CSR format is commonly used
in numerical analysis for the storage of sparse matrices. Storage using this format
consists of three arrays. One array stores all values held in the matrix in row-major
ordering. This array would be organized as [(row1)(row2) · · · (rown)], where (rowi)
is a list of all nonzero values in that row. A second array of the same length as
this first array is used to hold the column indexes at each of the nonzero values
stored in the first array. The final array is of length n, or the number of rows, and
it holds indexes to the start of the sequence of values for each row.

By considering a table for each discrete subtemplate Si as a matrix of size n× ci,
where n is the number of vertices in G and ci is the number of possible color sets

17

for Si, we can apply the CSR format to our table, in order to compress it for faster
transfer across tasks running on our cluster. The first array N stores all non-zero
counts for all vertices and color mappings. The second array I is the color mapping
indexes for each count value, as computed using the combinatorial number system
approach. The final array B denotes the indexes for the start of count values for
each vertex.

Due to the large graph and template sizes considered in our study, the overall
per-vertex and per-color set count magnitudes can be quite massive in scale. This
requires the N array to be of type 64-bit double to avoid overflow. Similarly,
because the N array length can exceed the limits provided by 32-bit unsigned int
for array indexing, the B array is of type 64-bit unsigned long. We use a 16-bit
integer to store the color set index array B, which will allow unique indexes up to
templates of 18 vertices in size.

Because the lookup for any specific (x, y) index can be slow using this format
and the color-coding approach requires a significant number of such lookups, we
ideally want to re-expand the compressed values. However, in order to further
reduce memory footprint, we only re-expand for each vertex when they are needed
to compute the count of the new parent subtemplate. The overhead for this
uncompression step is minimal in practice.

2.5 Results and Analysis

2.5.1 Experimental Setup

Experiments were performed on various parallel platforms and interactive systems,
including Stampede at the Texas Advanced Computing Center, and the Hammer
and Cyberstar systems at Penn State University. For experiments where execution
times are reported, we used the Compton system at Sandia National Laboratories.
Each Compton node has 2 Intel Xeon E5-2670 (Sandy Bridge) processors with 64GB
DDR3 memory running RHEL 6.1. We use up to 16 nodes for our experiments. The
MPI libraries used were from Intel (version 4.1) and we used OpenMP for shared-
memory parallelism. Code was compiled with icc using the -O3 optimization flag,
and KMP_AFFINITY was used to control thread to core pinning.

We evaluate performance of our implementations on a collection of several

18

Network n m davg dmax D̃ Source
Enron Email 34 K 180 K 11 1.4 K 9 [68,69]
PA Roads 1.1 M 1.5 M 2.8 9 430 [69,70]
Portland 1.6 M 31 M 39 275 16 [71]
Orkut 3.1 M 117 M 76 33 K 9 [69,72]
Twitter 44 M 2.0 B 37 750 K 36 [73]
sk-2005 44 M 1.6 B 73 15 M 308 [74,75]
H. pylori 710 1.4 K 4.0 54 10 [76]

S. cerevisae 5.1 K 22 K 8.7 290 11 [76]
H. sapiens 9.1 K 41 K 9.0 250 10 [77]

Table 2.1. Network sizes and average and maximum degrees and approximate diameter
for all networks used in our analysis.

large-scale low diameter graphs, listed in Table 2.1. Orkut and Twitter (follower
network) are crawls of online social networks obtained from the SNAP Database
and the Max Planck Institute for Software Systems [69,72,73]. Also from the SNAP
database is the Pennsylvania Road network [70] and the Enron Email Corpus [68].
sk-2005 is a crawl of the Slovakian (.sk) domain performed in 2005 using UbiCrawler
and downloaded from the University of Florida Sparse Matrix Collection [74,75].
Portland is a large synthetic social contact network modeled after the city of
Portland, from the Virginia Tech Network Dynamics and Simulations Science
Laboratory (NDSSL) [71]. The H. pylori (intestinal bacteria) and S. cerevisae
(yeast) networks where obtained from the Database of Interacting Proteins [76],
and the H. sapiens (human) network is from Radivojac et al. [77].

All the networks considered are undirected. The originally-directed Twitter and
sk-2005 graphs were preprocessed to ignore edge directivity, remove multiple edges
and self loops, and extract only the largest connected component. Table 2.1 lists
the properties of the graphs after this preprocessing.

U7-1 U8-1 U9-1 U10-1 U11-1 U12-1

U7-2 U8-2 U9-2 U10-2 U11-2 U12-2

Figure 2.1. Select templates used in performance analysis.

19

While analyzing execution times and scaling on the larger networks, we con-
sidered two different templates with 5, 7, 10, and 12 vertices. For each size, one
template is a simple path and the other one is a more complex structure. The
path-based templates are labeled as U5-1, U7-1, U10-1, and U12-1. These templates
and their labels are shown in Figure 2.1. Other templates are used in the analysis
that are not listed follow the same naming convention, with UX-1 implying a simple
path and UX-2 being a more complex tree. For motif finding, we looked at all
possible treelets of size 7, 10, and 12. k = 7, 10, and 12 would imply 11, 106, and 551
possible tree topologies, respectively. The treelets for k = 7 are given in Figure 2.2.

T7-1 T7-2 T7-3 T7-4 T7-5 T7-6

T7-7 T7-8 T7-9 T7-10 T7-11

Figure 2.2. All possible 7 vertex undirected tree-structured templates.

2.5.2 Single-node performance

To assess single node Fascia performance, we will examine running times of a
single iteration on moderate-sized networks across varying template sizes, running
times for several iterations across all motifs on smaller PPI networks, parallel
scaling, memory utilization with the various strategies, as well as an analysis of
approximation error.

2.5.2.1 Running times vs. template size

Figure 2.3 gives the absolute single-node running times for all templates listed in
Figure 2.1 on the Portland and Orkut networks. These results are from running
inner loop-parallel version on 16 cores. We observe minimal to no performance
improvement when using hyperthreading, so most tests were performed with only
a single thread per core despite two hardware thread contexts.

As can be observed on Figure 2.3, the single-iteration time for smaller templates
is extremely low, making it feasible to obtain realtime count estimates for 7 vertex

20

Portland Orkut

0

50

100

0

300

600

900

 U5−1 U5−2 U7−1 U7−2 U10−1 U10−2 U12−1 U12−2 U5−1 U5−2 U7−1 U7−2 U10−1 U10−2 U12−1 U12−2
Template

S
in

gl
e

Ite
ra

tio
n

E
xe

cu
tio

n
T

im
e

(s
)

Figure 2.3. Fascia running times on templates of size 5, 7, 10, and 12 vertices, on the
Portland and Orkut networks, for a single iteration, with inner loop parallelism.

templates on both networks. Even for the largest template, the total running time
was still less than 20 minutes on both networks. The U12-2 template took the longest
time as expected. This template was explicitly designed to stress subtemplate
partitioning and therefore gives a practical upper bound for our running times
across all template of size 12 and smaller. Another observation was that the running
time was fairly independent of the template structure, particularly for the smaller
templates. Even for the larger 12-vertex templates, there is just a 3× variation in
running time.

H.pylori S.cerevisae H.sapian

1

10

100

1000

5 7 10 12 5 7 10 12 5 7 10 12
Motif Sizes

10
0

Ite
ra

tio
n

E
xe

cu
tio

n
T

im
e

(s
)

Figure 2.4. Fascia running times on templates of size 5, 7, 10, and 12 on the H. pylori,
S. cerevisae, and H. sapiens PPI networks for 100 iterations with outer loop parallelism.

Figure 2.4 gives the running times for 100 iterations across all possible 5, 7,
10, and 12-vertex templates on the H. pylori, S. cerevisae, and H. sapiens protein

21

interaction networks. For these tests, we use outer loop parallelism. It demonstrates
superior running times on smaller networks with larger iteration counts, as there is
less parallel overhead on a per-iteration basis. Note the log scale in Figure 2.4. Both
the running time of Fascia and the total number of possible templates increase
exponentially with increasing network size. This demonstrates the importance of
implementing fast serial algorithms for subgraph counting when analyzing motifs
of larger sizes.

2.5.2.2 Parallel Scaling

We now will observe how our approaches scale when increasing the number of
processing cores. Figure 2.5 gives the parallel speedups for 1 to 16 cores on the
Portland network with inner-loop parallelism, as well as the H. pylori network
with both outer loop and inner loop parallelism. As was mentioned previously, we
observe better speedups with outer loop parallelism on the smaller networks, as
the per-iteration parallelization overhead is reduced. However, on larger networks,
we still observe very good speedups and near-linear scaling with the inner-loop
parallelism, since the computational requirements overshadow the parallel overheads
for these instance. Overall, our implementation scales quite well, demonstrating
about 15× and 14× speedups on the larger Portland and smaller H. pylori networks,
respectively.

2.5.2.3 Reduction in Memory Use

Figure 2.6 demonstrates impact of the memory-reducing optimizations over the
baseline naïve approach. The peak memory footprint is given in both the networks
for various template sizes. For the Portland network, we see a 20% savings over
baseline with the improved dynamic programming table representation. Further,
if we consider the case of per-vertex labels in the graph (all vertices randomly
initialized with one of 8 labels), the memory requirements drop considerably, due
to the much higher selectivity that the label restriction imposes.

In Figure 2.6, we also see how a hash table representation can improve memory
usage dramatically over using the three-dimensional table, on certain networks.
The PA road network is quite regular and nearly planar, and so it is expected that
for any given template, a vertex will have an embedding rooted at it. This results

22

●

●

●

●

●

5

10

15

1 2 4 8 16
Cores

P
ar

al
le

l S
pe

ed
up

●

●

●

●

●

5

10

1 2 4 8 16
Cores

P
ar

al
le

l S
pe

ed
up

Parallelization ● Inner Outer

Figure 2.5. Parallel scaling from 1 to 16 cores of the U12-2 template on the Portland
network for a single iteration with inner-loop parallelism (left) and parallel scaling for
100 iterations of all 10 vertex templates on the H. pylori network with both inner and
outer scaling (right).

● ●
●

●

●

● ● ●

●

●

Portland PA−Road

0

5

10

15

20

 U3−1 U5−1 U7−1 U10−1 U12−1 U3−1 U5−1 U7−1 U10−1 U12−1
Template

M
ax

im
um

 T
ab

le
 S

iz
e

(G
B

)

Table ● Naive Improved Improved−Labeled Hash

Figure 2.6. Peak memory use reduction on the unlabeled and labeled Portland network
with the improved table (left), and memory use reduction that results from using an
improved table and hash table on the PA Road network (right).

in the table having to initialize storage for every vertex. However, since the network
is sparse, it is unlikely that that every color set will have an embedding, which is
why we see such a significant memory use reduction. On a denser network like
Portland, it is unlikely there would be much improvement with the hash table, due
to the relatively higher number of embeddings relative to the number of vertices in
the network.

23

2.5.2.4 Error Analysis

We next analyze the error in the subgraph counts produced on small and moderate-
sized networks. We report the magnitude of relative error (difference in counts
divided by true count) in the two figures. In Figure 2.7 (left), we observe the error
produced when counting 3 and 5 vertex chain templates on the Enron network.
We note that the error falls under 1% after three iterations for both templates.
We observe higher error with the larger template. The extremely small number of
iterations necessary for low error, on modest-sized networks, mirrors the results
seen in prior work [9, 62].

●

●

● ●

● ●

●
● ●

●

0.000

0.005

0.010

0.015

0.020

1 2 3 4 5 6 7 8 9 10
Iterations

E
rr

or

Template ● U3−1 U5−1

●

●

●

●
●0.000

0.025

0.050

0.075

1 10 100 1000 10000
Iterations

E
rr

or

Figure 2.7. Error obtained with the 3 and 5 vertex path templates on the Enron network
after a small number of iterations (left) and the average error over all possible 7 vertex
templates on the H. pylori network after 1 to 10 K iterations (right).

For the smaller H. pylori network, we note that it takes about 100 iterations to
reach about 1% average error across all 7 vertex templates. This network is very
small and sparse, and so for large templates, a relatively larger number of iterations
are required. Generally, we observe per-iteration error increasing with template
size, but decreasing with network size. Also, the greater the number of template
embeddings that exist within the graph, the lower the error. This is due to the
fact that the random coloring of the graph and the subsequent count scaling has a
relatively-smaller impact on the final count estimate. We observe low inter-iteration
variation between produced counts on large scale networks. A dynamic stopping
criteria based on the variance of produced per-iteration counts is left for future
work.

24

Note that Alon et al. [49] proved that to ensure a computed count is within

C(1 ± ε) with probability (1 − 2δ), where C is the true count, at most e
k log 1/δ
ε2

iterations of the dynamic programming scheme are required. However, this upper
bound is very loose in practice, as it ignores network size and topology. For example,
we require only 100 iterations to compute counts with an error less than 1% for a 7
vertex template on H. pylori (ε = 0.01).

2.5.3 Multi-node performance

For the distributed-memory Fascia implementation, we again analyze performance
with regards to running times and parallel scaling. We also demonstrate the
inter-node communication reduction with CSR table compression, which also
translates to memory savings during the subsequent dynamic programming step.
For these experiments, we employ a label propagation-based graph partitioning [47]
with random intra-partition vertex reordering to balance overall computation and
communication costs.

2.5.3.1 Running times vs. template size

Figure 2.8 gives the running times on the large sk-2005 and Twitter networks for
templates between 5 and 10 vertices on 16 nodes of Compton. Due to the large
scale of the networks and restricted parallelism on our modest cluster, the memory
requirements for the 12-vertex template was too high for us to run to completion.
Using more compute compute nodes would reduce per-node memory requirements
and allow us to scale to larger network and template sizes. This is left for future
work.

From Figure 2.8, we observe that count times for 5-vertex templates complete
in seconds, and the larger templates in minutes on these networks. Note that
the running times of the binary tree-structured templates are lower than that
of the path-like templates in these instances. This is because the computational
requirements for the tree templates are higher than the path templates, but they
have lower communication and memory costs. This leads to lower performance in
shared memory, but faster performance in distributed memory.

25

sk−2005 Twitter

0

250

500

750

 U5−1 U5−2 U7−1 U7−2 U10−1 U10−2 U5−1 U5−2 U7−1 U7−2 U10−1 U10−2
Template

S
in

gl
e

Ite
ra

tio
n

E
xe

cu
tio

n
T

im
e

(s
)

Figure 2.8. Running times on 16 nodes of Compton of tested 5, 7, and 10 vertex
templates on the sk-2005 and Twitter networks for a single iteration with partitioned
counting and inner loop parallelism.

2.5.3.2 Parallel Scaling

Figure 2.9 gives the scaling of the single-iteration running times on the Orkut
network from 1 to 16 nodes, and the scaling of the sk-2005 from 2 to 16 nodes. The
Orkut network calculates the counts for the U12-2 templates and sk-2005 network
uses the U7-2 network. We show scaling for the total execution time, the portion
of time spent in the counting computation phase, and the total time spent in the
communication phase.

●
● ●

●
●

●
●

● ●

Orkut sk−2005

0

300

600

900

100

200

1 2 4 8 16 1 2 4 8 16
NodesS

in
gl

e
Ite

ra
tio

n
E

xe
cu

tio
n

T
im

e
(s

)

Part ● Communication Computation Total

Figure 2.9. Parallel scaling from 1 to 16 nodes of the U12-2 template on Orkut network
and the U7-2 template on the sk-2005 network for a single iteration with partitioned
counting and inner loop parallelism.

We observe about a 4× overall speedup on the Orkut network, with about 10×

26

speedup of just computation. Communication increases about 3× from 2 to 16
nodes. We observe higher communication costs with this approach compared to
implementation [42], due to a more complex communication phase. However, this
higher complexity reduces memory utilization and is necessary in order to calculate
the counts on networks as large as sk-2005.

On the sk-2005 network, we observe about 2.5× speedup from 2 to 16 nodes.
We observe that there is relatively good scaling with computational time, but at the
cost of increasing communication time. Due to the larger-scale and higher overall
computation costs, even with a smaller template, the communication costs are
slightly less than the computation costs at 16 nodes. With greater parallelism, it is
likely that communication costs will dominate. In future work, we will attempt to
optimize the All-to-all exchange in order to minimize these costs for larger networks,
and achieve better parallel scaling.

2.5.4 Comparisons to Recent Work

SAHAD [9] and PARSE [62] by Zhao et al. both utilize the color-coding approach
for determining approximate subgraph counts in distributed environments. PARSE
is an MPI-based approach and SAHAD is a newer and more scalable version that
uses Hadoop. The parallelization strategies and software environment used in their
performance studies are very different from the settings used in our study. Hence it
is difficult to perform a head-to-head comparison. To get a sense of relative speedup
with our approach, consider the following selection of performance results: The
PARSE paper reports an execution time of about an hour on 400 cores of a cluster
for a 2 million vertex, 50 million edge network and a 6-vertex chain template. For
the same network, a single color-coding iteration with SAHAD for a 10-vertex tree
template is reported to take 25 minutes on 42 nodes (1344 cores). With distributed
Fascia on 15 nodes (240 cores), we can count occurrences of a 12-vertex chain and
12-vertex tree on a 3 million vertex, 117 million edge network in about 3 and 4
minutes, respectively.

27

2.6 Conclusions
This chapter presented several new optimizations for implementations of color-
coding-based graph algorithms. Using these optimizations, we created shared-
and distributed-memory parallelized Fascia, a fast and memory-efficient tool for
subgraph counting on both small and large networks. However, subgraph counting
by itself offers little insight into the structural characteristics of a given network.
In the next chapter, we will introduce several use-cases of subgraph counting for
network analysis and show how the counts output by Fascia can be utilized for
such analyses.

28

Chapter 3 |
Subgraph-based Graph Analysis

3.1 Introduction
In the previous chapter, we introduced Fascia [43], a fast parallel implementation
of the color-coding algorithm for approximate treelet counting. As subgraph
counts in isolation give little insight into network topology, a number of analytics
introduced over the past decade use subgraph counts as a means for identifying
latent structural patterns within networks, for ascertaining possible variations
between neighborhoods of individual vertices within a single network, and for
comparative analysis of networks. We give an overview of some of these subgraph-
based analytics in the next section. Our primary contribution of this chapter is an
extensive comparative analysis of real-world networks using subgraph count-based
graph analytics.

3.2 Background

3.2.1 Motif Finding

Network motifs are defined as subgraphs that occur more frequently in a network
than would be expected by random chance. There has been considerable study
of network motifs in bioinformatics [4, 52, 53, 55, 56, 58, 78], usually to discern
structurally-significant characteristics in protein-protein interaction and related
biological networks. Alon et al. [52] implemented a color-coding based approach
for the purpose of determining biological network motifs. Recent work has also
focused on applying subgraph counting and network motif finding methods for

29

social, informational, and other networks [9,62,79]. We perform a similar evaluation
in this report.

Motif finding is typically carried out by finding complete subgraph counts for all
possible templates of up to a certain size. The relative frequency of each subgraph
is determined by scaling the counts by either the total count or the average count.
This process is then repeated for perturbations of the network or for synthetic
graphs with similar network parameters. From this, subgraphs with exceptionally
high or low relative counts can be determined. Prior knowledge about the network
can then be used to determine whether the subgraph plays a crucial role related to
a functional characteristic. We will demonstrate the resilience of treelet counts for
motif finding with noisy or incomplete networks later in this report.

3.2.2 Graphlets

Graphlets are formally defined as small undirected subgraphs between two and
five vertices in size. Prior work by Pržulj et al. [1, 51, 59, 60] extensively studies
graphlets in the context of biological networks. Pržulj et al. also identified all
possible discrete orbits within each graphlet. Orbits in this context refer to distinct
automorphic vertices in the subgraph; i.e., it can be useful to explicitly differentiate
between a vertex in the center of a star versus a vertex on one of the leaves.

Graphlets are also considered to only be induced subgraph occurrences. Induced
occurrences imply that for every subgraph embedding of a template in a network,
edges can exist between vertices in the subgraph if and only if they exist in the
template. Most prior work focuses on induced occurrences, as they are computa-
tionally less expensive to count. However, Alon et al. [52] argue that non-induced
subgraph counts can provide a more accurate analysis of noisy real-world networks.
The color-coding technique can only be used to count non-induced occurrences, and
verifying its applicability to the comparative metrics is one of the primary focuses
of this work.

3.2.2.1 Graphlet Frequency Distance

The graphlet frequency distance (GFD) was proposed by Pržulj et. al [51] as a
global comparative measure based on the local structural characteristics of different
networks. To calculate the GFD, counts of all i = 1, 2, . . . , 29 graphlets in network

30

G are determined as Ci(G). Each of the 29 counts are then log-scaled by the total
count of all graphlets, with the distance value between networks G and H being
the sum of the absolute differences of all scaled counts.

Si(G) = − log(Ci(G)
29∑
i=1

Ci(G)
), D(G,H) =

29∑
i=1
|Si(G)− Si(H)|

To avoid possible confusion created by using the term graphlet outside of its
standard context (subgraphs of 2 to 5 vertices), as well as the generic term subgraph,
this work will use the term treelet in their place where appropriate (for instance, in
this work, we will compute treelet frequency distances).

3.2.2.2 Graphlet Degree Distribution

The graphlet degree distribution (GDD) can similarly be used as a global compar-
ative measure between networks based on local structural characteristics [1]. To
calculate the GDD of a network, we determine the graphlet counts at every single
vertex in the network for all different graphlet orbits. The graphlet distribution for
a given orbit is the number of vertices in the network that have a certain number
of embeddings, or degree, with the graphlet orbit; e.g. there are 450 vertices with a
single embedding (a graphlet degree of one), 230 with two embeddings (a graphlet
degree of two), 114 with three embeddings, and so forth. The agreement value for a
given orbit between two networks is determined as the euclidean distance between
all degree counts normalized with respect to the total area under a curve scaled by
the degree number:

SjG(k) = djG(k)
k

,N j
G(k) = SjG(k)

∞∑
k=1

SjG(k)

Aj(G,H) = 1− 1√
2

(
∞∑
k=1

[N j
G(k)−N j

H(k)]2) 1
2

Where djG(k) is the number of nodes with degree k of orbit j in graph G, N j
G(k)

is the normalized distribution, and Aj(G,H) is the agreement for orbit j between
graphs G and H. The total agreement is either the arithmetic or geometric sum of
agreements for all orbits. We consider only the arithmetic sum, as instances of zero

31

agreement between orbits are observed to occur in treelets larger than 5 vertices
with minor frequency.

3.2.2.3 Graphlet Degree Signature Similarity

The graphlet degree signature can give an comparative similarity value between
two given nodes in a single network. A vector is created for all nodes in the network
containing the counts of embeddings for all graphlet orbits containing that node.
It is described as capturing the local topology and interconnectedness of the node
in the context of its local neighborhood [60]. The similarity value between two
vertices, u and v, for orbit i, with counts ui and vi, respectively, is calculated as
follows:

Si(u, v) = 1− wi ×
| log(ui + 1)− log(vi + 1)|

log(max{ui, vi}+ 2
In this equation, wi is a certain weighting given to that specific orbit. These

values are dependent on the number of isomorphisms of smaller graphlets orbits that
exist at that orbit in its respective graphlet. The total similarity value is the sum
of similarity values divided by the sum of the weightings for all orbits. Although
this work does not explicitly utilize the graphlet degree signature similarity, future
work will investigate its applicability towards network alignment, clustering, and
community detection.

3.2.3 Clustering

Bordino et al. [61] demonstrate that one can use the relative frequency of subgraphs
within networks to distinguish and cluster different networks. Using the relative
frequencies of undirected subgraphs up to four vertices and other topological
properties such as in-degree, out-degree, and PageRank as representative features
for a network, they show up to 75% clustering accuracy for networks chosen from
seven distinct categories. Using directed edges and 284 features in total, they
achieved just over 90% clustering accuracy. Recent work by Rahman et al. [57]
implements an approximate graphlet counting algorithm and uses graphlet counts
as a vector to cluster various network types. We perform a similar clustering for a
larger group of networks using treelet counts.

32

3.3 Experimental Setup
We performed experiments on various parallel platforms and interactive systems,
including Gordon at the San Diego Supercomputer Center, Stampede at the Texas
Advanced Computing Center, and the CyberSTAR and Hammer systems at Penn
State University. For experiments where execution times are reported, we used the
Compton system at Sandia National Laboratories. Code was compiled with the
Intel C compiler icc using -openmp and -O3 flags.

3.3.1 Networks Analyzed

We analyzed networks from eleven different categories, obtained from many different
sources [27,69,80] (see Table 3.1). These include collaboration networks from Arvix
and the DBLP Computer Science Bibliography [70,72,81], communication networks
of emails and Facebook wall posts [68, 81, 82], four Erdős-Rényi G(n, p) random
graphs, snapshots of the peer-to-peer Gnutella network at various times [81,83], four
biological protein-protein interaction (PPI) networks [76], five road networks [27,70],
four random scale-free Barabǎsi-Albert networks [84], six social networks of online
relationships of various types [80, 85, 86], four random small-world graphs [87],
and four web crawls of various universities and Google [70]. In total, 50 different
networks were considered.

n (×103) m (×103)Network Type Count min max min max
Collaboration 6 26 425 14 1050
Communication 4 30 63 87 855
G(n, p) 4 10 100 100 1000
Peer-to-peer 9 6 63 9.7 77
Bio PPI 4 0.7 22 1.3 22
Road 5 440 1970 530 2800
Scale-free 4 10 100 100 1000
Social 6 60 150 214 5400
Small-world 4 10 100 100 1000
Web Crawl 4 280 875 761 3900

Table 3.1. Networks analyzed in this study: categories, counts, and sizes in terms of
the maximum and minimum numbers of vertices (n) and edges (m) for each network
category.

33

All graphs considered are undirected with multiple edges and self loops removed.
This mainly only affected the structure of the communication and social networks.
The color-coding method can be applied to directed graphs as well. However, the
current implementation is unable to do so and this extension is left for future work.

3.3.2 Templates Analyzed

All tree-structured templates between three and nine nodes were considered in our
analysis. There is 1 template with 3 nodes, 2 templates with 4 nodes, 3 templates
with 5 nodes, 6 templates with 6 nodes, 11 templates with 7 nodes, 23 templates
with 8 nodes, and 47 templates with 9 nodes. The templates were created by
parsing data output by an online graph generator [88]. Additionally, since treelet
degrees were considered for templates of three to seven vertices, it was necessary
to copy and modify each of these template files to set a varying root node for the
different orbits. In total, 92 subgraphs were considered when calculating motifs
and the treelet frequency distances and 83 discrete orbits over 23 different treelets
were considered when calculating the treelet degree distribution agreements.

3.4 Results of Network Analysis
In this section, we use color-coding treelet counting in several network analysis
methods: motif finding, network type clustering, as well as relative treelet frequen-
cies and treelet degree distributions. The latter two use modifications to existing
techniques that commonly use the smaller graphlets, with the changes to calculation
methodologies noted where appropriate. We will also study robustness of using
treelet counts for analyzing noisy or incomplete networks by perturbing a subset of
vertices/edges.

3.4.1 Motif Finding

In this illustrative example for motif finding using results from previous work [10],
we analyze five different networks using all eleven different seven node templates.
These networks are the Enron email network, the social contact network of Portland,
the Slashdot social network, a road network of Pennsylvania, and a G(n, p) random
graph created with the same number of nodes and edges as the Enron network. As

34

our previous work has demonstrated, even on relatively small networks, motifs can
become apparent after a very small number of iterations. However, in this example,
we run 1000 iterations to minimize any error. The resultant relative counts are
given in Figure 3.1.

●
●

●
●

● ●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11
Subgraph

R
el

at
iv

e
F

re
qu

en
cy

●●●●● ●●●●● ●●●●● ●●●●● ●●●●●Enron Portland Slashdot Road G(n,p)

Figure 3.1. Relative frequencies of all seven vertex treelets on five different networks.

Template 1, a star with six edges, shows the largest spread in relative frequencies
between all of the networks. It is clear that this template would be considered a
very strong anti-motif for the road network. Having knowledge of what the road
network is representing (streets are edges and nodes are intersections), we can
deduce that these findings make logical sense, seeing as how there are very few
six-way intersections commonly encountered.

It is also apparent that the G(n, p) graph, while having the same number of
nodes, edges, and average degree of the Enron graph, contains a vastly different
local topology. This would once again corroborate existing information, in that it
is known that G(n, p) graphs very rarely correspond to real-world networks.

3.4.2 Relative Treelet Frequency Distances

The relative treelet frequency distances were calculated for all networks and groups
using all treelets between four and nine vertices in size. We ran each count for
1000 iterations to minimize error in the estimates. The methodology used to
calculate these distances is slightly different from the approach described in the
background Section. Instead of taking the logarithm of the total count over all
subgraphs, we scale values by the total counts for the specific treelet size. This is

35

done because, even using a log scale, the differences in count magnitudes between
four and nine-node treelets is far too large to scale them by the same denominator.

Figure 3.2. Treelet frequency distances between all tested networks. Darker implies a
lower distance or higher similarity.

Figure 3.2 demonstrates the results of these calculations on a heatmap. For
visualization purposes, the final distance values are log-scaled. Red represents
low disagreement while orange, yellow, and finally white show increasingly higher
disagreements. Each row-column coordinate represents the distance calculated
between the networks (names on the right hand side and bottom). Networks are

36

ordered by group.
A number of observations are possible by observing Figure 3.2. Several groups

show very minimal intra-group disagreement, including the road networks, the
small world and G(n, p) random graphs, as well as the collaboration and peer-to-
peer networks in a lesser extent. The protein-protein interaction networks show
agreement among the unicellular organisms (E. coli, H. pylori, S. cerevisiae), but
low agreement with the multicellular organism (C. elegans).

The peer-to-peer results are interesting, in that there appears to be two distinct
subgroups with high intra-group agreement. Each distinct network is simply a
snapshot of part of the same larger network at varying points in time. This
might highlight the highly dynamic and fluid nature of peer-to-peer networks, as
connections are being constantly made and broken as new content is released and
shared. Or it might just be an artifact due to noise and the relatively small sample
of the network that was taken at each date.

There is also some agreement between the random small-world networks with
the peer-to-peer and collaboration networks, demonstrating a correspondence to
the small-world phenomenon that is known to exist in these networks. However,
there is no such correlation with the social network crawls, which is surprising
and likely suggests that there are other network measures necessary to take into
account when determining network similarity beyond subgraph frequency, or that
the graph generator parameters or algorithm used to create the small-world graphs
need further tuning.

3.4.3 Treelet Degree Distribution Agreements

The treelet degree distribution agreement was calculated on all of the considered
networks, for all 83 distinct treelet orbits, on all three to seven vertex tree-structured
subgraphs. Again, we ran these counts each for 1000 iterations. These values were
calculated using the same methodology as previously described for graphlets without
any modification. The heatmap of results for all networks is presented in Figure 3.3
(bottom). Once again, red indicates a high agreement (low disagreement) and white
indicates a low agreement.

One of the more interesting observations from this analysis deals with the scale-
free networks. The absolute per-vertex counts for these networks were consistently

37

co
lla

b−
as

tr
o

co
lla

b−
co

nd
en

se
d

co
lla

b−
db

lp
co

lla
b−

ge
ne

ra
l

co
lla

b−
hi

gh
en

ph
ys

co
lla

b−
hi

gh
en

th
eo

ry
co

m
m

−
di

gg
co

m
m

−
en

ro
n

co
m

m
−

eu
al

l
co

m
m

−
fa

ce
bo

ok
gn

p1
0k

gn
p3

3k
gn

p5
0k

gn
p1

00
k

p2
p−

gn
u1

p2
p−

gn
u2

p2
p−

gn
u3

p2
p−

gn
u4

p2
p−

gn
u5

p2
p−

gn
u6

p2
p−

gn
u7

p2
p−

gn
u8

p2
p−

gn
u9

pp
i−

ce
le

g
pp

i−
hp

yl
o

pp
i−

ec
ol

i
pp

i−
sc

er
e

ro
ad

ne
t−

ca
ro

ad
ne

t−
co

ro
ad

ne
t−

fl
ro

ad
ne

t−
pa

ro
ad

ne
t−

tx
sf

−
10

k
sf

−
33

k
sf

−
50

k
sf

−
10

0k
so

ci
al

−
br

ig
ht

ki
te

so
ci

al
−

ca
ts

te
r

so
ci

al
−

ep
in

io
ns

so
ci

al
−

go
w

al
la

so
ci

al
−

gp
lu

s
so

ci
al

−
sl

as
hd

ot
sw

−
10

k
sw

−
33

k
sw

−
50

k
sw

−
10

0k
w

eb
−

be
rk

st
an

w
eb

−
go

og
le

w
eb

−
no

tr
e

w
eb

−
st

an
fo

rd

collab−astro
collab−condensed
collab−dblp
collab−general
collab−highenphys
collab−highentheory
comm−digg
comm−enron
comm−euall
comm−facebook
gnp10k
gnp33k
gnp50k
gnp100k
p2p−gnu1
p2p−gnu2
p2p−gnu3
p2p−gnu4
p2p−gnu5
p2p−gnu6
p2p−gnu7
p2p−gnu8
p2p−gnu9
ppi−celeg
ppi−hpylo
ppi−ecoli
ppi−scere
roadnet−ca
roadnet−co
roadnet−fl
roadnet−pa
roadnet−tx
sf−10k
sf−33k
sf−50k
sf−100k
social−brightkite
social−catster
social−epinions
social−gowalla
social−gplus
social−slashdot
sw−10k
sw−33k
sw−50k
sw−100k
web−berkstan
web−google
web−notre
web−stanford

Figure 3.3. Treelet degree distribution agreements between all tested networks. Darker
implies a higher agreement.

large, resulting in a very spread out distribution for each treelet orbit, and almost
no agreement between any of the other networks. It is likely due to the existence
of hubs with a massive degree and small diameter neighborhood that caused this
to occur, as the number of treelet embeddings increase combinatorially with vertex
degree. Since most vertices are within close range to a hub, their treelet embedding
counts are affected as well when the treelet is large enough.

The Google+ social network experienced a similar phenomenon, as did the Digg

38

communication network to a lesser extent. Their overall distributions are extremely
different from that of other networks in their group. It should be noted that the
G(n, p) 33K network is different from the other G(n, p), because it was modeled
with the same number of nodes and edges as the Enron network, and thus had
a much lower average degree than the other random graphs in that group. This
difference isn’t noticed with treelet frequency distances, however, indicating that
treelet degree distributions are more sensitive in this regard.

Figure 3.3 also demonstrates similar results as seen previously with the treelet
frequency distances. A lot of network types have low intra-network variance in
this instance, notably the road and peer-to-peer networks. The collaboration,
communication, peer-to-peer, web, social, and small world graphs also all share
a relatively low variance with each other. This could be attributed to the social
actions and connections that form these graphs. As was seen with treelet frequencies,
the road networks show little agreement with any of the other networks considered,
likely due to their vastly different and mostly planar structure.

3.4.4 Clustering Using Treelet Frequency Counts

We also examine whether we can use the treelet occurrence frequencies to cluster
networks into categories. The relative frequencies of all 4-9 vertex tree-structured
subgraphs for the same ten network groups were considered to be a feature vector,
and we used the the k-means and E-M clustering algorithms with the number of
clusters set to 10. Approximately 70% and 75% average clustering accuracies were
produced using the k-means and E-M algorithms, respectively. This is about the
same accuracy as reported by Bordino et al. on undirected graphs (75%). However,
they only considered seven network groups at a time, and used other topological
features beyond subgraph frequencies. This result indicates that large treelet
frequencies are useful features to consider when attempting to classify networks of
various types.

3.4.5 Node and Edge Deletion and Edge Rewiring

As most real-world networks are incomplete, noisy, and dynamically evolving,
the utility of treelet count for network analysis should be examined under these
considerations. We select four networks and introduce varying amounts and types

39

of network alterations. A 100K vertex G(n, p) graph, the Notre Dame web crawl,
the Slashdot social network, and one of the Gnutella peer-to-peer snapshots were
all modified by deleting vertices, deleting edges, and randomly rewiring edges. 5%,
10%, 20%, 50%, and 75% modifications of total vertices or edges were performed.
The differences in treelet frequency distance between the modified and original
network were then noted. As before, 1000 iterations were performed to retrieve the
counts for all networks.

gnp100k NotreWeb

p2p Slashdot

0.01

0.1

1

0.01

0.1

1

10

0.1

1

0.1

1

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Templates

R
el

at
iv

e
C

o
u

n
ts

Modification baseline v5 v10 v20 v50 v75

Figure 3.4. Treelet counts after 5%, 10%, 20%, 50%, and 75% vertices are deleted.

Figure 3.4 gives the results of vertex deletion on motif plots for all eleven different
seven vertex templates (T7-1 to T7-11) on the four aforementioned networks. Vertex
deletion has the most pronounced effect on the p2p network and the least effect on
the gnp100k network. It is surprising that for some templates, the scaled counts
are accurate even with 75% of the vertices deleted. This suggests that combining
sampling-based schemes with color-coding might be quite effective to obtain counts
for some templates.

Using the methodology to calculate treelet frequency distances (as originally
presented with log scaling), we calculate disagreement values for all networks before
and after perturbation. The maximal distance between the original and modified
counts for any network was with the Notre Dame web crawl, having a disagreement

40

gnp100k NotreWeb

p2p Slashdot

0.01

0.1

1

10

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Templates

R
el

at
iv

e
C

o
u

n
ts

Modification baseline e5 e10 e20 e50 e75

Figure 3.5. Treelet counts after 5%, 10%, 20%, 50%, and 75% edges are deleted.

gnp100k NotreWeb

p2p Slashdot

0.001

0.01

0.1

1

10

0.001

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Templates

R
el

at
iv

e
C

o
u

n
ts

Modification baseline r5 r10 r20 r50 r75

Figure 3.6. Subgraph counts after 5%, 10%, 20%, 50%, and 75% edges are rewired.

value of 4.1. With relative count scaling, this can be contrasted to the average
disagreement value between all baseline networks, which is 9.2. The minimal

41

disagreement for the modified networks was with 100K vertex G(n, p) graph, having
an absolute disagreement of only 0.6. These results support the assertion that using
treelet counts for network analysis can be useful even with incomplete networks.

Figure 3.5 gives results obtained with random edge removal from the networks.
Edge removal has a lower impact on treelet counts as expected. The calculated
maximal disagreement was with the Gnutella peer-to-peer graph, having a dis-
agreement value of 1.2 with 75% edges removed. All other values were well below
1. This lends further credibility to the use of treelet analysis on networks with a
high proportion of known vertices, but a lower confidence in known edges, such as
protein interaction networks in computational biology.

We performed another study to observe the effect of randomly rewiring a
proportion of edges within the network. These results are shown in Figure 3.6.
Uninterestingly, the treelet counts on the random network once again show minimal
change, along with the peer-to-peer network. However, the treelet counts on the
social network and web crawl are quite different. A high degree of random rewiring
seems to have a greater affect on the local topology in the social network and the
web crawl.

The disagreement values calculated for Slashdot and the Notre Dame web
crawl are relatively high for 75% rewiring (6.6 and 10.4, respectively), and the
values calculated at 20% are much lower (1.0 and 2.4). Even with a rather high
proportion of 20% spurious edges, the counts obtained on these modified networks
are demonstrably similar to that of the original networks, providing further evidence
to support the use of non-induced treelet counts in analysis of mildly noisy or
incomplete networks.

3.4.6 Comparisons to Recent Work

Rahman et al. have recently designed GRAFT [57], a tool for quickly counting
graphlets in large networks using a sampling-based technique. On the com-DBLP
network from SNAP [69] (n = 330K, m = 930K), they report a single node
execution time of about 47 seconds to count all 29 graphlets, with approximately
5% error. On the same network and with the same approximate error bound,
Fascia counts all 92 tree-structured templates of size 5 to 9 vertices, in about
78 seconds. Using networks grouped as peer-to-peer, collaboration, road, and

42

citation, Rahman et al. demonstrated that graphlets could be used for clustering
networks, and reported 77% and 91% clustering accuracy rates when using 29 and
18 graphlets, respectively. As mentioned before, counts from Fascia achieve up to
75% accuracy for clustering networks into 10 groups.

3.5 Conclusions
Using the subgraph counting tool Fascia, we conducted an extensive study to
highlight the efficacy of using large tree-structured templates to describe network
topology, in the same way that smaller subgraphs of varying structures have
previously been used. Additionally, we demonstrate the robustness of using these
non-induced subgraph counts as graph signatures by quantifying the impact of
random edge deletion and rewiring alterations on subgraph counts. Another use-
case of subgraph counts is for the network alignment problem, which is finding
large topologically-similar portions of disparate networks. The next chapter will
introduce the problem and demonstrate how we can utilize the counts output by
Fascia for its solution.

43

Chapter 4 |
Fast-Align Network Alignment

4.1 Introduction
This chapter will discuss the use of the subgraph counts output by Fascia for the
purpose of network alignment. We introduce FastAlign, which is our implemen-
tation of a prior alignment algorithm that uses the counts of small subgraphs for
alignment of biological networks. Through using the larger subgraphs countable
by Fascia, our FastAlign algorithm is able to produce network alignments of a
higher quality and with lower computational effort relative to the prior approach.

4.2 Network Alignment
The NP-Complete network alignment problem is determining a vertex to vertex
mapping between two disparate networks that minimizes some cost function. This
cost function is usually calculated based on how well the mapping aligns vertices
and edges between the networks. This can be considered a generalization of
the graph or subgraph isomorphism problems, where the cost is zero if an exact
mapping is found or infinity otherwise. Also, similar to the subgraph isomorphism
problem, determining alignments between networks can often reveal latent functional
similarities between the network structures. Network alignments can be cheaper to
calculate than exact subgraph matches (depending on the algorithm and subgraph
size), so determining alignments of very large networks is feasible.

In previous chapters, we introduced graphlets and some of their associated
uses. Graphlets are formally defined as all possible undirected induced subgraphs

44

from 2-5 vertices [51]. Using graphlets counts, one can calculate a global similarity
measure between networks as the total distances between all different graphlet
counts. This is termed as the graphlet frequency distance [59]. Similarly, a distance
can be calculated based of graphlet degree distributions, where the graphlet degree
of a vertex is the number of graphlet embeddings rooted at that vertex [1]. By
taking a single vertex and calculated the degrees for all possible graphlets rooted at
that vertex, a vector can be constructed (graphlet degree signature) for inter-vertex
comparisons [60]. Finally, by examining the graphlet degree signatures for nodes
within and between two distinct networks, an alignment between the networks can
be determined [89–93].

We previously demonstrated that treelet counts produced from Fascia are
more computationally efficient to compute and can take the place of graphlet
counts for a number of the aforementioned graphlet-based analytics [42]. The
primary focus of this chapter will be to demonstrate the possibility of using a
treelet degree signature vector, calculated through approximate treelet counts, as a
means to align biological networks. We utilize the GRAAL alignment algorithm,
explained in [89,90], to develop our own implementation, FastAlign. We then
do a comparison in alignment qualities produced between using treelet or graphlet
counts. We demonstrate that treelet counts can be more useful than graphlet
counts for the alignment of moderate scale biological networks.

Other relevant work has examined the applicability of using the color-coding
approach for network alignment in gene regulatory and protein interaction net-
works [63,64,94,95]. These approaches utilize a clever extension of the color-coding
dynamic programming phase based on local sequence alignment algorithms (such
as Smith-Waterman) to account for the possibility of insertions and deletions in
the alignment. Due to high memory requirements which scale exponentially with
the size of the query network, query sizes greater than 12 vertices soon become
infeasible with this general approach.

45

4.3 Background

4.3.1 Graphlets

As previously stated, graphlets are formally defined as small undirected induced
subgraphs between two and five vertices in size. Prior work by Pržulj et al. [1, 51,
59,60] extensively studies graphlets in the context of biological network analysis.
Pržulj et al. also identified all possible discrete orbits within each graphlet. Orbits
in this context refer to distinct automorphic vertices in the subgraph; i.e., it can
be useful to explicitly differentiate between an embedding rooted on a vertex in
the center of a star versus a vertex on one of the leaves. All possible graphlets and
identified orbits are given in Figure 4.1.

Figure 4.1. All possible graphlets and orbits. From [1].

4.3.1.1 Graphlet Degree Signature Similarity

The graphlet degree signature similarity was previously described in Chapter 3,
but we formally define it again here. The graphlet degree signature similarity is
a per-vertex metric that allows comparison between two disparate vertices in the
same or separate networks. This metric is based on a vector created with the counts
for all possible graphlet orbits rooted at the vertices. It is described as capturing
the local topology and interconnectedness of the node in the context of its local

46

neighborhood [60]. The similarity value between two vertices, u and v, for orbit i,
with counts ui and vi, respectively, is calculated as follows:

Si(u, v) = 1− wi ×
| log(ui + 1)− log(vi + 1)|

log(max{ui, vi}+ 2)
In this equation, wi is a certain weighting given to that specific orbit. These

values are dependent on the number of isomorphisms of smaller graphlets orbits
that exist at that orbit in its respective graphlet. The total similarity value between
vertices is the sum of similarity values divided by the sum of the weightings for all
orbits.

4.3.2 Treelets

Treelets in the context of this work are formally defined as all possible 3-7 vertex
tree-structured non-induced subgraphs. As mentioned, previous work [42] has
demonstrated the applicability of using treelets in lieu of graphlets to benefit from
the much lower possible running time bounds. Counting graphlets requires an
upper bound of O(n5) time where n is the number of vertices in the graph. There
have been sampling methods introduced to improve time to solution (e.g. [57]), but
these still do not improve upon the upper bound, have relatively high error, and
have not yet been demonstrated as applicable for producing per-vertex counts, only
global counts. Counting treelets, on the other hand, scales linearly in O(m) time
using the color-coding approach, where m is the number of edges in the network,
and can be used to count the number of treelet embeddings rooted at each vertex
in a graph. Note that the bound given here is even looser than it appears, since
as network size increases, the necessary number of iterations needed to retain the
same approximation error decreases [10,43].

4.3.3 GRAAL

The GRAAL (GRAph ALignment) algorithm and its variants [89,91–93] constitute
various approaches for the use of graphlet degree signature similarity between
vertices of different networks to compute an optimal alignment. An overview of the
baseline GRAAL algorithm implemented in this work is given by Algorithm 4.1, as
described in [90]. The algorithm proceeds as follows. Firstly, a cost matrix C is

47

created between all possible vertices v and u in between the two networks G and
H based on the following function:

C(u, v) = 2((1− α)× vd + ud
Gmax +Hmax

+ α× S(u, v))

In this function, vd and ud are the degrees of vertex v and u, Gmax and Hmax are
the maximal degrees of graphs G and H, S(v, u) is the graphlet degree signature
similarity between v and u, and α is a control parameter between [0-1] that varies
the influence of the vertex degrees versus signature similarity on the overall cost.
An α value of 0 would specify that only vertex degrees are to be utilized, while an
α value of 1 would result in only vertex counts being utilized.

Algorithm 4.1 GRAAL Alignment Algorithm
procedure GRAAL(G,H)

C ← allCosts(G,H)
A← ∅
p← 1
while G,H not fully aligned do

(u, v)← findSeed(Gp, Hp)
A← (u, v)
r ← 1
repeat

RG ← getRadius(Gp, u, r)
RH ← getRadius(Hp, v, r)
A← align(RG, RH , C)
r ← r + 1

until RG or RH = ∅
if r ≥ 3 and p < 3 then

p← p+ 1
return A

Using the cost matrix, an initial seed is selected as the minimal value pair in
C and added to the alignment A. The networks are then iteratively and greedily
aligned (based on minimal cost) outward from this pair of vertices on a per-radius
basis (e.g. 1 hop from u and v, 2 hops, 3 hops, etc.) until no more vertices are
available for alignment in one of the graphs at a given radius.

If the resultant radius is greater than or equal to 3, the graphs are taken to the
next power. In this instance, power refers to a graph that is created by adding edges
to the graph between all vertices having some shortest paths length between them
up to some value in the original graph. For example, a power 1 graph would just be
the original graph (i.e. G1 = G), while a power 2 graph would have additional edges

48

between all vertices that are at most 2 hops away from each other on the original
graph. This allows for inexactness in the alignment, similar to how additions or
deletions function in sequence alignment.

New seeds are selected and the greedy iterative alignment is again performed
for each radius. The alignment then continues with new seeds being selected and
the graphs incremented as necessary up to a maximal power as 3 until all possible
vertices in the smaller of G and H have been fully aligned.

4.3.4 Alignment Evaluation

There are three metrics commonly used to evaluate the quality of alignment
between two biological networks. These are edge correctness, node correctness and
interaction correctness. Given an alignment in terms of a mapping function M from
vertex sets VG ∈ G to VH ∈ H, we can define edge correctness as the following:

EC = |(u, v) ∈ EG : (M(u),M(v)) ∈ EH |
|EG|

where EG and EH are the edge sets of G and H, respectively. Edge correctness
can be simply stated as the ratio of the number of edges that exist in G that
equivalently end up mapped to an existing edge in H over the total number of
edges in G.

When labels exist for each vertex, e.g. proteins existing in disparate protein
interaction networks, node correctness is equivalently defined as:

NV = |u ∈ VG, v ∈ VH : M(u) = v, L(u) = L(v)|
|VG|

where L defines the labeling for each vertex. This is simply stated as the number
of matched labels when mapping the vertices in G to H over the number of vertices
in G.

Using a combination of vertex mappings and labels, we can finally define
interaction correctness as:

IC = |(u, v) ∈ EG : (M(u),M(v)) ∈ EH , L(u) = L(M(u)), L(v) = L(M(v))|
|EG|

49

Network n m Source
Yeast 5.1 K 22 K [76]
Human 3.7 K 5.1 K [76]
Yeast_lc 5.0 K 22 K [76]
Human_lc 2.8 K 4.4 K [76]
Yeast2 2.3 K 16 K [97]
Human1 9.1 K 41 K [77]
Yeast2_lc 2.0 K 16 k [97]
Human1_lc 8.9 K 41 K [77]
Anthrax 2.6 K 3.1 K [98]
Bubonic Plague 3.3 K 4.1 K [98]
Mesorhizobium 1.8 K 3.1 K [99]
Synechocystis 1.9 K 3.1 K [99]

Table 4.1. 12 networks comprising the 8 alignments that were used for testing. The
four bottom networks were all aligned to the Human1 network.

Which is the number of interactions between identified vertices in G that are
correspondingly mapped to the same interaction in H. It follows that EC ≥ NC ≥
IC. Because not all of the network datasets used for this work included explicit
node labels, edge correctness is the primary metric used to evaluate alignment
quality in this work.

4.4 Experimental Setup
Experiments and reported execution times were retrieved from Compton at Sandia
National Labs. Fascia was built with the Intel C++ compiler (version 13), used
OpenMP for multithreading, the -O3 optimization parameter, and utilized the
environment variable KMP_AFFINITY for controlling thread to core pinning. The
GRAAL executables were retrieved from [96]. The alignment algorithm was re-
implemented by us as FastAlign due to very slow execution times and high
memory overheads of the supplied executable. The supplied graphlet counting tool,
however, was still used as-given.

Several different alignments were attempted and the networks utilized are listed
in Table 4.1. The top 8 networks were aligned correspondingly to the network co-
listed, while the bottom four networks were all aligned the the Human1 network. All
networks listed are protein-protein interaction (PPI) networks. The networks were

50

downloaded from the Database of Interacting Proteins [76] and the supplementary
website for the C-GRAAL paper [93, 100]. To test for the influence of noise on
alignment quality, the Human, Human1, Yeast, and Yeast2 networks were also
parsed to extract only the largest connected component from the graph. This had
mild structural impact with the exception of the Human network, where about
35% of vertices and edges were removed.

4.5 Results
We are going to compare the performance of both graphlet and treelet counts for
network alignment utilizing the original GRAAL algorithm. Comparisons are going
to be made with regards to execution time required for subgraph count calculation
and resultant alignment quality in terms of edge correctness. Additionally, to
determine the significance of results, we also utilize a Random approach, which
was created by replacing the similarity value S(u, v) in the cost function with a
random float instead of having it calculated as an explicit difference in graphlet
or treelet counts between vertices.

Note that the overall GRAAL algorithm is not optimal or deterministic, so
results can be variable on a run-to-run basis. To extract the best alignment, one
would need to perform a large number of runs and determine the best output
from this. However, since this analysis is considering overall trends as opposed to
optimality, and the different outputs are usually within only about 10% of each
other, the results reported are from only a single run.

4.5.1 Execution Times

Figure 4.2 gives the execution times of both Fascia and the graphlet counting
portion of GRAAL for the Human, Human1, Yeast, and Yeast2 networks and
their largest connected components. Reported execution time is the sum total
for counting all 73 graphlets orbits or 83 treelet orbits. Fascia is run to 1000
iterations, which previous work [10,42,43] has established is more than sufficient to
minimize approximation error for networks of this scale.

From Figure 4.2, it is apparent why there is a desire to utilize treelets in lieu of
graphlets for network alignment. Fascia demonstrates superior scalability due to

51

 Fascia GRAAL

0

300

600

900

1200

H
um

an_lc

H
um

an

Yeast2_lc

Yeast2

Yeast_lc

Yeast

H
um

an1_lc

H
um

an1

H
um

an_lc

H
um

an

Yeast2_lc

Yeast2

Yeast_lc

Yeast

H
um

an1_lc

H
um

an1

Graph

R
un

tim
e

(s
)

Figure 4.2. Execution times for both Fascia and GRAAL to count several networks.

the O(m) versus O(n5) execution time bounds. Note that the graphs are listed in
increasing edge count from left to right, and that, although the Yeast network is
larger than the Yeast2 network, it has lower relative execution time with GRAAL
due to a lower vertex count.

4.5.2 Alignment Analysis

The previous GRAAL work has established that an α value in the cost function of
about 0.8 often results in the best alignment with GRAAL. Figure 4.3 demonstrates
the alignment quality in terms of edge correctness for all 8 alignments with α fixed
at 0.8. From this Figure, it appears that, relative to the random cost alignment,
Fascia’s treelet counts demonstrate good performance on the moderately-sized
pathogen and bacteria alignments while graphlet counts shows equivalent or better
performance on the larger and more complex Human1 and Yeast2 alignments.

Worth noting is the increase in alignment quality that results between the
HumanYeast and Human1Yeast2 alignments and their largest connected compo-
nents. There are two factors at play here. The dominant one is the reduction
in noise, which will increase the core alignment of the largest component while
simultaneously decreasing the denominators of the edge correctness calculations,
resulting in an increase in edge correctness as seen. However, an additional factor is
observed with the especially disconnected Human network. Aligning this network
will result in good alignments of all of its disconnected components, since a number

52

 Graphlets Treelets Random

0.00

0.05

0.10

0.15

0.20

H
um

anYeast

H
um

anYeast_lc

H
um

an1Yeast2

H
um

an1Yeast2_lc

A
nthraxH

um
an1

B
ubonicH

um
an1

M
esoH

um
an1

S
ynH

um
an1

H
um

anYeast

H
um

anYeast_lc

H
um

an1Yeast2

H
um

an1Yeast2_lc

A
nthraxH

um
an1

B
ubonicH

um
an1

M
esoH

um
an1

S
ynH

um
an1

H
um

anYeast

H
um

anYeast_lc

H
um

an1Yeast2

H
um

an1Yeast2_lc

A
nthraxH

um
an1

B
ubonicH

um
an1

M
esoH

um
an1

S
ynH

um
an1

Graph

E
dg

e
C

or
re

ct
ne

ss

Figure 4.3. Edge correctness across all network alignments with the α parameter fixed
at 0.8.

of them are only one hop in width and therefore have a good chance of perfectly
aligning with the implemented algorithm.

To analyze the effect of the α parameter, we then look at the alignments across
alpha values from 0.0 to 1.0 and compare treelets, graphlets, and random edge
correctnesses that results on all network alignments. This is given in Figure 4.4.

The results in Figure 4.4 appear to follow those in Figure 4.3, in that graphlets
shows good performance on the larger networks while treelets demonstrates superior
alignments on the smaller pathogen and bacterial networks. In general, it appears
that alignment quality decreases with increasing influence of subgraph counts for a
number of networks. Overall, one can take the alignment quality at α = 1.0 to be
the impact of subgraph counts themselves on the ability of this approach to align
networks.

Finally, we consider the possibility that Fascia counting accuracy can have an
effect on alignment quality. To test this, we perform additional counts at 1, 10,
100, and 10K iterations. We analyze both the Human1Yeast2_lc alignment, where
Fascia and treelets demonstrated near equivalent performance to random and
worse than graphlets for most α values, and the AnthraxHuman1 alignment, where
treelets demonstrated superior performance to both graphlets and random. We
compare alignment quality from these to that output with the random approach in
Figure 4.5.

53

●

● ● ●
● ● ● ●

● ● ●

●

●
●

●
● ● ● ●

●

● ●

● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ●

● ● ● ●

●
●

●
● ● ●

● ● ● ● ● ●
●

● ●
● ● ●

● ● ● ● ●
●

●

● ● ● ●

● ● ● ● ●

●

● ●

●

● ●
● ● ● ● ●

●

HumanYeast HumanYeast_lc Human1Yeast2 Human1Yeast2_lc

AnthraxHuman1 BubonicHuman1 MesoHuman1 SynHuman1

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
alpha value

E
dg

e
C

or
re

ct
ne

ss
Tool ● Graphlets Treelets Random

Figure 4.4. Edge correctness across all alignments with a variable α parameter.

●

●

●

●

●

●

●
● ●

● ●

●

●
●

●

●

●

●
●

●

●

●

AnthraxHuman1 Human1Yeast2_lc

0.05

0.10

0.15

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
alpha value

E
dg

e
C

or
re

ct
ne

ss

Iter ● 1 10 100 1000 10000 Random

Figure 4.5. Edge correctness across all alignments with a variable α parameter.

From Figure 4.5, we can observe that about 100 iterations were necessary to
produce appropriate counting accuracy for the AnthraxHuman1 alignment. Further
iterations beyond 100 appear to have minimal effect. On the Human1Yeast2_lc
alignment, we observe that the edge correctness produced is fairly independent on
counting accuracy, but still better than random. Without directly observing graph
structure or the explicit alignment being produced, it is an educated guess that the

54

alignment is highly dependent on a few major vertices in the core of the networks.
As touched on previously, counting accuracy increases with network size and density,
and only a few iterations are necessary to produce very low approximation error.
Note that the Anthrax network is both considerably smaller and less dense than
the Human1 and Yeast2 networks, so correspondingly requires a greater number of
iterations.

4.6 Conclusions
This chapter introduced our implementation of the GRAAL graph alignment
algorithm, FastAlign, which uses subgraph counts to greedily align two distinct
networks. We compared the alignment qualities of both graphlet and treelet counts
across a range of biological network alignments. Based on the limited experiments,
it appears the graphlet counts can be better suited for aligning larger and more
dense networks, while treelets are effective with smaller and less dense networks.
Both approaches were significantly better than random on most alignments.

Subgraph counting is only one possible application of the color-coding approach.
In the next chapter, we will introduce our extension of our baseline color-coding
implementation for the solution of the minimum-weight path finding problem and
demonstrate its usefulness for detecting signaling pathways in protein interaction
networks.

55

Chapter 5 |
FastPath Minimum Weight
Path Finding

This chapter demonstrates how the optimizations we introduced with Fascia are
generalizable to other color-coding-based algorithms with our parallel minimum
weight path finding tool, FastPath. As we will show, FastPath uses the core
techniques of Fascia to find minimum weight paths more quickly than prior work
and with less overhead.

5.1 Introduction
Consider the NP-hard optimization problem [101] of finding the minimum-weight
simple path of path length L in a weighted graph with positive edge weights. This
problem is of considerable interest in bioinformatics, specifically in the analysis of
paths in protein interaction networks. With an appropriately-defined edge weight
scheme, paths with the minimum weight, or in general close to the minimum
weight, often have vertices that belong to biologically-significant subgraphs such as
signaling and metabolic pathways [102,103]. As in the case of subgraph counting,
color-coding can only offer an approximate solution to this NP-hard problem. With
some confidence and error bounds, it is guaranteed to return simple paths with a
weight close to the minimum path weight. The low-weight paths returned through
color-coding on protein interaction networks are shown to be good candidates
for signaling pathways [101]. We present a shared-memory parallelization of the
approximate low-weight path enumeration strategy, which we term as FastPath.

56

5.2 Related Work
Scott et al. were the first to use the color-coding technique to find low-weight
paths, with the use case of detecting signaling pathways in protein interaction
networks [101]. Vertices in these networks are proteins, and edge weights are the
negative log of the probability that the two proteins interact. Thus, simple paths
with low weights correspond to chains of protein that would interact with high
confidence. Hüffner et al. [66] expanded on this initial work by offering several
optimizations to the baseline algorithm to improve running times, including choosing
an appropriate number of colors to decrease iteration counts and implementing a
pruning strategy that complements coloring. More recently, Gabr et al. [65] further
decreased the number of iterations required for a given confidence bound through
per-iteration examination of graph colorings. Color-coding has also been used for
querying linear pathways in protein interaction networks by Shlomi et al. [95]. This
work was expanded for more complex bounded tree-width queries by Dost et al. [94].
Similar to the aforementioned Gabr et al. work, Gülsoy et al. [63, 64] speeds up
pathway and small bounded tree-width querying by also reducing the number of
iterations required for a given confidence bound.

5.3 Enumerating low-weight simple paths with Fast-
Path
We now present a color-coding based scheme to enumerate simple paths of length
L in a graph with positive edge weights. Finding the minimum-weight path is an
NP-hard problem, but color-coding gives us an approximation algorithm whose
cost is linear in the number of edges in the graph, but exponential in the value L.
The main idea is the same as the subgraph counting case: instead of enumerating
all paths of length L and looking for a simple path with the minimum weight, we
instead only search for colorful paths by randomly coloring vertices. There are
prior approaches and tools that implement this strategy. However, prior work has
primarily focused on reducing running time by limiting the required number of
iterations for a given confidence bound [65,101], with the exception of the approach
of Hüffner et al. [66]. Here, we will only consider minimizing per-iteration costs

57

through the previously-described optimizations utilized for Fascia (combinatorial
table indexing, memory-reducing optimizations, partitioning, multithreading). Our
approach can be combined with topology-aware coloring methods to further reduce
end-to-end running time.

Algorithm 5.1 FastPath: Enumerating low-weight simple paths using color-
coding.

Initialize all entries of a min heap H of size nL to ∞
for it = 1 to Niter do . Outer loop parallelism

Color G(V,E) with k colors
Initialize all Weights[1][v ∈ V1][1 · · · c1] ←∞
for i = 2 to L+ 1 do

for all v ∈ Vi do . Inner loop parallelism
for all color sets C do

minw ←∞
for all Ca, Cp ∈ C do

for all u ∈ N(v) do
wa ← GetEdgeWeight(u, v)
wp ← Weights[i− 1][u][Cp]
if wa + wp ≤ minw then

minw ← wa + wp

if minw < H.max then . Critical section
if i = L+ 1 then

insert minw into H
else

Weights[i][v][C] ← minw

Return H as output.

Algorithm 5.1 gives an overview of the general approach for finding low-weight
simple paths. The algorithm is similar to the general color-coding template for
subgraph counting. Since this implementation only considers simple paths (which
can be considered a tree template) rather than a more complex template, we can
simplify the partitioning phase. We avoid partitioning completely by assuming that
we already performed a one-at-a-time partitioning, and have set the active child as
the single cut vertex at each step in the partitioning tree.

To simplify the description of the algorithm, we only show weights of the nL least-
weight colorful paths being stored in Algorithm 5.1. In our actual implementation,
we also store the corresponding vertices in the low-weight path as an array of integers.
In prior work, paths have also been stored using compressed representations [66,101].

58

We use a min heap H of size nL to store the best weights and the corresponding
paths.

Algorithm 5.1 has L inner loop iterations. At each step, we are attempting to
find over all v ∈ Vi the least-weight colorful path that ends at v, for every possible
color set C. Initially, weights for all vertices and colorsets are set to ∞ for a single
vertex path. For succeeding steps, we look at the sum of weights of all previously
discovered paths ending on neighbors u of v, while considering adding the weight
of the edge between u and v. For each color set C, we take the minimum and store
the summed weight of the path in Weight[i][v][C].

We can also compare the weights found during each step to the current highest
value in the min heap, and store the path only if it is one the current nL lowest-
weight paths. These paths are inserted into the heap in the final step of the
inner loop (i = L + 1). We update the heap over subsequent iterations, storing
better paths if we find them. This decreases memory requirements for subsequent
iterations by avoiding unnecessary storage of heavy paths in the Weights array.

There are FastPath-specific issues to note with regards to memory utilization.
Storing the actual paths for all color sets for all vertices can increase memory
costs considerably. However, the biological networks and path lengths examined
are usually both small enough that memory is not a concern. Additionally, there
is often a predefined directivity in the input paths (e.g. finding a path between
membrane proteins and transcription factors), and this allows us to restrict the
size of the table for each step i by only placing a subset of possible vertices into Vi
with per-vertex initializations. Using a min heap with a small nL value will also
substantially decrease memory requirements after the first few iterations.

Finally, note that we implement both inner-loop and outer-loop parallelism here,
similar to Fascia. For the size of biological networks commonly considered for
the minimum-weight path problem, outer loop parallelism performs considerably
better. If every outer loop thread maintains its own min heap, we can avoid
the synchronized heap insertions that inner loop parallelism requires. After all
iterations are complete, we can simply examine all heaps and return the nL-best
unique paths.

59

Network n m davg dmax D̃ Source
Human 9.0 K 22 K 5.0 322 14 [104]

Caenorhabditis 3.2 K 5.5 K 3.4 186 14 [104]
Drosophila 7.2 K 21 K 5.9 176 12 [104]
Mammalia 8.8 K 19 K 4.4 323 18 [104]

Table 5.1. Network sizes and average and maximum degrees and approximate diameter
for the networks used in our analysis.

5.3.1 Experimental Setup

Experiments were performed on the Compton testbed at Sandia National Labora-
tories. We evaluate performance of our FastPath implementation on a collection
of biological networks, listed in Table 5.1. We considered the weighted Human,
Caenorhabditis (C. elegans genus), Drosophila (fruit flies), and Mammalia protein
interaction networks from the Molecular INTeraction database [104].

5.4 FastPath performance
In this section, we analyze our FastPath implementation for finding minimum-
weight paths in the weighted Human, Drosophila, Caenorhabditis, and Mammalia
protein interaction networks from the MINT database. We compare our per-
iteration running times to the current state-of-the-art serial code of Hüffner et al.
(HWZ) [66]. We do not directly compare to other work, as most other work has
focused on reducing the number of color-coding iterations, rather than improving
per-iteration performance.

Figure 5.1 gives the running times for FastPath and HWZ to determine the
100 best 4-9 length paths over 500 search iterations. We report serial and parallel
performance of FastPath, with our parallel code run across 16 cores on a Compton
node. We include both the Hüffner et al. baseline color-coding approach (HWZ),
as well as their dynamic programming heuristic technique (HWZ-Heuristic). We
also analyzed outputs, and noticed that all four approaches find the same paths
with the same minimum weights.

From Figure 5.1, we observe that our parallel FastPath implementation
demonstrates considerable speedup across all test instances. We note that the
running times of serial FastPath are close to that of HWZ-Heuristic on most

60

●
●

●

●

●

●

●
● ●

●
●

●

● ●
●

●

●

●

● ● ●
●

●

●

Human Caenorhabditis Drosophila Mammalia

0

50

100

150

200

4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9
Path Length50

0
Ite

ra
tio

n
E

xe
cu

tio
n

T
im

e
(s

)
Program ● HWZ HWZ−Heuristic FastPath FastPath−Parallel

Figure 5.1. Absolute running times for 500 iterations of finding path lengths 4 through
9 using the Hüffner et al. baseline and heuristic methods, as well as FastPath in serial
and on 16 cores.

tests, and that the heuristic offers improved speedup to the HWZ baseline. Our
current version of FastPath does not implement the HWZ heuristic, but future
work combining both our and Hüffner et al.’s optimizations could lead to improved
performance.

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

Human Caenorhabditis Drosophila Mammalia

1

4

8

12

16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Cores

P
ar

al
le

l S
ca

lin
g

Length ● 4 5 6 7 8 9

Figure 5.2. Speedup for FastPath from 1 to 16 cores for path lengths 4 through 9.

Figure 5.2 gives the parallel speedup from 1 to 16 cores for all the tested path
lengths and networks. We observe that 500 iterations of path length 9 takes about
5 seconds on the Human network, with a parallel speedup of about 12.5×. We note
that speedup is dependent on the length of the path being searched, since longer
paths generate more overall work and greater relative parallelism.

61

P29353 P62993 Q62245P22681 P62994Q96B97

P29353 P22681P62994 Q96B97P62993Q07889

Figure 5.3. Sample minimum-weight paths of path length five found in the MINT
Human PIN using FastPath (top) and FASPAD (bottom). The path weight is 0.0211329
in both cases.

We also employ FastPath to see if we can determine the minimum path weight
in the Human-MINT network for different values of L. We performed a search with
paths of length 5 using FastPath and FASPAD [105], a tool based on the Hüffner
et alṁethod. We found several minimum weight paths in the network in just a few
iterations. Two paths are shown in Figure 5.3, one generated using FastPath and
the other using FASPAD. The simple path detected is shown with black edges, and
other edges connecting proteins in the path are shown in grey. Further analysis
using DAVID [106,107] reveals that proteins in the high-scoring paths appear in
the well-studied chronic myeloid leukemia KEGG pathway [108]. We also compared
our results with those presented by Gabr et al. [65] for different path lengths, and
despite the fact that we don’t explicitly restrict the search space from membrane
proteins to transcription factors in our test, we notice the same proteins appearing
in both our works.

Finally, we demonstrate the statistical significance of the paths found using
FastPath. We use the standard score metric, also known as a z-score, which gives
the number of standard deviations a given path weight is from the mean path
weight determined over some sample of paths. The z-score is calculated as z = x−µ

σ
,

where x is a given single path weight and µ and σ are the mean and standard
deviation path weights over the sample, respectively.

Using all four networks and path lengths from 3 to 8, we take the mean (µ)
and standard deviation (σ) of weights from 1000 randomly-selected paths, and
calculate the z-scores (z) using the lowest weight (x) returned by FastPath after
500 iterations. Table 5.2 gives these results. The statistical significance of the paths
we find is apparent. The z-scores obtained on the Drosophila and Caenorhabditis

62

Network Path Length x µ σ z

Human

3 0.003 3.37 0.87 3.80
4 0.012 4.55 1.07 4.22
5 0.021 5.67 1.22 4.61
6 0.045 6.76 1.45 4.61
7 0.065 7.92 1.59 4.92
8 0.086 9.03 1.72 5.19

Caenorhabditis

3 0.65 3.73 0.27 11.1
4 1.49 4.98 0.32 10.6
5 2.51 6.23 0.33 11.2
6 3.27 7.46 0.37 11.2
7 4.03 8.71 0.38 12.2
8 4.86 9.95 0.41 12.2

Drosophila

3 1.12 3.76 0.25 10.3
4 1.80 5.02 0.24 13.1
5 2.65 6.27 0.29 12.3
6 3.64 7.53 0.23 16.6
7 4.37 8.80 0.23 19.0
8 4.81 10.0 0.26 19.7

Mammalia

3 0.046 3.42 0.98 3.44
4 0.063 4.62 1.20 3.80
5 0.116 5.70 1.48 3.77
6 0.158 6.85 1.56 4.29
7 0.178 8.04 1.68 4.68
8 0.286 9.34 1.88 4.82

Table 5.2. The lowest weight paths obtained with FastPath for several networks and
path lengths, along with its z-score calculated using the mean and standard deviation of
a random sample of paths.

networks are especially high. As was similarly noted by Gabr et al., we observe that
z-score consistently increases with path length. This demonstrates the importance
of scalable methods for finding low-weight paths of large L. In future work, we will
perform a detailed exploration of the biological significance of the paths found, and
see if they correlate with the apparent statistical significance.

5.5 Conclusions
This chapter introduced FastPath, a tool for finding minimum weight simple
paths in weighted edge networks. We utilize the color-coding method along with
optimizations borrowed from Fascia to demonstrate good serial and parallel
performance relative to prior art. We also demonstrate the applicability of using
such a tool for network analysis by finding several relevant and known pathways
in protein interaction networks. In the next chapter, we will move away from

63

color-coding and subgraphs and path-based problems onto the topic of graph
connectivity.

64

Chapter 6 |
Multistep Method for
Graph Connectivity

6.1 Introduction
This chapter introduces the Multistep method, which is a shared-memory parallel
algorithm for the decomposition of a directed graph into its strongly connected
components. We reduce the strongly connected components decomposition problem
into numerous subroutines. We optimize each of these subroutines for multicore
platforms and demonstrate the effectiveness of our approach relative to prior art.
Again, our techniques are very generalizable, as with minimal modification we are
able to use the same subroutines for other related connectivity problems.

6.2 Strongly Connected Components
The problem of strongly connected components (SCCs) decomposition refers to
detection of all maximal strongly connected subgraphs in a large directed graph.
Informally, a strongly connected subgraph is a subgraph in which there is a path
from every vertex to every other vertex. SCC decomposition is a useful prepro-
cessing and data reduction strategy when analyzing large web graphs [11] and
networks constructed from online social network data [12]. SCC detection also
has several uses in formal verification tools, including model checking in state
space graphs [15]. Other application areas include computer-aided design [109] and
scientific computing [16].

65

Tarjan’s algorithm [18] is an efficient serial algorithm for SCC detection. It uses
a recursive depth first search (DFS) to form a search tree of explored vertices. The
roots of subtrees of the search tree form roots of strongly connected components.
Although it is possible to extract parallelism from DFS while retaining proper
vertex ordering, this is often met with limited success [110]. Therefore, most parallel
SCC algorithms have avoided its use.

The Forward-Backward (FW-BW) method [19] and Orzan’s color propagation
method [15] are two SCC detection algorithms that are amenable to both shared-
memory and distributed-memory implementation. These methods use very different
subroutines and were proposed in different contexts, FW-BW for graphs arising in
scientific computing and color propagation in the context of formal verification tool
design. We observe that baseline shared-memory parallelization of both methods
perform poorly in comparison to the serial algorithm for SCC decomposition in
irregular and small-world graphs, such as social networks and web crawls.

In this chapter, we present a new parallel algorithm for SCC, the Multistep
method, and problems related to SCC, connected components (CC) and weakly
connected components (WCC). Finding the connected components of an undirected
graph is to find all maximal subgraphs in the graph graph where there is a path
between all vertices. Weakly connected components are the equivalent of connected
components but in a directed graph where edge directivity is ignored. Known
efficient serial and parallel algorithms for these problems can be very different from
SCC detection algorithms. However, we observe that the approaches we present
are easily extended to solve these problems as well.

6.2.1 Contributions

Our new Multistep method is designed for SCC detection in large real-world
graphs, such as online social networks and web crawls, using current shared-memory
multicore platforms. We utilize variants of FW-BW and Orzan’s color propagation
methods in subroutines. We minimize synchronization and avoid use of fine-grained
locking. Our BFS subroutine incorporates several recently-identified optimizations
for low-diameter graphs and multicore platforms [111–113]. We perform an extensive
experimental study on a 16-core Intel Xeon server with Sandy Bridge processors,
and the following are our main observations:

66

• For low-diameter networks (e.g., Twitter, LiveJournal crawls), the single-
threaded Multistep approach is significantly faster than the serial Tarjan
algorithm.

• Multistep is faster and exhibits better scaling than our implementations of
the FW-BW and coloring algorithms.

• Multistep is up to 8.9× faster than the state-of-the-art Hong et al. method [114]
on ItWeb, a network with a large number of SCCs (30 million).

• Multistep modified for CC is consistently faster than the coloring-based
algorithm implementation in Ligra [115].

• For WCC on real-world RDF graphs, Multistep is faster than a color
propagation-based approach.

• Our modified atomic-free and lock-free BFS averages a traversal rate of
1.4 GTEPS (Giga traversed edges per second) over all tested networks.

6.3 Background

6.3.1 Strongly Connected Components

There are several existing serial and parallel algorithms that are used to determine
the SCCs of a graph. This section will give a general overview of a number of
important ones. Serial methods include Tarjan’s and Kosaraju’s algorithms, while
parallel methods are the Forward-Backward algorithm and color propagation.

6.3.1.1 Serial Algorithms

Two common serial algorithms used for SCC detection are Tarjan’s [18] and
Kosaraju’s [116] algorithms. Both of these algorithms perform linear O(n + m)
work in the RAM model of computation, where n is the number of vertices and m
is the number of edges in an input graph. However, since Tarjan’s algorithm only
requires a single DFS as opposed to Kosaraju’s two, it is often faster in practice.

67

6.3.1.2 Forward-Backward

The Forward-Backward (FW-BW) algorithm [19] (see Algorithm 6.1) can be de-
scribed as follows. Let V denote the set of vertices in the graph, E(V) the set of
outgoing edges, and E ′(V) the set of incoming edges. Given the graph G (V,E(V)),
a pivot vertex u is selected. This can be done either randomly or through sim-
ple heuristics. A BFS (or DFS) search is conducted starting from this vertex to
determine all vertices which are reachable from u (the forward sweep). These
vertices form the descendant set (D). Another BFS is performed from u, but on
G (V,E ′(V)). This search (the backward sweep) will find the set (P) of all vertices
than can reach u, called the predecessor set. The intersection of these two sets forms
an SCC (S = D ∩ P) that has the pivot u in it. If we remove all vertices in S from
the graph, we can have up to three remaining disjoint vertex sets: (D \ S), (P \ S),
and the remainder R, which is the set of vertices that we have not explored during
either search from u. The FW-BW algorithm can then be recursively called on
each of these three sets.

Algorithm 6.1 Forward-Backward Algorithm
1: procedure FW-BW(V)
2: if V = ∅ then
3: return ∅
4: Select a pivot u ∈ V
5: D ← BFS(G(V,E(V)), u)
6: P ← BFS(G(V,E ′(V)), u)
7: R← (V \ (P ∪D)
8: S ← (P ∩D)
9: new task do FW-BW(D \ S)

10: new task do FW-BW(P \ S)
11: new task do FW-BW(R)

There is parallelism on two levels. As the three sets are disjoint, they can each
be explored in parallel. Also, note that we do not require any vertex ordering within
each set, just reachability. Therefore, each of the forward and backward searches
can be easily parallelized or run concurrently. For graphs with bounded constant
vertex degree, FW-BW is shown to perform O(n log n) expected case work.

A routine called trimming is commonly performed before executing FW-BW.
The trimming procedure was initially proposed as an extension to FW-BW [117] to

68

remove all trivial SCCs. The procedure is quite simple: all vertices that have an
in-degree or out-degree of zero (excluding self-loops) are removed. Trimming can
also be performed recursively, as removing a vertex will change the effective degrees
of its neighbors. In this chapter, we refer to a single iteration of trimming as just
simple trimming and iterative trimming as complete trimming. This procedure is
very effective in improving the performance of the FW-BW algorithm, but can be
beneficial for other approaches as well.

6.3.1.3 Color Propagation

The color propagation algorithm for SCC decomposition is given in Algorithm 6.2.
This algorithm is similar to FW-BW in that it uses forward and backward traversals.
However, the approach is also quite different, as it uses multiple pivots in the forward
phase and only looks at a subset of edges for each pivot in the backward phase.

Algorithm 6.2 Color Propagation Algorithm
1: procedure ColorSCC(G(V,E))
2: while G 6= ∅ do
3: for all u ∈ V do Colors(u)← u

4: while at least one vertex has changed colors do
5: for all u ∈ V in parallel do
6: for all 〈u, v〉 ∈ E do
7: if Colors(u) > Colors(v) then
8: Colors(v)← Colors(u)
9: for all unique c ∈ Colors in parallel do

10: Vc ← {u ∈ V : Colors(u) = c}
11: SCVc ← BFS(G(Vc, E ′(Vc)), u)
12: V ← (V \ SCVc)

Assume that the graph vertices are numbered from 1 to n. The algorithm starts
by initializing elements of the array Colors to these vertex identifiers. The values
are then propagated outward from each vertex in the graph, until there are no
further changes to Colors. This effectively artitions the graph into disjoint sets. As
we initialized Colors to vertex identifiers, there is a unique vertex corresponding
to every distinct c in Colors. We consider u = c as the root of a new SCC, SCVc.
The set of reachable vertices in the backward sweep from u of vertices of the
same color(Vc) belong to this SCVc. We then remove all these vertices from V and

69

proceed to the next color/iteration. The two subroutines amenable to parallelization
are the color propagation step and the backward sweep. In a graph with a very
large SCC and high diameter, the color of the root vertex has to be propagated to
all of the vertices in the SCC, limiting the efficiency of the color propagation step.

6.3.1.4 Other Parallel SCC Approaches

There has been other recent work aimed at improving FW-BW and color prop-
agation. One example is the OBF algorithm [118] of Barnat et al., which, like
color propagation, aims to further decompose the graph into multiple distinct
partitions at every iteration. The OBF decomposition step can be performed much
quicker than color propagation. However, it does not necessarily result in as many
partitions. Barnat et al. implement OBF, FW-BW, and color propagation on
NVIDIA GPUs [23] and demonstrate considerable speedup over equivalent CPU
implementations.

More recently, Hong et al. [114] present several improvements to the FW-BW
algorithm and trimming procedure by expanding trimming to find both 1-vertex and
2-vertex SCCs, decomposing the graph after the first SCC is found by partitioning
based on weakly connected components, and implementing a dual-level task-based
queue for the recursive step of FW-BW to improve runtimes by reducing overhead
for the task-based parallelism. We present detailed comparisons to their approach
in Section 6.6.

6.3.2 Connected and Weakly Connected Components

The connected components of an undirected graph are the maximal subgraphs where
every vertex in the subgraph has a path to every other vertex. Weakly connected
components in a directed graph are the equivalent to connected components in
undirected graphs if edge directivity is ignored.

The approaches for determining connected components and weakly connected
components in graphs are similar. There are two primary parallel methods, using
techniques similar to those described in the preceding sections. First, a parallel BFS
can be used for connected components. Any vertices reachable by the BFS traversal
will be in the same component. We continue selecting new unvisited vertices as BFS
roots until all vertices have been visited and all connected components identified.

70

The procedure is the same for weakly connected components, but it is required to
examine both in and out edges.

We can also use a color propagation approach. Each vertex is initialized with a
unique color, and the maximal colors are propagated throughout the network. Once
the colors reach a stable point, all vertices contained in each discrete component
will have the same color. The number of propagation iterations is bounded by
O(log n) when using the pointer-jumping technique. There is also load balancing
phase to handle giant connected components [119].

6.4 Applying the Multistep Method
This section provides more implementation details about various phases, and also
discusses extensions for WCC, CC, and articulation point detection. All our
algorithms were implemented in C++, using OpenMP for multithreading. We
use the compressed sparse row (CSR) representation for graph storage, and use
additional arrays for storing incoming edges. To avoid modifying the graph, we
have a boolean array termed valid which signifies if a vertex is yet to be placed in
an SCC. We also have an additional integer array which gives a numeric identifier
of the SCC to which each vertex belongs. We avoid locking or atomic operations
when possible through thread-owned queues, mitigation of race conditions, and by
utilizing various techniques to reduce work.

6.4.1 Trim Step

We consider two different approaches for parallel trimming. We use a boolean array
to mark vertices that are trimmed. Simple trimming requires the degrees of vertices
in the original graph. Therefore, it requires a single pass through all vertices to
find their in/out degrees, and flip their valid boolean if either degree is zero.

Complete trimming is a bit more complex. To speed up parallel complete
trimming, in addition to the boolean trimmed array, we create current and future
queues and an additional boolean array of values (mark) to signify if a vertex is
currently placed in the future queue. All vertices are in the current queue to begin
with. We then determine the effective in- and out-degrees for all vertices in the
current queue and mark trimmed vertices as such. In addition, any untrimmed

71

child or parent of the trimmed vertex is placed in the future queue and marked as
such. Once the current queue is empty, the queues are swapped with the marks
reset.

This process is repeated for as many iterations as necessary. The queues avoid
having to look through all vertices at each iteration, as it has been observed that
long tendrils of vertices in several real-world graphs [11] tend to result in numerous
iterations where only a few vertices are removed at a time. The marking is done to
prevent a vertex from being placed in the future queue multiple times. To avoid
the synchronization overhead that would be required with a parallel queue, we
maintain separate queues for each thread and combine them into the next level
queue at the end of each iteration of complete trimming.

Although complete trimming is easily parallelizable and can be quite fast, with
the queues and marking being done similar to our BFS and color propagation
steps (described below), it does not offset the additional cost. We note that the
simple trimming step removes the vast majority of vertices that can be removed by
trimming, and the additional iterative steps have a high overhead.

6.4.2 Breadth-First Search

The main subroutine in the FW-BW step is the parallel breadth-first search. We
utilize a level-synchronous and hybrid bottom-up parallel approach, with threads
concurrently exploring the vertices in the current frontier. Further, each thread
maintains a queue of visited vertices to represent the frontier, and these queues are
merged at the end of each iteration. Using thread-local queues instead of a shared
queue avoids the synchronization overhead of insertions.

A key data structure required in BFS is a lookup array of size n, to check if
a vertex has been visited or not. A typical BFS optimization is to use a bitmap
(1 bit per vertex) to avoid further exploring visited vertices. A bitmap will fit
completely in the last-level cache of modern server-grade CPUs for graphs of up
to tens of millions of vertices. However, as we observed, a boolean visited array
(one byte per vertex) actually outperforms a bitmap in our test environment. The
likely reason for this is three-fold: less arithmetic to figure out the vertex index
within the bitmap, the additional accesses needed for a SCC algorithm as opposed
to running a pure BFS, and guaranteed atomic reads/writes at the byte level on

72

our test system [120]. A much more complicated read/write function is required to
guarantee atomic updates for a bitmap [113]. We note that the effectiveness of a
bitmap, in practice, will depend on last-level cache utilization, which is dependent
on the size and structure of the network being explored.

Recent results show that for certain levels of a BFS in low-diameter graphs, it
is more efficient to look in the reverse direction [112]. In this direction-optimizing
approach to BFS, all unvisited vertices attempt to find a parent that is in the
frontier, instead of the typical way of inspecting adjacencies of frontier vertices. We
used this optimization with similar settings as the original paper (α = 15, β = 25)
and notice considerable speedup. However, we had to maintain the thread queues
in the bottom-up hybrid as opposed to explicitly rebuilding the queue from scratch
when we turn the hybrid mode off. This is due to the fact that we do not maintain
the BFS tree and lack the ability to track BFS level on a per-vertex basis, as we
only maintain the visited array for determining the SCC.

We also investigated a per-socket graph partitioning and exploration scheme
similar to the ones described in Agarwal et al. [111] and Chhugani et al. [113].
Although these partitioning approaches improved parallel scaling, it was only in a
limited number of instances that actual runtimes improved due to the additional
overhead. We do not include it in our final results. Overall, our BFS implementation
achieves an mean traversal rate of 1.4 GTEPS (billion traversed edges per second)
on the graphs given in Table 6.1.

6.4.3 Color Propagation

The pseudocode for the parallel vertex color propagation step MS-Coloring is given
in Algorithm 6.3. Initially, all active vertices are assigned a color which is the same
as their vertex identifier and placed into a frontier queue Q. The adjacencies of all
vertices in Q are inspected in parallel, and we check to see if an adjacency’s color
is lower than the color of v, the current vertex. If it is, the color is passed to the
child, and both the parent and child are placed in the thread’s next level queue Qt

and globally marked as such. Although the pseudocode of Algorithm 6.3 indicates
that Qt is of unlimited size and is only emptied at the end of each iteration, in
practice it is usually better to limit Qt to a fixed size (dependent on cache and
other hardware considerations) and empty it into a global next level queue when

73

it becomes full. We omit showing this for clarity and space considerations of the
given algorithm.

Algorithm 6.3 Pseudocode for MS-Coloring
1: for all v ∈ V do
2: Color(v)← v
3: Add v to Q
4: V isited(v)← false

5: while Q 6= ∅ do
6: for all v ∈ Q do in parallel on thread t
7: for all 〈v, u〉 ∈ E(V) do
8: if Color(v) > Color(u) then
9: Color(u)← Color(v)
10: if V isited(u) = false then
11: V isited(u)← true
12: Add u to Qt

13: if any u changed color then
14: if V isited(v) = false then
15: V isited(v)← true
16: Add v to Qt

17: for all v ∈ Qt do in parallel on thread t
18: V isited(v)← false

19: Barrier synchronization
20: Q← ∪tQt . Master thread performs merge

We place the parent in the next level queue after an update occurs to avoid
explicit locking. It is possible that two parents will have higher colors than a shared
child, creating a race condition. Both parents will once again examine their children
in the next iteration to make sure that either the color that was given by them,
or a higher one, has been placed. Additionally, since only a higher color can be
assigned, we can ignore the race condition created if a parent has their own color
overwritten before they assign their previous one to the child.

We also tried to avoid locks by trying a bottom-up scheme: having children look
at their parents’ and own color and take the largest, avoiding the race condition
entirely. However, this is much slower in practice, because either all vertices need to
be examined at each iteration, or the out vertices of the child need to be examined
to create the queue, effectively doubling the amount of memory transfers for each
iteration.

74

Our parallel SCC finding on the reverse step is fairly standard, as it is a trivial
algorithm to parallelize. We simply determine the root vertices by finding all unique
colors in the graph, and then run a parallel multi-source BFS using each unique
root as a source. We propagate SCC labels to descendants of the roots which have
the same initial color as the root.

6.4.4 Serial Step

We use the recursive Tarjan’s algorithm for the serial step. Previous work has
demonstrated little difference in runtime between recursive and non-recursive
implementations [121]. Additionally, Tarjan’s runtime should ideally be within a
small factor of the runtime of a plain DFS, and our implementation runs within a
factor of 1.65× on average across our test graphs in Table 6.1.

We experimentally determined that a cutoff of about 10,000 to 100,000 remaining
vertices is a relatively good heuristic for switching to the serial algorithm, although
this is hardware and graph-specific. Some graphs benefit from running color
propagation all the way to completion, while some others would benefit more
from switching to serial sooner. However, determining this cutoff without prior
knowledge of the graph may be quite difficult. The cutoff threshold can be set based
on the number of steps needed to fully color the graph, and we will investigate this
in future work.

6.4.5 Connected Components and Weakly Connected Compo-
nents

Our Multistep method can be easily extended to detect weakly connected com-
ponents in directed graphs, and connected components in undirected graphs. We
initially trim any vertices with an effective degree of 0, then determine the massive
(weakly) connected component through a single parallel BFS from the pivot (instead
of two in case of SCC), and finally perform color propagation on the remaining
vertices.

75

6.5 Experimental Setup
Experiments were performed on Compton. All programs were compiled with the
Intel C++ compiler, version 13.1.2. The -03 optimization parameter was used with
the -openmp flag. The environment variable KMP_AFFINITY was used to control
thread locality when needed.

For comparison to recent work, we also run SCC code provided by Hong et
al. [114] and CC code from the Ligra framework, released by Shun and Blelloch [115].
We used the same compilation procedures and runtime environment when possible,
with the exception of using Cilk Plus for parallelizing Ligra code instead of OpenMP.
This was observed to be faster in practice.

Several large real-world and synthetic graphs were used in the course of this
work (see Table 6.1). The first twelve graphs listed in the table are undirected
while the rest are directed. These graphs were retrieved from a number of sources,
namely the SNAP database [69], the Koblenz Network Collection [80], the 10th
DIMACS Implementation Challenge [27], and the University of Florida Sparse
Matrix Collection [75]. The R-MAT [87] and G(n, p) networks were generated with
the GTGraph [122] suite using the default parameters.

Friendster, LiveJournal, Orkut, and Twitter are crawls of social networks [70,
72, 73]. Italy Web is a web crawl of the .it domain [74]. WikiLinks is the cross-link
network between articles on Wikipedia [80]. XyceTest is a Sandia National Labs
electrical simulation network and Cube is 3D coupled consolidation problem of a
cube discretized with tetrahedral finite elements. R-MAT_20/22/24 are R-MAT
graphs of scale 20, 22, and 24, respectively. RDF_Data is constructed from RDF
triples in a data.gov data set (# 1527), and RDF_linkedct is a semantic data set from
clinical trials. Note that these RDF datasets contain no non-trivial SCCs because
they are mostly bipartite and acyclic. WCC detection is a useful preprocessing step
for partitioning these data sets. The Kron_21 graph is a SCALE 21 graph created
from the Kronecker generator of the Graph500 benchmark [123, 124]. Finally,
GNP_1 and GNP_10 refer to Erdős-Rényi random graphs with 1 and 10 large
SCCs, respectively.

These graphs were selected to represent a wide mix of graph sizes and topologies.
The number of SCCs/CCs and max SCC/CC both play an important role in the
general performance of decomposition algorithms, while the average degree and

76

deg (S)CCsNetwork n m avg max D̃ count max
Twitter 53M 2000M 37 780K 19 12M 41M
ItWeb 41M 1200M 28 10K 830 30M 6.8M

WikiLinks 26M 600M 23 39K 170 6.6M 19M
LiveJournal 4.8M 69M 14 20K 18 970K 3.8M
XyceTest 1.9M 8.3M 4.2 246 93 400K 1.5M

RDF_Data 1.9M 130M 70 10K 7 1.9M 1
RDF_linkedct 15M 34M 2.3 72K 13 15M 1
R-MAT_20 0.56M 8.4M 15 24K 9 210K 360K
R-MAT_22 2.1M 34M 16 60K 9 790K 1.3M
R-MAT_24 7.7M 130M 17 150K 9 3.0M 4.7M
GNP_1 10M 200M 20 49 7 1 10M
GNP_10 10M 200M 20 49 7 10 5.0M
Friendster 66M 1800M 53 5.2K 34 70 66M
Orkut 3.1M 117M 76 33K 11 1 3.1M
Cube 2.1M 62M 56 69 157 47K 2.1M

Kron_21 1.5M 91M 118 213K 8 94 1.5M

Table 6.1. Information about test networks. Columns are # vertices, # edges, average
and max. degree, approximate diameter, # of (S)CCs, and size of the largest (S)CC.

graph diameter can have a large effect on the BFS subroutine that is necessarily
used for these algorithms.

6.6 Experimental Results
In this section, we compare our Multistep SCC algorithm execution time and
scaling to our implementations of the baseline FW-BW and color propagation
algorithms, as well as the Hong et al. SCC algorithm. Furthermore, we compare our
Multistep CC algorithm to baseline color propagation and the color propagation
approach implemented in the Ligra graph processing framework. We then compare
our weakly connected components algorithm to the color propagation-based parallel
approach, and our biconnected components algorithm to the optimal serial algorithm.
We justify algorithmic choices and measure their influence on parallel performance
for different graphs.

77

Execution time (s) MS SpeedupNetwork Serial MS Hong FW-BW Color Serial All
Twitter 33.0 1.60 2.6 120.00 40.0 20.0× 1.6×
ItWeb 6.7 1.80 16.0 1400.00 7.1 3.6× 3.6×

WikiLinks 4.9 0.90 0.98 270.00 9.3 5.5× 1.1×
LiveJournal 1.3 0.11 0.20 4.10 1.6 12.0× 1.9×
XyceTest 0.2 0.04 0.08 0.07 0.37 4.7× 1.9×

R-MAT_24 2.4 0.25 0.25 0.62 2.4 9.5× 1.0×
GNP_1 7.2 0.15 0.30 1.60 6.5 47.0× 1.9×
GNP_10 5.5 2.90 5.10 1.20 3.5 1.9× 0.6×

Table 6.2. Comparison of serial Tarjan’s algorithm with parallel Multistep, Hong et
al. , Naïve FW-BW, and color propagation, running on 16 cores.

6.6.1 Strongly Connected Component Decomposition

Table 6.2 gives the absolute execution time on 16 cores for baseline color propagation,
FW-BW with complete trimming, Multistep with simple trimming and the Hong
et al. Method 2 on several directed graphs. The fastest method for each network in
highlighted in bold. We also give the speedup achieved by Multistep over the
serial approach and the fastest approach for that network.

Both Multistep and Hong et al. are considerably faster than the parallel FW-
BW and color propagation approaches. The performance of the baseline approaches
is also very dependent on graph structure. The graphs with a large proportion of
their vertices in the massive SCC, such as the G(n, p), R-MAT, and Xyce graphs,
show very poor performance with color propagation, due to the long time needed
to fully propagate the colors. Further, networks with a large absolute number
of SCCs show poor performance with FW-BW, due to the recursive and tasking
overhead. FW-BW demonstrates the strongest performance on GNP_10, as this
graph was designed to result in very even partitions for each recursive call. It
should be noted that with the Hong et al. code on the GNP_10 graph, we utilize
their BFS subroutine for the recursive SCC calls instead of their standard DFS, as
the BFS is better suited to finding large-scale SCCs and also performs better.

Although the Hong et al. method attempts to minimize the impact of the
recursive and tasking overhead with a partitioning step based on WCCs and a
smart tasking queue, on graphs with a very high number of small but non-trivial
SCCs, such as ItWeb, the overhead inherent in the FW-BW algorithm can still

78

Twitter ItWeb WikiLinks LiveJournal

Xyce R−MAT_24 GNP_1 GNP_10

5

10

15

20

0

1

2

3

1
2
3
4
5

2.5
5.0
7.5

10.0
12.5

1
2
3
4

2.5

5.0

7.5

10
20
30
40

0.4

0.8

1.2

1.6

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Cores

S
p

ee
d

u
p

 v
s.

 T
ar

ja
n

's

Algorithm Multistep Hong

Figure 6.1. Finding SCCs: Parallel scaling of Multistep and Hong et al. relative to
Tarjan’s serial algorithm.

dominate the running time. It can also be noted that our color propagation step
will, at each iteration, partition the graph into at least as many discrete partitions
that their WCC decomposition will. Overall, for 16-core runs, Multistep gives a
geometric mean speedup of 1.92× over Hong et al. on these graphs.

0.00

0.25

0.50

0.75

1.00

T
w

itter

ItW
eb

W
ikiL

in
ks

L
iveJou

rn
al

X
yce

R
−

M
A

T
_

24

G
N

P
_

1

G
N

P
_

10

Graph

E
xe

cu
ti

on
 T

im
e

P
ro

p
or

ti
on

Step 1−Trim 2−FWBW 3−MS−Coloring 4−Serial

Twitter ItWeb WikiLinks LiveJournal

0

1

2

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

0.00

0.05

0.10

 C N S C N S C N S C N S
Trimming Algorithm

E
xe

cu
ti

on
 t

im
e

(s
)

Step 1−Trim 2−FWBW 3−MS−Coloring 4−Serial

Figure 6.2. Left: Proportion of time spent in each subroutine of the Multistep
algorithm. Right: Comparing possible trimming procedures (S: Simple, N: None, C:
Complete) in Multistep for several networks.

Figure 6.1 gives the scaling of Multistep and Hong et al. for parallel runs,
relative to the serial Tarjan implementation. Both Multistep and Hong et al.
demonstrate good scaling on most test instances, and the overall speedup on 16
cores is dependent on the single-threaded performance. The Hong et al. running
time on ItWeb is greatly affected by the number of SCCs. Additionally, on ItWeb,

79

there are long strings of trivial and non-trivial SCCs, which results in a relatively
long time spent in the multiple trimming iterations that are in the Hong et al.
approach, as well as longer time spent in their WCC decomposition step.

Figure 6.2 gives the breakdown for each stage of Multistep as a proportion of
total parallel running time. We observe that the execution time proportion for the
FW-BW and color propagation steps is mostly dependent on graph structure, with
color propagation taking a larger proportion of time for graphs for graphs with a
higher diameter (e.g., ItWeb vs Twitter). In case of GNP_10, most of the time is
spent in the serial step due to the fixed cutoff employed in our case.

Figure 6.2 also gives further justification for our choice of doing simple trimming
versus complete trimming with Multistep. In general, the time spent doing iterative
trimming does not sufficiently decrease the execution times of the FW-BW or
color propagation steps for the overall running time to be lower. As is shown on
LiveJournal and Twitter, doing no trimming at all can end up being faster than
fully trimming the graph with our Multistep approach. ItWeb shows that no
trimming can even be faster than simple trimming, although this appears to be
an exception. While running Multistep across a wide variety of graphs, fully
trimming the graph never improved execution times versus only doing a single
iteration. However, complete trimming is important for naïve FW-BW.

0.0

0.5

1.0

1.5

2.0

2.5

1 4 16
Cores

E
xe

cu
ti

on
 t

im
e

(s
)

Algorithm Multistep Hong FW−BW Coloring

Figure 6.3. Approximate weak scaling of Multistep compared to color propagation
and naïve FW-BW on R-MAT graphs.

Figure 6.3 gives approximate weak scaling for three R-MAT test graphs (R-
MAT_20/22/24). The test graphs’ number of vertices, edges, number of SCCs, and
size of largest SCC all increase by approximately a factor of 4×. From Figure 6.3,
we see that Multistep scales better than simple FW-BW or color propagation,

80

and Hong et al. performance is comparable to Multistep for this instance.

6.6.2 Connected and Weakly Connected Component Decompo-
sition

We also compare our approach to Ligra for the problem of determining connected
components, for the four undirected networks in our collection. Ligra implements
a parallel color propagation-based algorithm. We show scaling relative to a serial
DFS. From Figure 6.4, we observe that Multistep greatly outperforms the other
approaches on all tested graphs.

Friendster Orkut Cube Kron_21

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0

20

40

60

0

2

4

6

8

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Cores

S
pe

ed
up

 v
s.

 S
er

ia
l

Algorithm Multistep Ligra MS−Coloring

Figure 6.4. Finding CCs: Parallel scaling of Multistep CC, Ligra, and MS-Coloring
relative to the serial DFS approach.

Twitter ItWeb WikiLinks LiveJournal

RDF_Data RDF_linkedct GNP_1 GNP_10

0

10

20

30

0

5

10

15

0
10
20
30
40
50

0

10

20

30

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0
25
50
75

100

1

2

3

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Cores

S
p

ee
d

u
p

 v
s.

 S
er

ia
l

Algorithm Multistep MS−Coloring

Figure 6.5. Finding WCCs: Comparison of WCC-Multistep and MS-Coloring scaling
relative to the serial DFS approach.

Figure 6.5 gives the speedup of the Multistep method and our color propaga-
tion approach for determining the weakly connected components of several graphs.

81

We give speedup relative to the serial DFS approach. Once again, we observe good
scaling of Multistep relative to both color propagation and the serial code.

6.7 Conclusion
This chapter presented theMultistep method for SCC detection and its extensions
for solving related problems (CC and WCC). We demonstrate significant speedup
over the current state-of-the-art methods on a multicore server and present scaling
results on a wide variety of networks. The Multistep method uses optimized BFS
and color propagation subroutines and several heuristics to achieve this performance.
Using these basic subroutines, we can solve other connectivity problems as well. In
the next chapter, we will demonstrate BFS and color-propagation algorithms for
finding the biconnected components of an undirected graph.

82

Chapter 7 |
Biconnectivity Algorithms for Mul-
ticore

7.1 Introduction
This chapter builds upon the parallel techniques described in the previous Multi-
step chapter. Using the same breadth-first search and color-propagation-based
subroutines that can effectively decompose a graph into its strong, weak, and
connected components, we introduce two new parallel algorithms for biconnected
components decomposition of an undirected graph. Again, we show consider-
able performance improvements relative to prior art with these general purpose
techniques and optimizations.

7.2 Biconnected Components
The biconnected component (BiCC) decomposition of an undirected graph refers
to determining all maximal biconnected subgraphs or blocks contained within the
graph. A biconnected subgraph is a graph which remains connected with the
removal of any single vertex and all edges incident on it. Articulation vertices
or articulation points are vertices that, when removed, disconnect the graph into
multiple connected components. These vertices belong to two or more biconnected
components. Finding the articulation vertices in a graph is one of main purposes
of BiCC decomposition, as these vertices represent links that are critical for overall
connectivity. A bridge is defined as an edge that, when removed, would disconnect

83

the graph into multiple connected components. BiCC decomposition also gives us
a disjoint partitioning of all edges. Each edge in the graph can belong to only one
maximal biconnected subgraph.

Identifying large and non-trivial biconnected components, articulation vertices,
and bridges are useful in the analysis and characterization of new graph data.
In the field of networking, when designing communication networks and physical
infrastructure networks, identifying articulation points and minimizing bridges is
relevant to network robustness and redundancy. In large virtual networks such as
social networks and web crawls, BiCC decomposition gives insight into network
structure and has potential to be a useful preprocessing step in data analysis [13,14].

7.2.1 Contributions

This chapter introduces two new shared-memory parallel approaches for finding the
biconnected components of large sparse graphs. Both approaches use a breadth-
first spanning tree. The first method is based on executing multiple truncated
breadth-first searches (BFSes). The second method uses the color propagation [15]
technique. We used this strategy in the prior chapter for detecting strongly
connected components in parallel. Similar to previous serial and parallel algorithms,
the output of both our algorithms is a labeling of edges into disjoint biconnected
components and a classification of vertices into articulation and non-articulation
points.

We analyze and implement both algorithms and perform an experimental study
on an Intel multicore platform. Both approaches demonstrate good parallel strong
scaling across a wide range of real-world and synthetic test cases, with the truncated
BFS-based approach (the first method) offering the best speedups relative to a
serial implementation. Additionally, due to the fact that the first method uses the
hybrid direction-optimizing BFS algorithm of Beamer et al. [112] as a subroutine,
a substantial fraction of the graph edges are pruned or untouched in some cases.
This results in the single-threaded performance of our new approach being faster
than the linear-work Hopcroft-Tarjan DFS-based algorithm.

84

7.3 Background
There is substantial prior work on serial and parallel algorithms for BiCC decompo-
sition. We review three algorithms that we use for comparison and discuss relevant
implementation details in this section.

7.3.1 Hopcroft-Tarjan Algorithm

The serial algorithm for BiCC decomposition, introduced by Hopcroft and Tar-
jan [17], is optimal in the RAM model and based on a single Depth-First search
(DFS). It runs in O(n+m) time (n is the number of vertices and m the number of
edges) and linear space. A recursive implementation to identify articulation points
is given in Algorithms 7.1 and 7.2.

Algorithm 7.1 Hopcroft-Tarjan biconnectivity algorithm to identify articulation
points.
1: procedure HT(G(V,E))
2: for all v ∈ V do
3: preorder(v)← −1
4: low(v)← −1
5: articulation(v)← false

6: global count← 0
7: root←selectRandomRoot(V)
8: HT-DFS(G, root, root)

The algorithm maintains two arrays of size n in addition to the standard DFS
stack of visited vertices. One array, the preorder, records the order in which vertices
are discovered in the DFS. The second array low tracks the lowest DFS depth of the
adjacencies or children of the current vertex. When there are no more adjacencies
remaining to be explored from the vertex on top of the stack, this vertex is removed.
If this vertex does not connect to any vertices lower on the stack other than the
vertex immediately preceding it on the stack, then we know that this vertex is an
articulation point and can mark it as such.

The listing is only for identifying articulation points. If we would like to partition
edges into components, we need to maintain an additional stack. As each edge is
first touched, it is placed on this stack. When an articulation point is identified, all
of the edges contained in the biconnected component can then be removed from

85

Algorithm 7.2 Recursive DFS used in Hopcroft-Tarjan algorithm.
1: procedure HT-DFS(G, u, v)
2: children← 0
3: preorder(v)← count++
4: low(v)← preorder(v)
5: for all 〈w, v〉 ∈ E do
6: if preorder(w) = −1 then
7: children← children+ 1
8: HT-DFS(G, v, w)
9: low(v)←min(low(v), low(w))

10: if low(w) ≥ preorder(v) and u 6= v then
11: articulation(v)← true
12: else if w 6= u then
13: low(v)←min(low(v), preorder(w))

the stack and appropriately labeled. Our serial implementation is closely based on
this recursive DFS-based algorithm. We will refer to this as the HT method.

7.3.2 Tarjan-Vishkin Parallel Algorithm

The PRAM BiCC algorithm by Tarjan and Vishkin [20] requires O(log n) time
using O(n+m) processors. An overview of the main steps is given by Algorithm 7.3.

Algorithm 7.3 Tarjan-Vishkin algorithm to identify articulation points.
1: procedure TV-BiCC(G(V,E))
2: T ← SpanningTree(G)
3: L← EulerTour(T)
4: pre, size← ListRank(L)
5: low, high← DetermineMinMaxPreorder(G, T, pre, size)
6: G′ ← BuildAux(G, T, low, high)
7: C ← ConnectedComponents(G′)
8: B ← BiconnectedComponents(C,G)

The Tarjan-Vishkin algorithm has several key subroutines. First, a spanning
tree T is created from the input graph G. This can be computed using any traversal.
T is then rooted at an arbitrary vertex and a Euler tour is found to create an
ordered list of vertices L. List ranking is then performed on L, which in turn gives
the preordering numbering of vertices pre(v) for all v ∈ T . The size of each subtree
rooted at v in T , size(v), is also found.

86

Similar to the serial algorithm, two values are then obtained for each vertex
v ∈ G, a low and a high value. Using the preorder numbering from the previous
step, we determine the low and high values as the lowest and highest preorder
numbering of all descendants of or neighbors of descendants of v that are not
connected in T . The next steps utilize these labelings to build an auxiliary graph
G′, whose connected components C are the biconnected components of G. The
problem of finding biconnected components in the original graph is recast as finding
connected components in this auxiliary graph. A final step can then be performed
to create an explicit set B of the edges and articulation points defining each
biconnected component in G.

7.3.2.1 Cong-Bader TV-Filter Algorithm

An experimental study by Cong and Bader [125] presents an improvement to
the Tarjan-Vishkin algorithm that leads to a significant reduction in the size of
the auxiliary graph. They suggest a preprocessing step that filters out certain
non-essential edges (i.e., edges that do not impact the biconnectivity of G). The
use of this preprocessing step also reduces execution time of other subroutines in
the Tarjan-Vishkin algorithm for the graph instances studied in [125]. We also
independently notice up to a 4× speedup over the Tarjan-Vishkin (TV) algorithm,
and hence we just focus on TV-Filter in this chapter.

Note that this preprocessing step is similar to the approach for finding k-
connected subgraphs in a j-connected graph, where j > k, as described by Nag-
amochi and Ibaraki [126]. However, it is important to note that the filtering step
finds only a k-connected subgraph in a k-connected graph, specifically where k = 1,
by constructing k + 1 spanning forests (in this case, a spanning tree and then a
spanning forest of the graph with that spanning tree removed). As a result, this
preprocessing step preserves the biconnectivity of the original graph by maintaining
articulation points, bridges, and the biconnected components themselves.

Algorithm 7.4 provides an overview of Cong and Bader’s approach. A BFS
is first performed from an arbitrary vertex to obtain T (the spanning tree) and
P (parent information). Edges in T are then filtered from G. A spanning forest
F is obtained using another traversal and by executing connected components.
The union of edges in F and T is shown to contain the essential edges needed
to determine the biconnected components B using the standard Tarjan-Vishkin

87

Algorithm 7.4 Cong-Bader algorithm to identify articulation points.
1: procedure CB-BiCC(G(V,E))
2: T, P ← BFS(G)
3: F ← SpanningForest(G \ T)
4: B ← TV-BiCC(F ∪ T)
5: for all e = 〈u, v〉 ∈ G− (F ∪ T) do
6: label e as in BiCC containing v and P (v)
7: B ← (B ∪ e)

algorithm. The rest of the edges are non-essential. Once the Tarjan-Vishkin
algorithm completes, the non-essential edges are labeled and added back to obtain
the complete BiCC output. Correctness proofs and the data structures used to
store the intermediate results are given in [125].

In this work, we use an updated version of the code first developed by Cong
and Bader for their study [127], which was designed using the SIMPLE POSIX
threads-based framework [128]. We changed their code for execution on our test
platform, primarily modifying storage of common structures and eliminating or
globalizing some thread-owned structures in an effort to reduce memory utilization.
Despite these changes, memory usage when creating the auxiliary graph limits
running the code on our two largest test instances.

7.3.3 Related Work

There are several other known parallel algorithms for BiCC. One of the earliest
CREW PRAM parallel algorithms was presented by Eckstein [129]. This approach
runs in O(d log2 n) time with O((n+m)/d) processors on the CREW PRAM model.
This work was the first to note that the structure of BFS trees can be utilized
to find articulation points, and our work can be considered a related extension of
that work for modern architectures. Savage and JáJá [130] designed two PRAM
algorithms, taking O(log2 n) and O(log2 n log k) time and requiring O(n3/ log n)
and O(mn+n2 log n) processors, respectively, where k is the number of biconnected
components. A CREW PRAM algorithm by Tsin and Chin [131] runs in O(log2 n)
time with O(n2/ log2 n) processors.

Another class of proposed biconnectivity algorithms utilize open ear decomposi-
tions. An original approach was described by Maon et al. [132]. This approach was
expanded upon by Miller and Ramachandran [133], with a related implementation

88

for solving 2-edge connectivity problems on an early massively parallel MasPar
system [134].

In terms of parallel implementations, the Tarjan-Vishkin approach has received
the most attention, with Cong and Bader being the first to demonstrate parallel
speedup on an SMP system over the serial HT algorithm with their TV-Filter
algorithm. Edwards and Vishkin [110] also implemented the TV and HT algorithms
using a new programming model, and demonstrated scalability and parallel speedup
on the Explicit Multi-Threading (XMT) manycore computing platform.

Most recently, Ausiello et al. developed a MapReduce-based biconnected com-
ponents detection algorithm [135,136] under a streaming data model. This method
is based on previous work by Westbrook and Tarjan [137], but utilizes a lightweight
navigational sketch of the input graph to hold biconnectivity information for the
full graph.

7.4 New Parallel Algorithms
We present two new methods in this section that are both based on a breadth-first
spanning tree. However, unlike TV and TV-Filter, we do not construct an auxiliary
graph. Instead, we identify some properties that articulation vertices must satisfy
and use them to decompose the graph. Our two methods use BFS and color
propagation as underlying subroutines, and so we refer to them as BiCC-BFS and
BiCC-Coloring. The output obtained is identical to prior algorithms. In both the
methods, we initially assign two integer labels to each vertex and progressively
update them. The final vertex labels of all vertices can be inspected to determine
the component to which an edge belongs to. These algorithms assume that we
begin with an undirected graph with a single connected component.

7.4.1 BFS-based BiCC method

We first describe the BFS-based approach to identify articulation points, similar to
that used by Eckstein [129]. The key steps are listed in Algorithms 7.5 and 7.6.
Assume that G has only one connected component with no multi-edges and self
loops. Choose an arbitrary vertex r, designate it as the root, and perform a BFS.
Store the BFS output in two arrays, P and L. For all v ∈ V , P (v) stores a parent

89

of v (i.e, the BFS tree) and L(v) gives the depth of v in the BFS tree, or the
distance of v from r. For all v ∈ V , we define a child w of v to be any adjacency of
v such that P (w) = v. Thus, the set of all children of a vertex is a subset of its
adjacencies. Our algorithm is based on the following proposition.

Proposition 7.4.1. A non-root vertex v in the BFS tree 〈P,L〉 is an articulation
vertex if and only if it has at least one child w that cannot reach any vertex of depth
at least L(v) when v is removed from G.

The above statement is equivalent to the following.

Proposition 7.4.2. A non-root vertex v in the BFS tree 〈P,L〉 is not an articula-
tion vertex if and only if all its children w in the BFS tree (P (w) = v) can reach
all other vertices in the graph G when v is removed from G.

Proof. An articulation vertex, by definition, is a vertex whose removal will decom-
pose G into two or more connected components. Consider a vertex v and all its
adjacencies. The BFS output splits the adjacencies of any non-root vertex into
three disjoint subsets: its children (as defined above), non-child adjacencies at
depth L(v) + 1, and adjacencies at depth L(v) or L(v)− 1. If v were an articulation
point, then the adjacencies of v would be split up such that at least two of them lie
in different connected components upon removal of v. If v is not an articulation
point, there must be an alternative path in the graph from adjacencies of v to every
other vertex, and thus, between every pair of adjacencies of v as well. To show that
v is an articulation point, it suffices to inspect just the children of v in the BFS
tree and show that at least one of them cannot reach an alternate vertex at the
same level as v (and thus is disconnected from some part of the graph). Non-child
adjacencies of v have a path through their parent in the BFS tree to other vertices,
and so we do not need to consider them explicitly. If a child can reach some vertex
at the same level as v, then it can reach all other vertices by tracing a path back
to the root.

As a more general extension of the above propositions, we have the following
Corollary.

Corollary 7.4.3. If a traversal from any ui ∈ V (P (ui) = v) is not able to reach
all other uj ∈ G (P (uj) = v) when v is removed from the graph, then v is an

90

articulation point. Further, if the only path in G between ui and uj requires v, then
ui and uj are in separate biconnected components with v as an articulation point.
We term v as the parent articulation vertex.

Algorithm 7.5 BFS-based algorithm to identify articulation points in BiCC
decomposition.
1: procedure BFS-ArtPts(G(V,E))
2: for all v ∈ V do
3: Art(v)← false
4: visited(v)← false

5: Select a root vertex r
6: P,L← BFS(G, r)
7: for all u(6= r) ∈ V where P (u) 6= r do
8: v ← P (u)
9: if Art(v) = false then

10: l←BFS-L(G,L, v, u, visited)
11: if l ≥ L(v) then
12: Art(v)← true

13: Check if r is an articulation point

Algorithm 7.6 Truncated BFS subroutine in the BFS-ArtPts algorithm.
1: procedure BFS-L(G(V,E), L, v, u, visited)
2: Insert u into Q
3: Insert u, v into S
4: visited(u)← true
5: visited(v)← true
6: while Q 6= ∅ do
7: for all x ∈ Q do
8: Remove x from Q
9: for all 〈w, x〉 ∈ E where visited(w) = false do

10: if L(w) < L(u) then
11: for all s ∈ S do visited(s)← false

12: return L(w)
13: else
14: Insert w into Q
15: visited(w)← true

16: return L(u)

We now describe the algorithm in more detail. Parallelization of the initial

91

BFS computation required to construct P and L is well-studied. We use the
parallel BFS from our prior work [21]. This implementation maintains a boolean
vector for tracking visited vertices, thread-local queues, and further utilizes a
direction-optimizing search [112]. These optimizations have been demonstrated to
considerably speed up parallel BFS computations on the small-world graphs we are
considering.

To identify the articulation points, we consider every vertex u and its parent
v = P (u). Instead of performing pairwise reachability queries from u, we perform
a BFS from u after removing v from G and track the level of vertices that are
reached, using the previously computed L values. If any vertex w with level L(v)
or less is reached, we can exit. This step (i.e., step 7 of Algorithm 7.5) can also be
parallelized, with each thread maintaining a separate visited bit vector. We also
use another temporary stack S in the BFS-L subroutine to track visited vertices.

The root vertex r must be handled separately. There are several ways to
determine whether it’s an articulation point. The simplest way is to select a vertex
that is definitely not an articulation point (vertex of degree 1), or is certainly an
articulation point (a degree-2 vertex, with one of its neighbors having a degree of
one). If no such vertices exist, then there are two options. One is to create a new
spanning tree using an alternate root and run the second stage of the algorithm
with any children u of the original root r, P (u) = r. Because our optimized BFS
subroutine is quite fast, this is not entirely impractical. The second option is to
run a BFS on G \ r from a single u where P (u) = r and track whether all other w
where P (w) = r are also reachable. If they are all reachable from u, then r is not
an articulation vertex as per Corollary 7.4.3.

7.4.1.1 Identifying Biconnected Subgraphs

We now extend the previous algorithm and make it work-efficient to label edges.
The new method is given in Algorithms 7.7 and 7.8.

The primary goal of this approach is to determine for all v ∈ V two labels,
Par(v) and Low(v). The Par value is the highest-level articulation point (parent
articulation vertex) separating v from the root. Low signifies the lowest-value vertex
identifier (vertices are numbered from 0 to n − 1) among all vertices contained
in the biconnected component of v. We can then use these two vertex labels to
uniquely label all edges.

92

Algorithm 7.7 BFS-based algorithm to perform BiCC decomposition.
1: procedure BFS-BiCC(G(V,E))
2: for all v ∈ V do
3: Art(v)← false
4: visited(v)← false
5: Low(v)← v
6: Par(v)← v

7: Select a root vertex r
8: P,L, LQ← BFS(G, r)
9: for all Qi ∈ LQm···1 do

10: for all u ∈ Qi, where Par(u) = u do
11: Remove u from Qi

12: v ← P (u)
13: l, vidlow, Vu ←BFS-LV(G,L, v, u, visited)
14: if l ≥ L(u) then
15: Art(v)← true
16: visited(v)← false
17: for all w ∈ Vu do
18: Low(w)← vidlow
19: Par(w)← v
20: visited(w)← false
21: Remove w from V
22: for all e = 〈u, v〉 ∈ E do
23: if Low(v) = Low(u) or Par(u) = v then
24: BiCC(e)← low(u)
25: else
26: BiCC(e)← low(v)

The first step in Algorithm 7.7 is similar to Algorithm 7.5. A BFS is performed
in order to determine the level L(v) and parent P (v) for each vertex v in V .
Additionally, we store the output of the level-synchronous BFS as a list of queues
LQ. Each Qi ∈ LQ contains all the vertices at a distance i from the root vertex.
We inspect the queues in reverse order, from maximum level m through level 1 (level
0 is considered as the level containing the root). If u has already been assigned a
Par value, we know that the biconnected component that contains u has already
been discovered via another child of P (u). Otherwise, we perform a similar BFS as
in Algorithm 7.5. However, in this search, we also track the lowest vertex identifier
encountered, vidlow, as well as a list of all unique vertices encountered, Vu.

If we determine that v is an articulation vertex based on the retrieved minimum

93

Algorithm 7.8 Truncated BFS subroutine in BFS-BiCC to identify articulation
points and track component vertex set.
1: procedure BFS-LV(G(V,E), L, v, u, visited)
2: Insert u into Q
3: Insert u into Vu
4: visited(u)← true
5: visited(v)← true
6: vidlow ← u
7: while Q 6= ∅ do
8: for all x ∈ Q do
9: Remove x from Q

10: for all 〈w, x〉 ∈ E where visited(w) = false do
11: if L(w) < L(u) then
12: return (L(w),∅,∅)
13: else
14: Insert w into Q
15: Insert w into Vu
16: visited(w)← true
17: if w < vidlow then
18: vidlow ← w

19: return (L(u), vidlow, Vu)

level l, we then proceed to label all Par and Low of all encountered vertices w.
Par(w) is set to point to the BiCC parent articulation vertex of v, while Low(w) is
set to vidlow. This ensures a unique and consistent labeling across vertices within
the components. Note that it is not necessary to create the Par values, since simply
tracking the articulation vertices is sufficient to correctly label edges. We choose a
Par array as opposed to a boolean array or vertex list in order to be consistent
with the output of prior BiCC algorithms.

Once a component is identified, Vu, which is the discovered component minus
the articulation vertex, is considered removed from G (line 21 of Algorithm 7.7).
We do not modify G. Instead, we maintain valid, a shared boolean array of size
n that signifies the current state of a vertex. When we remove a v from G, we
set valid(v) = false. Because we are working from the highest-level leaves of the
tree to the root in T , we can safely do this. On any given level i, all articulation
vertices on level i − 1 will be discovered. This is because separate biconnected
components cannot exist through articulation vertices by Corollary 7.4.3, and
all such articulation vertices will be discovered by Proposition 7.4.1. It is also

94

guaranteed that no vertices in the biconnected component will have been previously
removed, as there is no way they could have been encountered by a successful
articulation vertex search.

The final step is to label all edges between all u and v. Although it is possible
to do this in the inner BFS loop, it is simpler and more cache-friendly to do the
separate step. For labeling, if both vertices have the same Low value, we know
they were discovered during the same search, and therefore the edge is contained
in their component. If the edge is between a child and its parent articulation point,
we apply the Low label of the child. We don’t further explicitly label vertices as
belonging to a component, since articulation vertices exist in multiple components,
and the information is readily retrievable by examining Low and Par arrays.

7.4.1.2 Parallelization

Our primary avenue for parallelization is across all vertices in the current queue
level (line 9 in Algorithm 7.7). We could also parallelize the BFS-LV search (line 13
or Algorithm 7.8). However, in our implementation, the BFS-LV is only parallelized
once we reach level 1, since we observe that in in most real-world graphs that have
a massive biconnected component, a randomly-selected root vertex is likely to be
contained in the giant component. We do not require additional synchronization
while updating the Low and Par values. Should the parent be an articulation
vertex and the children be contained in the same component, the same Par and
Low values will subsequently be given to all vertices in the component. Thus, all
the concurrent writes are benign races.

7.4.1.3 Algorithm Analysis

The dominant step in the algorithm is the number of invocations of BFS-LV and
the cumulative number of edge inspections performed through BFS-LV, with the
naïve approach requiring an upper bound of O(nm) work. The rest of the steps
(initialization, initial BFS, Low and Par labeling) require θ(n + m) work. The
naïve approach to determine articulation points is somewhat inefficient, since there
is no ordering imposed on invocations of BFS-L. However, in the full algorithm,
we inspect vertices in level-synchronous order, and once a biconnected component
is identified, all visited vertices are marked as invalid. Thus, there are no further

95

unnecessary traversals. We also truncate BFS-LV as soon as we encounter a
vertex at the level of the parent. We observe that the cumulative number of edge
examinations is a small constant multiplicative factor of the total number of edges,
and so the work performed is linear in practice. The level-synchronous approach of
examining the vertices implies that the parallel time would be proportional to the
the graph diameter.

7.4.2 Coloring-based BiCC Method

Instead of potentially performing a full BFS from each vertex in T , it is also possible
to compute the same Par and Low values using the color propagation technique.
Color propagation is an iterative strategy that is similar to recursive doubling, and
we have previously used it to develop practical parallel algorithms for connected
components in undirected graphs as well as the weakly and strongly connected
components in directed graphs [21].

We define the lowest common ancestor (LCA) p of any two neighboring vertices
u and v in a BFS tree T 〈L, P 〉 to be the lowest-level vertex that both vertices
share some ancestral relationship with in T . Should a parent-child relationship
exist between these two vertices, P (v) = u or P (u) = v, then the lowest common
ancestor is simply the parent vertex.

Our Coloring-based approach is based on the following observation for bicon-
nected components with at least three vertices.

Proposition 7.4.4. In a biconnected component with at least three vertices, de-
termine the LCA of all pairs of neighboring vertices. At least two vertices in the
component will have their lowest-level LCA set to the parent articulation point.

Proof. Any biconnected component containing at least three vertices has the
requirement that the articulation vertex has at least two children. If the articulation
vertex has only one child, then the removal of this child would disconnect the
component and the component is therefore not biconnected. Additionally, the
lowest-level LCA for each of the these two child vertices will always be articulation
vertex, as per Proposition 7.4.1. It should also be noted that for any biconnected
component of size larger than three, it is highly likely that two neighboring vertices
of higher levels connected through an edge not in T have each of their lowest level
mutual parents set as the parent articulation vertex as well.

96

7.4.2.1 Identifying BiCC with Color Propagation

Our approach for determining biconnected components is given by Algorithm 7.9.
This algorithm once again determines the same Par and Low values as the BFS
approach. However, instead of propagating the values to vertices within the same
BiCC through a search, we simply propagate them to their neighbors one iteration
at a time under certain constraints.

The initialization steps are the same as before. We select a root and perform
the BFS to create the parent and level arrays. We use this information to initialize
the Par values for each vertex v to the lowest-level LCA among it and all of its
neighbors 〈u, v〉 ∈ E. We omit pseudocode for LCA, as it is a well-known algorithm.

Once initialization is complete, we begin our primary coloring loop. The goal of
coloring is to color all vertices in a biconnected component, v ∈ B under a parent
articulation vertex of p, with Par(v) = p. Additionally, we want to color all Low(v)
as the vertex in B with the lowest vertex identifier.

A Par value is propagated from a vertex v to a neighbor u if the level of Par(v)
is less than the level of Par(u). To ensure that no Par value is passed down from
an articulation vertex to its child, we don’t propagate Par values from a parent to
a child unless the Par value of the child is not equal to the parent (i.e., we know
there is a path from the child to a vertex of lower level than the parent, so by
Proposition 7.4.1, we know the parent is in the same biconnected component as its
child). We only propagate Low values between vertices that have the same Par
value, as the same Par value already indicates that they are in the biconnected
component.

We know that in any non-trivial biconnected component there must be at least
two vertices with their Par value initialized to the parent articulation vertex for
the component. These lowest-level Par values will freely propagate to all vertices
in the biconnected component, with the exception of vertices not initialized to
a Par besides their parents, which are vertices that have no immediate non-tree
connection to a vertex of a lower level. However, these vertices do have a path to
their grandparent vertex (which may be the parent articulation vertex) through
either a vertex at the same level, non-tree edge (which also must be a child of
the same parent) or one of their children. Using a recursive argument along this
path, the directional restriction we have on Par value propagation will eventually
be lifted as this lower level Par will finally reach the original vertex. When this

97

Algorithm 7.9 Color propagation-based algorithm to perform BiCC decomposi-
tion.
1: procedure Color-BiCC(G(V,E))
2: for all v ∈ V do
3: Art(v)← false
4: Low(v)← v
5: Par(v)← v
6: Insert v into Q
7: queued← true

8: Select a root vertex r
9: P,L← BFS(G, r)

10: Init-LCA(G,P, L, Par)
11: while Q 6= ∅ do
12: for all v ∈ Q do
13: Remove v from Q
14: for all 〈u, v〉 ∈ E do
15: if Par(u) = v then
16: continue
17: if L(Par(v)) > L(Par(u)) then
18: Par(u)← Par(v)
19: if queued(u) = false then
20: queued(u)← true
21: Insert u into Q
22: if Par(v) = Par(u) then
23: if Low(v) < Low(u) then
24: Low(u)← Low(v)
25: if queued(u) = false then
26: queued(u)← true
27: Insert u into Q
28: if any u got queued and queued(v) = false then
29: queued(v)← true
30: Insert v into Q
31: for all v ∈ Q do
32: queued(u)← false

33: for all e = 〈u, v〉 ∈ E do
34: if Low(v) = Low(u) or Par(u) = v then
35: BiCC(e)← low(u)
36: else
37: BiCC(e)← low(v)

98

Algorithm 7.10 Initialize the LCA for all neighbors using parents and level
information.
1: procedure Init-LCA(G(V,E), P, L, Par)
2: for all v ∈ V do
3: for all 〈u, v〉 ∈ E do
4: w = LCA(v, u,G, P, L)
5: if L(w) ≤ L(Par(v)) then
6: Par(v) = w

happens, the lowest-level parent articulation vertex Par will be able to reach this
vertex as well through any path. We also know that if the Par value reaches all
vertices in the component, then so must the correct Low value, as it is unique and
will begin propagating immediately when the vertex which has the Low vertex
identifier value gets their Par set, or initialized to the final correct value.

We rely on a queue Q to avoid having to examine every vertex at every iteration.
We further rely on a pushing as opposed to pulling form of coloring. While visiting
vertex v, we examine and overwrite the colors of all its neighbors, u. With a pulling
methodology, we would only overwrite the color of v with the best color from all
of u. We empirically find pushing to be faster. We mitigate the race condition
created by two vertices both overwriting the color of u by adding both v and u to
the queue. If v had attempted to push the superior color but got it overwritten, on
the next iteration v will attempt to push it again and succeed.

7.4.2.2 Parallelization

As with the BFS-BiCC algorithm, parallelization of the first stage of the algorithm
is straightforward as it utilizes a standard BFS. Parallelization of the coloring stage
is a bit more involved, but still relatively simple to implement. We parallelize over
the queue (line 12 in Algorithm 7.9), with each thread examining and propagating
colors from a limited subset of vertices. To avoid the overhead associated with
writing to a shared queue, we instead have each thread place their vertices in a
thread-owned queue. Once a thread completes its iteration, its queue is copied into
the global queue for the next iteration. As these operations are non-blocking, there
is minimal overhead. Like the previous approach, the final labeling step over all
edges is easy to parallelize.

99

7.4.2.3 Algorithm Analysis

The key step in Color-BiCC is the coloring phase, and the work performed depends
on the number of times a vertex is inserted into the queue and cumulative number of
edges inspected. The rest of the steps can be performed in θ(n+m) work. The upper
bound on work for coloring-based connected components and strongly connected
components algorithms is O(n2) [15], but the observed performance is linear in the
number of edges for real-world, low-diameter graph instances [21, 118]. Because
we impose additional constraints in this case for BiCC and use precomputed LCA
information to direct the color propagation, the work performed is input-dependent.
We quantify the overhead of coloring through the additional edge inspections
required (a multiplicative factor) over the baseline value of m. We report this value
for all the test instances in the next section. Note that concurrency depends on the
size of the queue for each iteration, and is not dependent on graph diameter.

7.5 Experimental Setup
Experiments were performed on Compton. OpenMP was used for parallelization.
Several large real-world graphs were used in our study. These are listed in Ta-
ble 7.1. These graphs were retrieved from a number of sources, namely the SNAP
database [69], the Koblenz Network Collection [80], the 10th DIMACS Implementa-
tion Challenge [27], and the University of Florida Sparse Matrix Collection [75]. The
R-MAT [87] and G(n, p) (GNP) networks were generated with the GTGraph [122]
suite using the default parameters. Only the largest connected component for each
graph was taken. Directed edges were considered undirected. Multiple edges and
self loops were removed. This was done to reduce noise in results and simplify
analysis and comparison between tested algorithms.

Friendster, LiveJournal, and Orkut are social networks [70,72,73]. WikiLinks is
the cross-link network between articles on Wikipedia [138]. Cube is 3D coupled
consolidation problem of a cube discretized with tetrahedral finite elements [139].
R-MAT_24 is an R-MAT graph of scale 24. The Kron_21 graph is a scale 21
graph created from the Kronecker generator of the Graph500 benchmark [124].
Finally, GNP_1 and GNP_10 refer to Erdős-Rényi random G(n, p) graphs with
1 and 10 large biconnected components, respectively. The GNP_10 network was

100

Network n m davg dmax d̃ia # Bi Max Bi
LiveJournal 4.8M 43M 18 20K 21 1.1M 3.7M

Orkut 3.1M 117M 76 33K 11 68K 3.0M
WikiLinks 26.0M 543M 42 4.3M 86 3.5M 22M

ItWeb 41.0M 1.0B 50 1.3M 46 5.0M 33M
Friendster 63.0M 1.6B 53 5.2K 34 13M 49M

Cube 2.1M 59M 56 67 157 1 2.1M
Kron_21 1.5M 91M 118 214K 8 238K 1.3M

R-MAT_24 7.7M 133M 35 257K 11 2.2M 5.4M
GNP_1 10.0M 200M 40 152 7 1 10M
GNP_10 10.0M 200M 40 80 19 19 5M

Table 7.1. Network sizes and parameters for all networks. The columns are #vertices,
#edges, average and max-degree, approximate diameter, # of BiCCs and size of the
largest BiCC.

created to have 10 large biconnected components connected through 9 bridges.
The components were generated independently with geometrically decreasing sizes
(5.0M, 2.5M, 1.25M, ...) with the bridges added manually by connecting the
independent components via single edges.

7.6 Results
We compare the performance of our two new algorithms to Cong and Bader’s
improvement to the Tarjan-Vishkin algorithm, as well as the Hopcoft-Tarjan serial
algorithm. We will demonstrate absolute speedups relative to prior work, strong
scaling of our algorithms, an analysis of each of our algorithms with respect to
the basic graph computations on which they are based, as well as a more general
analysis of the biconnected component size and count distribution between real
world and synthetic graphs.

7.6.1 Execution times and Scaling

Table 7.2 gives the serial execution time of the Hopcroft-Tarjan algorithm, the
parallel times of our coloring and BFS algorithms with 32 threads, the TV-Filter
implementation run with 32 threads, as well as our best speedup over TV-Filter. All
reported times are the averages over five independent tests. We select the highest

101

Network HT TV-Filter BFS-BiCC Color-BiCC Speedup vs. TV-F
LiveJournal 2.1 1.6 0.38 0.61 4.2

Orkut 3.4 1.8 0.49 0.93 3.6
WikiLinks 25 24 7.0 20 3.4

ItWeb 19 – 50 3.3 –
Friendster 79 – 20 48 –

Cube 1.2 0.64 0.17 0.51 3.8
Kron_21 1.8 2.3 0.60 2.2 3.8

R-MAT_24 4.7 5.8 1.5 5.6 3.9
GNP_1 11 5.8 5.0 4.8 1.2
GNP_10 6.5 5.9 12 4.0 1.5

Table 7.2. Execution time (seconds) result comparison between the serial Hopcroft-
Tarjan algorithm, TV-Filter algorithm on 32 threads, and the new BFS-BiCC and
Color-BiCC approaches on 32 threads.

out-degree vertex as the root for reasons that will be noted. The fastest time over
all approaches is given in bold. As previously mentioned, memory limitations for
the TV-Filter algorithm prevented us from obtaining time results on the two largest
graphs, ItWeb and Friendster.

From Table 7.2, it is apparent that the BFS-based algorithm demonstrates
the fastest absolute execution times for a majority of test cases. Our coloring
algorithm demonstrates the best performance on the remaining test cases. Both of
our algorithms demonstrate considerable speedup over both the serial algorithm
as well as the TV-Filter algorithm. As will be explained, the relative performance
benefit between the BFS and coloring algorithms is highly dependent on graph
structure.

Figure 7.1 gives the strong scaling of the BFS, coloring, and TV-Filter algorithms
from 1 to 32 threads on all 10 test graphs. Reported speedups are relative to the
execution time of Hopcroft-Tarjan. Similar results as Table 7.2 can be observed
from Figure 7.1, with the BFS algorithm demonstrating the fastest execution time
and best speedups on a majority of tests.

7.6.2 Breadth-First Search Analysis

Table 7.3 gives the execution time of the BFS-BiCC algorithm with 1, 16, and
32 threads. Additionally, the running time of just a single BFS exploration of

102

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●● ● ● ● ●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●● ● ● ● ●

LiveJournal Orkut WikiLinks ItWeb Friendster

Cube Kron_21 RMAT_24 GNP_1 GNP_10

1

2

3

4

5

6

7

1

2

3

4

5

6

7

12 4 8 16 32 12 4 8 16 32 12 4 8 16 32 12 4 8 16 32 12 4 8 16 32

Cores

S
p
e
e
d
u
p
 v

s
.
H

o
p
c
ro

ft
−

T
a
rj
a
n
's

Algorithm ● BFS−BiCC Color−BiCC TV−Filter

Figure 7.1. Parallel scaling of BFS and Coloring approaches as well as Cong and Bader’s
implementation relative to the serial Hopcroft-Tarjan algorithm.

Network HT BFS (1) (16) (32) Edge Ratio
LiveJournal 2.1 0.032 2.5 0.56 0.38 1.0

Orkut 3.4 0.025 3.3 0.75 0.49 0.60
WikiLinks 25 0.40 29 9.3 7.0 1.3

ItWeb 19 0.41 460 70 50 1.6
Friendster 79 0.46 150 33 20 0.95

Cube 1.2 0.042 0.98 0.20 0.17 0.031
Kron_21 1.8 0.030 1.1 0.71 0.60 0.015

R-MAT_24 4.7 0.12 6.2 2.0 1.5 0.042
GNP_1 11 0.082 37 10 5.0 3.1
GNP_10 6.5 0.15 31 16 12 19

Table 7.3. Execution time (in seconds) comparison between the serial algorithm, a
standard BFS run, and the BFS-BiCC algorithm. Additionally, a ratio of the average
number of edges examined during the inner-loop BFS is given.

the entire graph is given along with the serial algorithm for comparison. We also
report a work estimate termed edge ratio in the final column. The edge ratio
is the total number of edges explored during the second stage of the BFS-BiCC
algorithm (where articulation vertices are being searched for) divided by the total
number of edges in the graph. This essentially gives the multiplicative factor
of additional/lesser work being performed in comparison to the Hopcroft-Tarjan
algorithm, where all m edges are necessarily examined.

103

As can be observed, the graphs that have low edge ratios demonstrate the
best performance with BFS-BiCC relative to the serial approach. In fact, for all
four networks where the edge ratio is considerably less than 1.0, such as Orkut,
Cube, Kron, and R-MAT, single thread execution time for BFS-BiCC is faster
than the time for Hopcroft-Tarjan. As explained before, this is because of the
direction-optimizing BFS that is very effective for certain low-diameter graphs.

0.00

0.25

0.50

0.75

1.00

L
iv

eJ
ou

rn
al

O
rk

ut

W
ik

iL
in

ks

It
W

eb

F
ri

en
ds

te
r

C
ub

e

K
ro

n_
21

R
M

A
T

_
24

G
N

P
_

1

G
N

P
_

10

Graph

R
un

ti
m

e
P

ro
p

or
ti

on
s

Step 1−BFS 2−ArtPts 3−FinalBFS 4−EdgeLabel

Figure 7.2. Per-step execution time breakdown of the BiCC-BFS approach.

Figure 7.2 gives the ratio of time spent in each of the four stages of the BFS-
BiCC algorithm (initial BFS tree creation, articulation point identification, final
level BFS run(s), edge labeling). For most graphs, the second stage dominates the
overall execution time, as expected. The exception to this is a few of the graphs
mentioned previously that have a low edge ratio. For those, the necessary O(m)
work required by edge labeling is the largest portion of execution time.

7.6.3 Color Propagation Analysis

We will now look at similar performance metrics obtained for the Color-BiCC
algorithm. Table 7.4 gives the execution time of Color-BiCC with 1, 16, and
32 threads, as well as the execution time of a color propagation algorithm for
identifying connected components in a graph.

We also compute an edge ratio metric in this case. It is calculated as the
total number of edge propagations divided by the total number of edges. There

104

Network HT Color (1) (16) (32) Edge Ratio
LiveJournal 2.1 0.48 4.7 0.92 0.61 0.10

Orkut 3.4 0.44 9.4 1.5 0.93 0.063
WikiLinks 25 4.6 63 24 20 0.30

ItWeb 19 – 36 5.4 3.3 0.083
Friendster 79 21 360 63 48 0.063

Cube 1.2 0.19 9.7 0.84 0.51 0.17
Kron_21 1.8 0.43 5.0 2.8 2.2 0.62

R-MAT_24 4.7 1.2 16 6.8 5.6 0.57
GNP_1 11 1.8 53 8.3 4.8 0.064
GNP_10 6.5 2.0 37 7.0 4.0 0.062

Table 7.4. Execution time (in seconds) comparison between the serial algorithm, a
color propagation algorithm for connected components, and the Color-BiCC algorithm.
Additionally, the total number of color propagations divided by the number of edges in
the network is reported.

is a moderate correlation between the edge ratio and performance of the coloring
algorithm. This is especially apparent for the Kron_21 and R-MAT graphs, which
demonstrate the highest edge ratio, and correspondingly are the only networks
where fully-parallel coloring offers no advantage over the serial algorithm. It is
noted that this ratio does not account for the initialization of the LCAs, which
does make a considerable contribution to the overall time.

0.00

0.25

0.50

0.75

1.00

L
iv

eJ
ou

rn
al

O
rk

ut

W
ik

iL
in

ks

It
W

eb

F
ri

en
ds

te
r

C
ub

e

K
ro

n_
21

R
M

A
T

_
24

G
N

P
_

1

G
N

P
_

10

Graph

R
un

ti
m

e
P

ro
p

or
ti

on
s

Step 1−BFS 2−InitLCA 3−Coloring 4−EdgeLabel

Figure 7.3. Per-step breakdown of the Coloring approach.

105

Network BFS-BiCC Speedup BFS-Color Speedup
LiveJournal 2.7 0.98

Orkut 2.7 0.94
WikiLinks 930 1.1

ItWeb 1.8 0.97
Friendster 3.7 1.0

Cube 0.92 0.98
Kron_21 3.5 1.1

R-MAT_24 12 0.96
GNP_1 1.1 1.0
GNP_10 0.42 1.0

Table 7.5. Speedups resulting for both the BFS and coloring algorithms with the
heuristically-chosen root vertex compared to the average result over 20 randomly selected
root vertices.

Figure 7.3 gives a per-step breakdown as Figure 7.2, with the four steps as the
initial BFS tree creation, the initialization of the LCAs for all vertices, the primary
coloring stage, and the final edge labeling. Compared to the breakdown for the
BFS algorithm, the coloring algorithm has much more consistent ratios of times
spent in all four stages across all networks. As is also observed, a majority of time
is spent in the LCA initialization and coloring stages, with the coloring stage taking
approximately twice as much time as the initialization stage.

7.6.4 Performance impact of root vertex choice

For the breadth-first search algorithm, the vertex selected as the initial root can
considerably impact the overall running time. Table 7.5 demonstrates this difference.
By selecting the vertex with the highest out-degree, the work required during the
inner loop of the BFS algorithm can be minimized. This is because the final large
biconnected component is usually found by the first vertex encountered in the final
level queue. For networks containing a node with an exceptionally large out degree,
such as WikiLinks (4.3M), the resultant difference in running time can be quite
considerable. As the effort to find this vertex is minimal and often tracked during
graph creation, the extra work required for this simple heuristic is minimal with
regards to the possible payoff.

For coloring algorithms, there is minimal correlation between the initial root

106

vertex and the execution time of the algorithm. Ideally, the selected root should
minimize the number of traversals required to initialize the LCA for all vertices,
as well as minimize the number of the color propagations required. Selecting such
a vertex seems like a challenging problem to be solved and the solution with the
highest degree heuristic does not seem satisfactory.

7.7 Conclusions
This chapter introduced two novel shared-memory parallel algorithms for finding
the biconnected components of an undirected graph. Since they both use simple
and well-known subroutines, practical and efficient parallel implementations are
much more feasible compared to prior algorithms. Additionally, our implementa-
tions of both of these algorithms offer considerable speedup over the TV-Filter
implementation, while being more memory-efficient. As this chapter and the prior
chapter demonstrated, identifying low level subroutines such as breadth-first search
or color propagation can facilitate the development of novel algorithms that utilize
these subroutines. Optimizing these subroutines for specific architectures can
therefore facilitate their widespread use. While these previous two chapters focused
on implementations targeted for multicore platforms, the next chapter will extend
this general idea onto manycores processors such as GPUs and Intel Xeon Phis.

107

Chapter 8 |
Graph Processing on Manycores

8.1 Introduction
This chapter will build upon a number of the ideas introduced in the previous
chapters, such as how to develop general purpose techniques for effective and
performant graph processing on modern hardware. While previous chapters mostly
focused on multicore CPUs, this chapter will shift focus onto optimizing for manycore
processors such as GPUs and Intel Xeon Phis. The greater parallelism available on
these processors introduces considerable challenges for processing irregular graphs.
This chapter will discuss these challenges and introduce potential solutions. Again,
our solutions will prove generalizable to a large class of graph algorithms, which we
will demonstrate through straightforward and high performance implementations
of the various subroutines of the Multistep algorithm.

8.2 Manycore Processing
This chapter will attempt to answer the following questions in the context of graph
computations and manycore processors:

1. Can we identify frequently-used optimization strategies from the large and
growing collection of tuned parallel graph computation implementations (e.g.,
[25,140–143]), and create a structured methodology for designing new parallel
algorithms? If one were to build a new framework for high-performance
domain-specific graph computations, what would be the key optimization
strategies to consider, and best practices to follow?

108

2. In addition to parallel-for, data-parallel scans, reductions, and sorting meth-
ods, what are some common abstractions used to design parallel graph
algorithms?

3. Is it possible to develop performance-portable implementations of graph
algorithms using advanced parallel programming libraries and frameworks
with the optimizations and abstractions identified above?

We begin by observing that several recent graph algorithms and their efficient
implementations follow the loop nest structure shown in Algorithm 8.1. The
first point to note in Algorithm 8.1 is that the listing uses only simple, array-
based data structures. Current state-of-the-art parallel implementations for several
graph problems use array-based stacks, queues, and priority queues, as these
structures are more amenable to applying data-parallel operations such as scans
and reductions. Implementations of this general template differ in terms of graph
representation, data structure access patterns, number of iterations of the outer loop,
graph topology-based heuristics to reduce total work, synchronization overhead,
etc. Intra- and inter-iteration dependencies hinder automatic compiler-based loop
transformations such as unrolling, coalescing, collapse, and fusion.

Algorithm 8.1 A template followed by several serial and parallel graph algorithms
operating on a sparse graph G(V,E). m = |E|, n = |V |, and m = O(n log n).
Initialize temp/result arrays At[1..n], 1 ≤ t ≤ l. . l = O(1)
Initialize S1[1..n].
for i = 1 to niter do . niter = O(log n)

Initialize Si+1[1..n]. .
∑
i |Si| = O(m)

for j = 1 to |Si| do . |Si| = O(n)
u← Si[j]
Read/update At[u], 1 ≤ t ≤ l.
for k = 1 to |E[u]| do . |E[u]| = O(n)

v ← E[u][k]
Read/update At[v].
Read/update Si+1.

Read/update At[u].

Consider level-synchronous parallelizations of Breadth-First Search (BFS). niter,
the number of outer-loop iterations, is bounded by the graph diameter. The arrays
Si correspond to the vertices in the current frontier, and the adjacencies of these

109

vertices can be visited in parallel. Arrays of size n (At) are used to store parent
information, whether a vertex has been previously visited or not, and distance from
the source vertex. Finally, there is a barrier synchronization before every iteration
of the outer loop. For low-diameter (diameter is O(log n)) graphs, the overhead
of barrier synchronization is insignificant in comparison to the work performed
in the inner loops. The arrays Si store vertices in an arbitrary order for BFS.
For other algorithms, such as ones for single-source shortest paths (SSSP), the
ordering of vertices in Si may be important to reduce the outer-loop iteration
count. The direction-optimizing heuristic in a recent BFS algorithm [112] and the
push-pull optimization in a recent parallel SSSP algorithm [144] can be viewed as
work-reducing heuristics to switch between alternate representations of Si in the
inner loop.

The label propagation community detection heuristic [145] and the PuLP
graph partitioning strategy [47] also fit within this general template. They differ
in the access patterns of the temporary arrays and the result arrays in the inner
loops. Algorithms that are similar to level-synchronous BFS, such as betweenness
centrality [146], approximate diameter [147], strongly connected components [21],
and biconnected components [44] also follow a similar structure. In fact, several
PRAM graph algorithms can be viewed as instances of this template, and they
would result in polylogarithmic parallel time algorithms (assuming low-diameter
graphs and/or a O(log n) bound for the outer-loop iterations). This template
is not restricted to shared-memory algorithms. Distributed-memory approaches
for K-core decomposition also use a label propagation-like strategy [148], and
implementations differ in the number of outer-loop iterations. Finally, open-source
software packages providing state-of-the-art parallel implementations of graph
algorithms, such as Parallel Boost graph library [149], MTGL [150], Galois [151],
SNAP [69], PowerGraph [33], Ligra [115], NetworKit [152], etc., include several
programs that fall under the Algorithm 8.1 template.

So we hypothesize that the first step towards creating an efficient parallel
implementation of a graph algorithm would be to recast it such that it fits the
general template shown in Algorithm 8.1. The focus of the current work is efficient
graph analytics on manycore platforms such as NVIDIA and AMD GPUs and
the Intel Xeon Phi MIC coprocessor. We do not want to reinvent the wheel for
data-parallel subroutine implementations and parallel-for support. Hence, we use

110

an emerging node-level library and programming model called Kokkos [153], that
lets us write code that is portable to GPUs, Intel Xeon Phi, as well as Intel and
AMD x86 CPUs. In Section 8.3, we discuss key Kokkos features that enable us to
quickly develop and compare alternate implementations.

As the next step, we develop several manycore implementations for the graph
problems of BFS, color propagation, and strongly-connected components (SCC),
expressing them in the template shown in Algorithm 8.1. The inner loop nests of
BFS and color propagation have several differences, and so we explore both of these
problems. The general manycore SCC algorithm is based on the prior Multistep
SCC code [21]. Use of Kokkos lets us develop several alternatives for each problem
and conduct a methodical evaluation of optimizations.

In Section 8.4, we present the third step, the key optimizations that are critical
to manycore performance and portability. We primarily evaluate several tuned loop
transformation strategies for the inner loop nest, and we customize these strategies
for our use case of small-world graph analytics. These loop transformations, in
essence, improve load balance and reduce irregular memory accesses. Our proposed
strategies are similar to a compiler-based loop collapse [154,155]. However, compilers
cannot automatically do this because of loop-carried dependencies. To the best
of our knowledge, this is the first work to explore the loop transformations and
manycore optimizations for SCC and color propagation problems. We arrive at this
portable and performant manycore implementation of SCC using our algorithmic
template, a Kokkos-based implementation, and architecture-aware optimizations.

The main observations from our empirical performance evaluation (see Sec-
tion 8.5) are as follows:

• Our new loop collapse strategy, termed Local Manhattan Collapse, is very
effective on GPUs and consistently results in the highest-performing variant
for several problems.

• A GPU SCC implementation using the Local Manhattan Collapse strategy
demonstrates up to a 3.25× speedup relative to a state-of-the-art parallel
CPU implementation running on a dual-socket compute node.

• We find our GPU BFS implementation averages 1.74 GTEPS across a suite
of 12 test graphs, comparable to the current state-of-the-art, without any
BFS-specific tuning.

111

8.3 Portable Graph Algorithms for Manycore

8.3.1 The Kokkos Programming Model

The Kokkos library [153] was originally developed as a back-end for providing
portable performance for scientific computing frameworks, but has since been
extended to a more general-purpose library for parallel execution. The two primary
capabilities of Kokkos include polymorphic multidimensional arrays optimized for
varying data access patterns/layouts in different architectures and thread parallel
execution that allows for fine-grained data parallelism on manycore devices.

The parallel execution model follows a dispatch model, where a single master
CPU thread divides some N units of work to be processed on GPU. Each unit of
work is executed by a single thread or thread team. On GPU, a thread team is
comprised of multiple warps each executing on the same multiprocessor. This team
of threads operates in a data parallel SIMT fashion, and is able to “communicate”
via shared memory. In addition to optimizing the data layout in different devices,
Kokkos also provides us the option to use the hierarchy of memory in manycore
devices, such as thread block shared memory and texture cache. We use these
features of Kokkos for the appropriate data structures. We also use the fast atomic
operations and “thread team level” scan and reduction operations to synchronize
between different threads in a thread block. One of the key design decision we made,
using low-level simple array-based data structures, helps us when using Kokkos, as
the layout of these simple arrays is then optimized by Kokkos in different devices
(CPUs, GPUs and Phis), different types of memory (e.g., shared memory), and
different access patterns (e.g., coalesced access). Use of custom data structures
that are optimized for any single architecture would have prevented Kokkos level
optimizations, in turn affecting portability.

8.3.2 Breadth-first Search

BFS is one of the most widely used basic graph subroutines, appearing in a
vast number of more complex graph analytics. The goal of BFS is commonly to
determine from a given root vertex either reachability status, distance, or BFS tree
parent-child relationships for all or some subset of vertices in a graph. On each
iteration i ∈ niter of the algorithm, the status for all vertices that are distance i

112

away from the root is updated. Described in terms of Algorithm 8.1, we would
first initialize S1 to contain only the root. To determine distances, our result array
A would be initialized to −1 for all vertices except for the root, which would be
initialized to 0. Each iteration will examine all edges of all vertices in Si. When
a vertex v is encountered such that A[v] < 0, we update A[v] to i and place v
into Si+1. There has been a lot of recent work focused on optimizing both CPU
and manycore-based implementations of BFS [23,25, 26, 112,156,157]. We don’t
explicitly consider fully optimizing BFS itself through our framework, but rather
show how close we can get to state-of-the-art traversal rates by only considering
simple techniques that affect per-unit-work assignments and which are applicable
to a much broader class of algorithms.

8.3.3 Color Propagation

Color propagation is an iterative procedure that is useful for many different graph
connectivity problems [15, 21, 44, 115]. An overview of the general algorithm is
given by Algorithm 8.2. Note how it also follows the Algorithm 8.1 template, where
Si is our current queue and the result array A can be considered as the current
color assignments for all vertices in the graph. We initialize A to be unique vertex
identifiers and S1 as all vertices in the graph. We then examine all edges, and when
there exists a source vertex that has a higher color than one of its neighbors, that
vertex propagates its color to the neighbor. The next work set Si+1 is comprised of
vertices that have had their color altered. This process continues iteratively until
no further propagations occur. As with BFS, we implement color propagation in a
straightforward manner within our general framework.

8.3.4 Strongly Connected Components

The problem of computing strongly connected components (SCCs) in large directed
small-world graphs is a common analytic for social networks [12] and a preprocessing
step in scientific computing (among other uses) [16]. Using either BFS or coloring,
straightforward parallel strongly connected component decomposition algorithms
can be implemented [15,19]. Combining both subroutines into an efficient Multistep
procedure can result in considerable speedup for small-world graphs [21]. We
use the BFS and color propagation subroutines implemented in our framework to

113

Algorithm 8.2 Color Propagation pseudocode.
A[1..n]← 1..n . Set A[i] = i, 1 ≤ i ≤ n
S1[1..n]← 1..n . Set S1[i] = i, 1 ≤ i ≤ n
i← 1
while Si 6= ∅ do

Si+1 ← ∅
for j = 1 to |Si| do

u← Si[j]
for k = 1 to |E[u]| do

v ← E[u][k]
if A[u] > A[v] then

A[v]← A[u]
Add v to Si+1

i← i+ 1

perform graph SCC decomposition via the Multistep procedure (we refer the reader
to [21] for a more detailed description). Once again, outside of a few changes to
initializations and the very innermost loops, few alterations need to occur to the
original BFS and color propagation codes for the SCC problem.

8.4 Optimization Methodologies
In this section, we describe the optimization techniques used to achieve scalable
performance on manycore architectures. These techniques are applicable to any
algorithm that fits the template described in Algorithm 8.1. Furthermore, the
optimizations are general enough for architectures that share similar characteristics,
such as a very high core count, hierarchical memories, and small amounts of
memory per thread. These characteristics of present day GPUs is expected to hold
or become increasingly important in future manycore architectures. As a result,
the optimizations described here are critical for scalable algorithms on modern and
future systems.

114

8.4.1 Thread Teams, Local Synchronization, Shared and Global
Memory

Current GPUs are organized as a number of streaming multiprocessors (for instance,
16 in a NVIDIA Maxwell GM204), each with a number of smaller cores (e.g., 128
CUDA cores in GM204). The number of threads that can be scheduled in a single
streaming multiprocessor of a GPU can be up to 2048. The number of warps
per streaming multiprocessor is 48-64, and the number of thread blocks is 8-16,
depending on the microarchitecture. A similar hierarchy is also seen in the multiple
hyperthreads per core of a Xeon Phi coprocessors, along with NUMA effects due to
placement of cores near different memory regions. This results in multiple levels
of parallelism for which algorithm developers need to design. The programming
model in Kokkos abstracts this to a thread team, where a thread team corresponds
to a thread block on GPU. In order to effectively utilize a streaming multiprocessor
(SM), it is crucial to be able to schedule multiple thread blocks in each SM. Within
each thread block, there is enough concurrency for thousands of threads, so that
multiple warps can be kept busy at the same time. All of our algorithms use
the thread teams concept to synchronize locally and utilize shared memory to
communicate within a team when necessary.

The number of thread blocks that can be scheduled concurrently in a single SM
is determined by the amount of shared memory used by each thread block (or a
thread team). As all the threads in a team use the shared memory to synchronize
among themselves before synchronizing to the global memory, the amount of shared
memory used is an important resource. Increasing its size would reduce the number
of writes to global memory by doing more local synchronizations, but it would
also decrease the number of concurrent thread blocks that can be scheduled. Our
approach balances shared memory usage with the parallelism available within each
thread block. Finally, it is important that reads and writes to global memory are
coalesced. Essentially, we want reads and writes for a single warp to be to be
performed at neighboring global memory addresses to reduce total memory transfer,
improve cache utilization, and ensure that threads in the warp are not idle waiting
for the memory request of a single thread.

115

8.4.2 Hierarchical Exploration to Improve SM Utilization

A common optimization technique for algorithms dealing with irregular graph
structure is special handling of the fringe cases, i.e., vertices with degree much
larger than the average [23, 25]. This can be done at the granularity of a single
level or through considering multiple classes of vertices in a hierarchy. In the GPU
context, this might translate to a thread block working together to explore the
edges of a vertex with an out-degree greater than the number of threads in the
thread block, while a warp would explore vertices with an out-degree greater than
the number of threads in a warp, but smaller than the number of threads in a block.
Smaller vertices would be handled by individual threads. This general hierarchical
technique has been previously used for irregular graph problems, referred to as the
deferring outliers [23] and the CTA+Warp+Scan [25, 141] approaches.

Our implementation of this technique, which we term as Hierarchical Expansion,
is given by Algorithm 8.3. In the Kokkos model, we consider parallelism at three
hierarchies: team-level, warp-level, and thread-level. For each iteration of our
algorithm, we remove a chunk of vertices VT from the input work set Si and pass it
to a Kokkos thread team T . For good team-level work balance and multiprocessor
utilization, the size of VT is usually within a small factor of the size of T . The
threads in each team work to process their input set, placing the high-degree vertices
they encounter into a team-shared queue (when the degree is greater than the size
of the thread team |T |) or warp-shared queue (when the degree is smaller than the
size of a thread team, but larger than the size of a warp |W |). Smaller vertices get
placed into a small thread-owned buffer Qt for later serial expansion. The vertices
in the team-level queue QT are collectively expanded by all threads, with potential
updates to Si+1 kept in team-level shared memory. Once the QT queue is exhausted,
the warp queue QW is examined. Each warp removes a vertex from the queue,
and cooperatively expands its adjacencies. Finally, each individual thread serially
expands the vertices in its buffer. Once all work is exhausted, the team collectively
pushes their updates to the next iteration’s work set Si+1. We use team-level scans
and reductions whenever possible to minimize global synchronizations.

The primary benefit to this type of approach is that it allows fine-grained warp
utilization by limiting the serial expansion of high degree vertices by a single thread
or warp. This leads to better load balance at the thread and warp level. This

116

Algorithm 8.3 Hierarchical Expansion.
Initialize A and S1
for i = 1 to niter do

Initialize Si+1[1..n].
for all Thread Teams do . Team-level parallelism

Retrieve subset VT from Si
for j = 1 to |VT | do . Thread-level parallelism

v ← VT [j]
if |E[v]| > |T | then

Add v to QT . Team-shared Queue
else if |E[v]| > |W | then

Add v to QW . Warp-shared Queue
else

Add v to Qt . Thread-owned Queue
Team-level synchronization
for j = 1 to |QT | do

v ← QT [j]
for k = 1 to |E[v]| do . Thread-level parallelism

u← E[v][k]
Read/update A[u]

Warp-level synchronization
for j = 1 to |QW | do . Warp-level parallelism

v ← QW [j]
for k = 1 to |E[v]| do . Thread-level parallelism

u← E[v][k]
Read/update A[u]

for j = 1 to |Qt| do . Serial expansion by thread
v ← Qt[j]
for k = 1 to |E[v]| do

u← E[v][k]
Read/update A[u]

Team-level synchronization
Update Si+1

approach also allows the use of shared memory to create new queues for the next
iteration of an irregular graph problem, reducing the number of global synchroniza-
tions required. However, as vertices are assigned to a single team statically, there
can still be some imbalance at the highest level. All teams might finish their work
long before the team owning a highly-skewed vertex completes, delaying the start

117

of the next iterations and vastly under-utilizing available processing resources.

8.4.3 Loop Collapse for Better Load Balance

As shown by the template in Algorithm 8.1, many graph algorithms follow the
pattern of two nested loops, where the outer loop is over the vertices and the nested
inner loop is over the edges. Often, these two loops are not perfectly nested, as
the vertex contents of the outer loop determine the start and end indices for the
edges examined of the inner loop. There might be additional operations within the
outer loop, such as changing the properties of vertices, adding vertices to the next
queue, etc. While perfectly nested loops are great candidates for compiler-based
optimizations, loops containing these other operations cannot be automatically
optimized by compilers.

The importance of collapsing these loops increases when both loops are paral-
lelizable and when the work in different outer loop iterations is heavily unbalanced.
In graph analytic algorithms on graphs with skewed degree distributions, when
the work in the outer loop varies based on the degree of the vertices, collapsing
the inner loop is critical. When there are few threads, like in the CPU, a simple
dynamic scheduling runtime can alleviate the problem [21]. However, it is hard
to scale this approach to the thousands of threads in manycore devices. In our
framework, we do the optimization a compiler might do, and collapse the two loops
over vertices and edges into a single loop over all possible edges.

We employ the Manhattan Collapse [155], where a prefix-sum operation, easily
parallelizable on GPUs with a scan-based procedure, is used to compute the bounds
of each outer loop iteration. With the results of the prefix sums, a binary search is
then used to compute the indices of the original inner-loop and outer-loop within
the collapsed loop (referenced as HighestLessThan in Algorithms 8.4 and 8.5).
The overhead associated with reverse-engineering the vertex information is offset
by the good load balance achieved by each thread. This general approach has
been explored before by Merrill et al. for GPUs in the context of BFS [9] and by
Davidson et al. for SSSP [141]. As with the work of Davidson et al., we consider
two forms of the Manhattan Collapse, implementing it at both the global and local
level.

118

8.4.3.1 Local Manhattan Collapse

For our local implementation, we do not require any additional global storage, apart
from the queues and work arrays updated in the algorithm. An overview of this
approach is given by Algorithm 8.4. We statically partition our work set Si on a
per-vertex basis and pass each partition VT to our thread teams. The thread team
computes prefix sums P over VT based on out-degree. P is stored in shared memory.
The final prefix sum in P is the sum of edges for VT , and therefore proportional to
the total work that the team needs to do. We can then equally distribute this work
among all the threads in the team. To get a specific edge based on a per-thread
work assignment j, the source vertex is determined by examining the prefix sums
array, and finding the index k that corresponds to a value in P greater than or
equal to j, and less than the value at the next highest index. The specific out-edge
u from the source vertex can be found by using the difference between the work
assignment and the value at the found index in the prefix sums. With the (u, v)
pair, the thread can now perform its assigned work.

Algorithm 8.4 Local Manhattan loop collapse.
Initialize At and S1
for i = 1 to niter do

Initialize Si+1[1..n]
for all Thread Teams do . Team-level parallelism

Retrieve subset VT from Si
P ← PrefixSums(VT)
Max← max(P)
for j = 1 to Max do . Thread-level parallelism

k ← HighestLessThan(P, j)
u← VT [k]
v ← E[u][j − P [k]]
Read/update At[u] and At[v]

Team-level synchronization
Update Si+1

The primary benefit of the Local Manhattan Collapse is that it leads to full
warp and thread utilization of processor resources. When the cost of looking up a
work assignment is low compared to the work that needs to be done, this approach
is highly beneficial. As with Hierarchical Exploration, a major drawback to doing
the Local Manhattan Collapse is that a vertex is still assigned to a single team,

119

which might lead to work imbalances for highly skewed graphs.

8.4.3.2 Global Manhattan Collapse

To alleviate any potential work imbalance issues, we implemented a fully-partitioned
approach, where the prefix sums for the current iteration are computed on the
previous iteration as updates were pushed to the next-iteration work set Si+1. By
doing this, we can statically distribute an equal number of edges to each team
instead of vertices. As can be seen in Algorithm 8.5, the approach closely follows
our local method. The primary difference lie in the prefix sum arrays, Pi and
Pi+1, which must be globally stored and synchronously updated. To minimize data
transfer requirements, each thread team can determine its start and end offsets in
Pi and do a single transfer of the needed portion to shared memory. Additionally,
pushes to Pi+1 and Si+1 can also be coalesced, with only a single atomic update
required per team. Because each team needs to determine the offset to start writing
to Pi+1, as well as the current running sum, we package both these values into a
single atomically-updated 64-bit long int and perform an atomic fetch-and-add
on a current global value.

Algorithm 8.5 Global Manhattan loop collapse.
Initialize At and S1
Initialize P1
for i = 1 to niter do

Initialize Si+1[1..n]
for all Thread Teams do

Retrieve subset jT to jT+1 of max(Pi)
for j = jT to jT+1 do . Thread-level parallelism

k ← HighestLessThan(Pi, j)
u← VT [k]
v ← E[u][j − Pi[k]]
Read/update At[u] and At[v]

Team-level synchronization
Update Si+1 and Pi+1

Ideally, the Global Manhattan Collapse should offer the best work partitioning
among thread teams and fastest execution times for a given algorithm. However, as
we will show in our results, there are other key factors that hurt the performance
of the Global Manhattan Collapse relative to the Local method. For simple graph

120

algorithms with minimal work per edge, the cost of reading and writing to an
additional global array is relatively high. Amortizing this startup and end cost by
increasing work per team is not necessarily a good solution, as we would ideally
like to have an as-large-as-is-practical number of teams to hide the memory access
latencies inherent to the rest of the implemented algorithm. Further, on graphs
with a relatively consistent degree, or a modest number of outliers, this method
offers no additional benefit in terms of equal per-team work distribution relative
to the local collapse. Finally, the maximal degree of many real-world graphs is
bounded by O(

√
n). As long as the maximal degree is less than O(n) and there

are relatively few outliers, the level of fine-grained global work distribution offered
by the global collapse is likely not necessary.

8.5 Performance Analysis and Discussion

8.5.1 Experimental Setup

We evaluate our algorithms on single nodes of three clusters, the Shannon and
Compton systems at Sandia and the NSF Blue Waters system at the NCSA. A
Shannon node has two Intel Xeon E5-2670 Sandy Bridge-EP processors with 128 GB
main memory and an NVIDIA Tesla K40M GPU. The K40M GPU has 12 GB
DDR5 memory, 2880 cores, and a peak memory bandwidth of 288 GB/s. Each
GPU-enabled compute node of Blue Waters has one AMD 6276 Interlagos processor
with 32 GB main memory and an NVIDIA Tesla K20X GPU. The K20X GPU has
6 GB DDR5 memory, 2688 cores, and a peak memory bandwidth of 250 GB/s. For
GPU parallelism, Kokkos uses the CUDA programming model. We use Compton
nodes for running our Kokkos and OpenMP implementations on its Intel Xeon
processors and Intel Xeon Phi MIC coprocessors (Kokkos also utilizes OpenMP for
multicore parallelism). The MICs on Compton contain 57 cores at 1.1 GHz with
6 GB memory. In all cases, the version of Kokkos used in our evaluation came from
release 11.10.1 of Trilinos, we used icc and nvcc with the -O3 optimization option
for compilation along with -arch=sm_35 when compiling for GPU.

We used several real small-world directed graphs that range in size from 5.1
million to 936 million edges for testing. These are listed in Table 8.1. The graphs
are from the SNAP database [69], the Koblenz Network Collection [80], and the

121

Degree (S)CCsNetwork n m avg max Count nontriv. max
Google 875 K 5.1 M 5.8 5 K 370 K 12 K 410 K
Flickr 820 K 9.8 M 12 10 K 277 K 7.3 K 530 K
XyceTest 1.9 M 8.2 M 4.2 250 400 K 2.0 K 1.5 M
LiveJournal 4.8 M 69 M 14 20 K 970 K 23 K 3.8 M
RMAT2M 2.0 M 128 M 64 8.7 K 1 M 1 1.0 M
GNP2M 2.0 M 128 M 64 95 1 1 2.0 M
Indochina 7.4 M 194 M 26 180 K 1.6 M 40 K 3.8 M
DBpedia 67 M 258 M 3.9 650 K 55 M 2.9 M 8.9 M
HV15R 2.0 M 283 M 140 170 K 24 K 15 120 K
uk-2002 18 M 398 M 16 4 K 3.7 M 70 K 12 M
WikiLinks 26 M 600 M 23 400 K 6.6 M 60 K 19 M
uk-2005 39 M 936 M 24 130 K 5.8 M 223 K 26 M

Table 8.1. Information about test networks. Columns are # vertices, # edges, average
and max. degree, # of SCCs, # number of nontrivial SCCs, and size of the largest SCC.

University of Florida Sparse Matrix Collection [75]. We selected these graphs
to represent a wide mix of graph sizes and topologies. Graph topology also has
a strong influence on the performance of BFS and color propagation, while the
number of total and nontrivial SCCs, as well as the size of the largest SCC, play
an important role in determining performance of the SCC algorithm.

We report BFS and color propagation performance in terms of the Giga Traversed
Edges per Second (GTEPS) metric, which normalizes running time to the total
number of edges accessed (in billions). Note that our input graphs are directed and
most of them have a large SCC. For each BFS execution, we track the total number
of edges visited. Similarly, we count the number of vertex color and edge updates
to determine overall performance for color propagation. We also run multiple
iterations of both algorithms on all the target systems to reduce any variation in
running time. In order to be consistent with BFS and color propagation results,
we normalize SCC performance also by the number of edges and report an overall
GEPS (Giga Edges per second) rate for each graph.

For the Kokkos GPU approach, we fix thread queue sizes at 16, work chunks
at 256 vertices per thread team for Hierarchical and Local Manhattan, and work
chunks at 2048 per thread team for Baseline (vertex chunks) and Global Manhattan
(edge chunks). For Xeon Phi and CPU, we used larger queues of size 1024 and work

122

chunks of 2048. These values were selected for exhibiting the fastest performance
across a range of values on our test suite. We will fully explore the performance
impact of these algorithmic parameters in future work.

8.5.2 BFS Performance

●

●

●

●

●

●
●

●

●●
●

●

0

1

2

3

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

G
T

E
P

S

Algorithm ● H MG ML

●

●

● ●
● ●

●

● ●●

●

●

2.5

5.0

7.5

10.0

12.5

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

S
p

e
e

d
u

p
 v

s
.

B
a

s
e

lin
e

Algorithm ● H MG ML

Figure 8.1. BFS performance in terms of GTEPS (left) and speedup vs. Baseline
(right) on a Tesla K40M using Manhattan-Local (ML), Manhattan-Global (MG), and
Hierarchical (H) loop collapse strategies.

Figure 8.1 gives the performance rates of the Kokkos-based BFS implementations
on the Tesla K40M GPU. The baseline rate in the figure corresponds to performance
with a vertex-based partitioning of the frontier array among thread teams. It is
not a trivial implementation and our speedup numbers are conservative in that
sense. We see consistent and significant speedups with three loop collapse strategies
(H: hierarchical, MG: Manhattan Collapse using global memory, ML: Manhattan
Collapse using GPU shared memory). Using H, MG, and ML, the speedups
(geometric mean) over baseline are 1.82×, 1.82×, 3.85×, respectively, for the twelve
graphs considered. The graphs are ordered in the figure in increasing order of
average vertex degree, from DBpedia (3.9) to HV15R (140). Apart from a couple
of anomalies, there is a reasonable correlation between average vertex degree in
the graph and the BFS performance of the best variant (ML). Prior GPU graph
algorithms work [26] has also made similar observations. However, one striking
aspect is that the tuned variant can be more than an order-of-magnitude faster
than the baseline, as we note for the Flickr graph. This is likely due to the large
skewed degree distribution of Flickr, which severely limits the performance of the
baseline approach. Other work has also noted the importance of parallel work

123

balance with this particular graph [141].

●

●●

●

●

●

●
●

●

●

0

1

2

3

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

H
V

1
5
R

Graph

G
T

E
P

S

Optimizations ● M(+C+S+)L M(+C+S) M(+C) Baseline+M

●

●

●

●
●

● ●
●

●

●

0.0

2.5

5.0

7.5

10.0

12.5

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

H
V

1
5
R

Graph

S
p

e
e

d
u

p
 v

s
.

B
a

s
e

lin
e

Optimizations ● M(+C+S+)L M(+C+S) M(+C) Baseline+M

Figure 8.2. Impact in terms of GTEPS (left) and speedup vs. Baseline (right) of various
optimization strategies (Manhattan Collapse (M), coalescing (C), team-scan (S), and
local primitives (L)) on a Tesla K40M BFS performance.

Next, we summarize the impact of other optimization strategies discussed in
Section 8.4. Figure 8.2 gives BFS performance of the baseline and the ML variant
again. In addition, we add optimizations in a structured manner to the code,
starting with Baseline and finally getting to tuned ML (indicated by M+C+S+L
in the figure). The intermediate steps are untuned Manhattan Collapse (indicated
by Baseline+M), Manhattan Collapse with memory coalescing (M+C), Manhat-
tan Collapse with memory coalescing and utilizing team-based scan procedures
(M+C+S). The final step is the usage of temporary shared memory arrays for each
thread team. It is interesting to note that Manhattan Collapse by itself does not
provide much performance improvement. It is only after a methodical restructuring
of the code, including optimizations such as coalescing and use of optimized scan
primitives, that we are able to get the full benefit of the loop collapse optimization.

8.5.3 Color Propagation Performance

Figure 8.3 shows the performance of the loop collapse strategies on color propagation.
Unlike BFS, the global Manhattan Collapse strategy does not consistently improve
performance over the baseline. For a majority of the graphs, it is actually slower
than baseline. Using H and M, though, the speedups (geometric mean) over baseline
are 1.72× and 3.10×, respectively, for the twelve graphs considered. Performance
of the best variant (ML) seems to well-correlated with average graph degree, with
the exception of the synthetic RMAT2M and GNP2M graphs. We see the highest

124

●
●

●

●

●
●

●

●

●

●
●

●

0

1

2

3

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

G
T

E
P

S

Algorithm ● H MG ML

●

●

● ●

● ●

●

●

●

●

●

●1

2

3

4

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

S
p

e
e

d
u

p
 v

s
.

B
a

s
e

lin
e

Algorithm ● H MG ML

Figure 8.3. Color propagation performance in terms of GTEPS (left) and speedup vs.
Baseline (right) on a Tesla K40M using Manhattan-Local (ML), Manhattan-Global (MG),
and Hierarchical (H) loop collapse strategies.

overall speedup over baseline (nearly 4.5×) with the Flickr graph. MG performs
poorly on several instances due to the nature of iterative color propagation, which
tends to have a long tail containing lots of low degree vertices. This effect is
especially pronounced on the web graphs (uk, IndoChina), which tend to have long
strings of singly-connected vertices. This hurts the performance of MG relative
to ML in two ways. Firstly, the low average degree increases the amount of total
transfer per team to and from the global prefix sum array. Secondly, the consistently
low vertex degrees offer no benefit with regards to work partitioning among teams
relative to the other approaches.

8.5.4 SCC Evaluation and Performance Portability

We finally evaluate performance of various SCC implementations. Recall that SCC
algorithms use both BFS-like and color propagation-like loop nests, in addition
to other graph topology-related work reduction heuristics [21,114]. Our baseline
Kokkos implementation for SCC is based on our prior Multistep [21] multicore par-
allel algorithm. Note that the BFS subroutine in Multistep is direction-optimizing,
similar to [112,157]. Thus we have also been able to express a fast heuristic work-
reduction strategy in our Kokkos framework. We further improved the baseline
approach using the ML and MG loop collapse strategies, and other GPU-specific
optimizations. Figure 8.4 provides a cross-platform comparison of the various
approaches on our test suite. Performance rates are indicated in terms of billions
of edges per second. Our prior CPU Multistep implementation uses OpenMP, and

125

can be compiled and run on x86 systems as well as Intel’s Xeon Phi coprocessors.
We thus report these results on the Sandy Bridge-EP host processor and the Xeon
Phi coprocessor, indicated as SNB and KNC in the figure. The OpenMP Multistep
implementation is labeled OMP. The Kokkos baseline approach runs on all four
platforms, and it is labeled as previous (B). Because Kokkos uses a single thread
per team for the Xeon Phis and CPU, we only report performance for the MG
variant of loop collapse on these systems, as the ML variant would default into an
inefficient (B). We don’t consider hierarchical exploration due to the consistently
superior performance of MG in previous experiments. We only include ML as a
comparator for systems that can’t utilize MG. Any missing data points in both
Figure 8.4 and Table 8.2 are due to memory limitations on the GPUs and Xeon
Phi.

Consider the SNB column of the figure first. We observe that the OMP
multistep performance varies between 0.1 to 5 GEPS, a nearly 50× variation. The
anomalously-high performance on RMAT2M and GNP2M is due to the fact these
synthetic graphs are relatively easy instances for the Multistep algorithm (there
is only a single non-trivial SCC, so color propagation is never run). The graphs
are ordered from top to bottom by average vertex degree. While OMP tends to do
better than the Kokkos baseline on smaller graphs, for four of the twelve graphs,
including the larger uk web crawls, the Kokkos baseline is in fact faster than the
state-of-the-art OpenMP-based Multistep. MG, the algorithmic variant designed
for GPUs, did not do as well as the baseline in SNB.

The Xeon Phi performance results are quite interesting. The Kokkos baseline
variant now consistently outperforms Multistep OMP. In comparison to parallel
SNB performance, the absolute performance results on KNC are lower. However,
note that these results were obtained with little or no parameter tuning for KNC.
Besides three instances, MG again lags behind baseline. Thus we can conclude that
the loop collapse strategies designed specifically for GPUs may not really lead to
portable performance on KNC, without additional tuning.

The GPU SCC performance results are as expected. Notably, we could easily
combine the Kokkos BFS and coloring implementations to create this SCC algorithm,
and overall performance is quite favorable in comparison to the best parallel CPU
implementation.

The original Multistep algorithm compiled with OpenMP and running on

126

 SNB KNC K20X K40M

0.0

0.2

0.4

0.6

0.00
0.05
0.10
0.15
0.20
0.25

0.00

0.05

0.10

0.15

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

0.00
0.05
0.10
0.15
0.20

0.0

0.1

0.2

0.3

0
1
2
3
4
5

0

1

2

3

0.0

0.5

1.0

1.5

2.0

D
B

p
e

d
ia

X
yce

Te
st

G
o

o
g

le
F

lickr
L

ive
Jo

u
rn

a
l

u
k−

2
0

0
2

W
ikiL

in
ks

u
k−

2
0

0
5

In
d

o
C

h
in

a
R

M
A
T

2
M

G
N

P
2

M
H

V
1

5
R

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

SCC Algorithms

B
ill

io
n
s

o
f
E

d
g
e
s

P
ro

ce
ss

e
d
 p

e
r

S
e
co

n
d

Figure 8.4. Cross-platform performance comparison of SCC implementations.

127

SCC BFS Coloring
Network SNB KNC K20X K40M K40M vs K20X

GEPS GTEPS ratio
Google 0.16 0.08 0.09 0.15 1.66 1.19
Flickr 1.29 0.14 0.38 0.56 1.37 1.00
XyceTest 0.25 0.13 0.14 0.23 1.08 1.16
LiveJournal 1.03 0.24 0.53 0.68 1.11 1.04
RMAT2M 4.99 0.47 1.28 1.35 1.13 0.95
GNP2M 3.66 0.56 1.06 1.05 1.04 1.04
Indochina 0.30 0.09 0.11 0.18 1.08 1.22
DBpedia 0.20 0.33 0.34 0.82 1.16
HV15R 2.09 0.43 1.18 1.23 2.20 0.99
uk-2002 0.55 0.20 0.33 1.26 1.15
WikiLinks 0.79 0.45 1.27 1.12
uk-2005 0.22 0.18
Geo. Mean 0.69 0.21 0.35 0.43 1.23× 1.09×

Table 8.2. Cross-architectural performance comparison of best variants.

CPU shows the most consistent performance, followed by the GPU Kokkos ML
algorithm running on GPU. Exploring cross-architectural and cross-implementation
performance on each graph instance, we note different reasons for why a particular
implementation is faster or slower. Multistep was designed to run on CPU with
low diameter graphs and, as such, tends to dominate performance-wise on the
smaller graphs, where there is lower available work parallelism, the graphs are less
skewed, and the problems are generally easier to solve. This is apparent on the
two simplest instances, the GNP and RMAT graphs. The GPU ML code arguably
shows increasing relative performance with increasing problem difficulty, which
is exemplified by DBpedia, the most skewed graph with the largest number of
nontrivial SCCs. The additional parallelism for GPU ML across the adjacencies of
the largest outliers in DBpedia makes a large relative impact. MG for both CPU
and GPU does not show as good performance for DBpedia because, while there is
improved parallelism across the largest adjacencies, DBpedia also has a very long
tail of low degree vertices. This makes color propagation run very slow with MG
due to all of the additional read and writes to the global prefix sums array.

In Table 8.2, we list the SCC GEPS rate of the best-performing variant on each
platform. The geometric mean of GEPS rates on each platform for SCC are also

128

listed. Overall, K20X is 1.67× faster than KNC for SCC. For BFS and Coloring,
we compare performance of the best variant on K40M to the best-performing one
on K20X. We observe that K40M is overall 1.23× faster for BFS and 1.09× faster
for color propagation.

Although we note the present performance benefit of running on the multicore
system relative to our manycore implementations, we make a few final points.
Current trends in HPC indicate increased parallelism to become more prevalent,
with an explicit distinction between a host CPU and coprocessor/GPU becoming
blurred. This will make any present performance gaps between multicore and
manycore codes less relevant. Additionally, more complex memory hierarchies and
wider variation in architecture designs will make it a challenge to write algorithms
that are efficient on future architectures. Hence, as we motivated previously,
developing manycore techniques that exploit wide parallelism and varied memory
hierarchies through reliance on a general framework and back-end for architecture-
optimized parallelization will ease the burden on algorithm designers to design
portable code for future systems.

8.5.5 Comparisons to Prior Work

To the best of our knowledge, this is the first work on Kokkos-based graph com-
putations targeting GPUs and Xeon Phi accelerators. For SCC, we performed
direct comparisons with our prior OpenMP based Multistep method, as discussed
in the previous subsection. In terms of mean performance rates, we believe that
0.43 GEPS for SCC, using a high-level framework such as Kokkos, is significant.
Our mean BFS performance rate on the K40M is 1.74 GTEPS across all the
test networks considered, and the best rate is 2.82 GTEPS for the RMAT2M
network. Recently, Nguyen et al. [158] compare performance of several parallel
graph analysis frameworks (Ligra, Galois, PowerGraph, GraphChi, and variants)
for various graph analytics routines on a 40-core Intel Westmere-EX system. The
best BFS performance reported, with Galois on the twitter40 graph, corresponds to
a rate of 2.1 GTEPS. Merrill et al. [25] report up to 3.3 GTEPS on the RMAT2M
network for an optimized CUDA BFS implementation. For tuned CUDA-based
SSSP approaches, Davidson et al. [141] report a peak performance rate of 0.35
GTEPS on an RMAT network and an NVIDIA GTX 680 (GK104). Thus, we

129

believe that our approaches are competitive with the current state-of-the-art on
multicore and manycore platforms.

8.6 Conclusions
We used an algorithmic template that is common to lot of graph algorithms to
express algorithms for strongly connected components, breadth first search and
color propagation. This algorithmic template was used for portable manycore im-
plementations using the Kokkos library and then optimized for architecture specific
features like teams of threads and algorithmic features like loop-collapsing. We
gave credence to the the efficacy of our approach by demonstrating the performance
of a strongly connected components algorithm that is up to 3.25× faster than a
parallel CPU implementation.

We conclude with some commentary on questions posed in Section 8.1. To
answer questions (a) and (b), we advocate using simple array-based data structures
and an iterative loop nest to perform graph computations, as shown in Algorithm 8.1.
This simplifies transitioning from serial to multicore to manycore algorithms. The
Local Manhattan Collapse optimization proved to be the biggest contributor to
performance improvement over a baseline version. Given that most current and
emerging real-world networks have skewed degree distributions, this would be the
primary optimization strategy for graph analytics. The algorithms we studied in
this chapter use the abstraction: “given a large unordered set of vertices, how do we
efficiently read and update attributes of the vertices and their adjacencies?” Using
Kokkos, we see promising results for performance portability. The performance of
our Baseline SCC algorithm on Xeon Phi is 1.97× faster than an OpenMP-based
implementation. Further, the multicore CPU algorithm based on Kokkos is only
30% slower than a hand-tuned OpenMP code. So we conclude as an answer to
question (c), yes, performance-portable graph algorithms are possible using the
previously identified libraries and optimization techniques.

While this chapter and the bulk of this prior thesis has focused mostly on single
node shared-memory optimizations and algorithmic implementations, the rest of
this thesis will instead shift focus to general techniques and considerations when
processing in the distributed memory space.

130

Chapter 9 |
Complex Small-world Graph Par-
titioning

9.1 Introduction
This chapter denotes the shift in this thesis from a focus on shared-memory to
distributed-memory graph processing. In this chapter, we will introduce our graph
partitioner, PuLP, which can be used to accelerate graph algorithms running in
distributed memory. The main benefits of using our PuLP partitioner are its low
memory overheads, high efficiency, and comparable partition quality compared to
other state-of-the-art partitioners. This chapter will introduce the general PuLP
algorithm, describe its implementation, and give a performance comparison to prior
art.

9.2 Graph Partitioning
Within the past few years, several online repositories that host representative
real-world graphs with up to billions of vertices and edges (e.g., [69,75,80]) have
emerged along with several open-source and commercial distributed graph processing
frameworks (e.g., PowerGraph [33], Giraph [36], Trinity [39], PEGASUS [38]). The
primary goal of these frameworks is to permit in-memory or parallel analysis of
massive web crawls and online social networking data such as what is hosted by
the online repositories. These networks are characterized by a low diameter and
skewed vertex degree distributions, and are informally referred to as small-world or

131

power law graphs. The graph processing frameworks use different I/O formats and
programming models [159,160], but all of them require an initial vertex and edge
partitioning for scalability in a distributed-memory setting.

As such, a key motivation for this chapter is how to efficiently partition large
scale graphs to ensure high performance of in-memory graph computations. Two
common topology-aware approaches to generate load-balanced partitions are (i)
randomly permuting vertex and edge identifiers, and (ii) using a specialized graph
partitioning tool. Random permutations ensure load balance, but hurt locality and
inter-task communication. Graph partitioning methods attempt to maximize both
locality and load balance, and optimize for aggregate measures after partitioning,
such as edge cut, communication volume, and imbalance in partitions. There is
a large collection of partitioning methods [27,28] that perform extremely well in
practice for regular, structured networks. However, there are three issues that
hinder use of existing graph partitioners for small-world network partitioning:

1. Traditional graph partitioners are heavyweight tools that are designed for
improving performance of linear solvers. Most graph partitioning methods
use multilevel approaches, and these are memory-intensive. Partitioning time
is not a major consideration, as it is easy to amortize the cost of partitioning
over multiple linear system solves.

2. The collection of complex network analysis routines is diverse and constantly
evolving. There is no consensus on partitioning objective measures. Partition-
ing with multiple constraints and multiple objectives is not widely supported
in current partitioners.

3. Small-world graphs lack good vertex and edge separators [70]. This results in
problems that are hard to partition the traditional way, resulting in even high-
performing traditional partitioners taking hours to partition large small-world
graphs.

This chapter takes a fresh look at the problem of distributed graph layout and
partitioning. We introduce a new partitioning method called PuLP (Partition-
ing using Label Propagation), and explore trade-offs in quality and partitioning
overhead for a collection of real and synthetic small-world graphs. As the name
suggests, PuLP is based on the label propagation community identification al-
gorithm [145]. This algorithm generates reasonably good quality results for the

132

community identification problem [27,28], is simple to implement and parallelize,
and is extremely fast. One of the goals of any graph partitioning scheme is to reduce
the number of inter-partition edges (or the edge cut), as it loosely correlates to
inter-node communication costs. Since communities are tightly connected vertices,
co-locating vertices of a community in a partition will increase the proportion of
intra-partition edges. Other related work has used label propagation as part of a
multi-level scheme for graph coarsening [161–163] or, similar to PuLP, as part of a
single-level method [164–166]. However, to our knowledge, PuLP is the first label
propagation-based partitioner that considers both multiple constraints and multiple
objectives. It is also the first single-level partitioner that can produce cut quality
comparable to state-of-the-art multilevel partitioners with multiple constraints.

In typical graph analytic algorithms, the number of vertices/edges in each
partition represent the local work and the memory usage. In parallel graph analytics
utilizing a bulk synchronous parallel (BSP) model, we also want to minimize the
maximum communication (cut edges) incurred by any single partition. As a
consequence, our approach also tries to impose vertex and edge balance constraints,
with the goal to minimize both total edge cut and maximal per-part edge cut.

To demonstrate the efficacy of our approach, we compare the quality of results
obtained using PuLP to the multilevel k-way partitioning method in METIS [29,
167] and ParMETIS [168]. We use the multiple constraint version of both the
codes [169,170]. We also compare our code against the KaHIP [171] library, which
uses label propagation within a multilevel framework. Our contributions in the
chapter are:

1. A fast, scalable, partitioner that is practical for partitioning small-world
graphs.

2. A partitioner that handles the multiple objective and multiple constraints
that are important for small-world graph analytics.

3. A performance study for a collection of 15 large-scale small-world graphs
(number of edges range from 253 thousands to 1.8 billion).

For the large networks and commonly-used quality measures (edge cut), our
partitioning scheme is comparable to METIS and better than it in additional
objectives (maximum per-part edge cut) for a wide range of partition counts (2-
1024) and with fixed edge and vertex balance constraints. The main advantage of

133

our approach is the relative efficiency improvement: for instance, to partition the
1.8 billion edge Slovakian domain (.sk) crawl [74], PuLP takes less than a minute on
a single compute node to generate 32 way partitions of this graph while satisfying
given vertex and edge balance constraints. Due to higher memory requirements
than the 64 GB available on the test node, neither METIS, ParMETIS, nor KaFFPa
were able to successfully partition this graph on our test system.

Note that graph partitioning is frequently used as a preprocessing routine in
distributed graph processing frameworks, so PuLP might be used to accelerate the
execution time of graph algorithms in software such as Giraph, PowerGraph, or
GraphX.

9.3 Preliminaries: The Graph Partitioning Problem
We consider parallelizing analytics over large and sparse graphs: the numbers of
vertices (n) are on the order of at least tens of millions, and the numbers of edges
(m) are much closer to O(n) instead of O(n2). The graph organization/layout in a
distributed-memory system is characterized by the ‘distribution, partitioning, or-
dering’ triple. The current state-of-the-art in distributed-memory implementations
is to adopt a graph distribution scheme, a specific partitioning method, and then
organize inter-node communication around these choices. In this chapter, we focus
on the partitioning aspect of the aforementioned triple and use 1D distribution and
natural ordering.

Given p processes or tasks, the most common distribution strategy, called
1D distribution, is to assign each task a p-way disjoint subset of vertices and
their incident edges. The advantages of the 1D scheme are its simplicity, memory
efficiency, ease of parallel implementation of most graph computations using an
‘owner computes’ model, and the fact that the interaction of graph partitioning
methods and 1D distributions is well understood [27, 28]. A disadvantage of
1D methods is that some collective communication routines could potentially
require exchange of messages between all pairs of tasks (p2), and this may become
a bottleneck for large p. However, we focus on 1D instead of 2D or hybrid
partitioning methods for this work, due to the increased complexity of algorithm
design, primarily the communication steps, and increased memory usage for storing
the graph (since both the row and column dimensions may be sparse) that 2D and

134

hybrid partitioning methods require. Potential future work might be to utilize the
1D partitions that we compute in a 2D distribution [172] or with other distribution
schemes such as degree-based ones [173].

The specific partitioning problem we are interested in for graph analytic appli-
cations and which is solved in PuLP can be formally described as below. Given
an undirected graph G = (V,E), partition V into p disjoint partitions. Let
Π = {π1, . . . , πp} be a nearly balanced partition such that ∀i = 1 . . . p,

(1− εl)
|V |
p
≤ |V (πi)| ≤ (1 + εu)

|V |
p

(9.1)

|E(πi)| ≤ (1 + ηu)
|E|
p

(9.2)

where εl and εu are the lower and upper vertex imbalance ratios, ηu is the upper
edge imbalance ratio, V (πi) is the set of vertices in part πi and E(πi) is the set of
edges such that both its endpoints are in part πi. We define the set of cut edges as

C(G,Π) = {{(u, v) ∈ E} | Π(u) 6= Π(v)} (9.3)

C(G, πk) = {{(u, v) ∈ C(G,Π)} | (u ∈ πk ∨ v ∈ πk)} (9.4)

Our partitioning problem is then to minimize the two metrics

EC(G,Π) = |C(G,Π)| (9.5)

ECmax(G,Π) = max
k
|C(G, πk)| (9.6)

This can also be generalized for graphs with edge weights and vertex weights. PuLP
can be extended to handle other metrics like the total communication volume and
the maximum per-part communication volume. The communication volume for a
given part i can be simply defined as the total number of vertices within one hop of
all vertices in part i that are assigned to a different part. The total communication
volume would be the sum communication volumes of all parts produced by the
partitioning.

In the past, multi-constraint graph partitioning with the EC objective has
been implemented in METIS and ParMETIS [169,170]. We will compare against
both these methods in Section 9.5. Pinar and Hendrickson [174] suggested a
framework for partitioning with complex objectives (but with a single constraint)

135

that is similar to our iterative approach. More recently, there are multi-objective
partitionings [175] and multi-constraint and multi-objective partitionings [176]
for hypergraph partitioning. However, hypergraph methods are often much more
compute-intensive than graph partitioning methods.

9.4 PuLP: Methodology and Algorithms
This section introduces PuLP, which is our methodology for utilizing label propa-
gation to partition large-scale small-world graphs in a scalable manner. We will
further detail how it is possible to create and vary label propagation weighting
functions to create balanced partitions that minimize total edge cut (EC) and/or
maximal per-partition edge cut (ECmax). This overall strategy can partition graphs
under both single and multiple constraints as well as under single and multiple
objectives. It is possible to extend this approach even further to include other
objectives, e.g. communication volume, beyond those described below.

9.4.1 Label Propagation

Label propagation was originally proposed as a fast community detection algo-
rithm [145]. An overview of the baseline algorithm is given in Algorithm 9.1. We
begin by randomly initializing the labels L for all vertices in the graph out of a
possible l distinct labels. l is usually the number of vertices in the graph (each
vertex v gets a distinct label, usually its numeric vertex identifier, V id(v)), but
it can also be chosen experimentally or based on some heuristic to maximize a
community evaluation metric, such as modularity or conductance. Then, for a given
vertex v in the set of all vertices V in a graph G, we examine for all of its neighbors
u each of their labels L(u). We keep track of the counts for each distinct label in
Counts. After examining all neighbors, v updates its current label to whichever
label has the maximal count in Counts with ties broken randomly.

The algorithm proceeds to iterate over all V until some stopping criterion is
met. This stopping criterion is usually some fixed number of iterations Iter, as we
show, or until convergence is reached and no new updates and performed during a
single iteration (number of updates is zero). For large graphs, there is no guarantee
that convergence will be reached quickly, so a fixed iteration count is usually

136

Algorithm 9.1 Baseline label propagation algorithm.
procedure Label-Prop(G(V,E), l, Iter)

for all v ∈ V do
L(v)←Vid(v) or Rand(1 · · · l)

i← 0, updates← 1
while i < Iter and updates 6= 0 do

updates← 0
for all v ∈ V do

Counts(1 · · · l)← 0
for all 〈v, u〉 ∈ E do

Counts(L(u))← Counts(L(u)) + 1
x← GetMax(Counts(1 · · · l))
if x 6= L(v) then

L(v)← x
updates← updates+ 1

i← i+ 1
return L

preferred in practice. As with l, the maximal iteration count is usually determined
experimentally. Since each iteration performs linear work with regards to the size
of the input graph, this results in an overall linear and efficient algorithm.

9.4.2 PuLP Overview

Algorithm 9.2 PuLP multi-constraint multi-objective algorithm.
procedure PuLP-MM(G(V,E), p, Iterloop, Iterbal, Iterref)

P ← PuLP-Init(G(V,E), p, P)
Nvert(1 · · · p)← vertex counts in P (1 · · · p)
for i = 1 · · · Iterloop do

P ← PuLP-VertBal(G(V,E), p, P,Nvert, Iterbal)
P ← PuLP-VertRef(G(V,E), p, P,Nvert, Iterref)

Nedge(1 · · · p)← edge counts in P (1 · · · p)
Ncut(1 · · · p)← edge cuts in P (1 · · · p)
Cut← current edge cut
for i = 1 · · · Iterloop do

P ← PuLP-CutBal(G(V,E), p, P,Nvert, Nedge, Ncut, Cut, Iterbal)
P ← PuLP-CutRef(G(V,E), p, P,Nvert, Nedge, Ncut, Cut, Iterref)

return P

137

In general, label propagation methods are attractive for community detection
due to their low computational overhead, low memory utilization, as well as the
relative ease of parallelization. In PuLP, we utilize weighted label propagation
in several separate stages to partition an input graph. Algorithm 9.2 gives the
overview of the three stages to create a vertex and edge-constrained partitioning that
minimizes both edge cut and maximal per-part edge cut. We refer to this algorithm
as PuLP Multi-Constraint Multi-Objective partitioning, or PuLP-MM. We first
initialize the partition using a multi-source BFS with p randomly selected initial
roots (PuLP-Init in Algorithm 9.3). The initial (unbalanced) partitioning is then
passed to an iterative stage that first balances the number of vertices in each part
through weighted label propagation (PuLP-VertBal listed in Algorithm 9.4) while
minimizing the edge cut and then improves the edge cut on the balanced partition
through a refinement stage motivated by FM-refinement [177] (PuLP-VertRef).
The next iterative stage further balances the number of edges per part while
minimizing and balancing the per-part edge cut through weighted label propagation
(PuLP-CutBal listed in Algorithm 9.6) and then refines the achieved partitions
through constrained refinement (PuLP-CutRef as shown in Algorithm 9.7). More
details of these stages are in the following subsections. We demonstrate a more
quantitative analysis on the sensitivity of results to varying iteration counts and
algorithmic changes in our results.

G(V,E) Input graph (undirected, unweighted)
n = |V | Number of vertices in graph
m = |E| Number of edges in graph
P (1 · · ·n) Per-vertex partition mappings
p Number of parts
εu Vertex upper balance constraint {0.1}
ηu Edge upper balance constraint {0.1}
Iterloop # of iterations in outer loop {3}
Iterbal # of iterations in balanced propagation stage {5}
Iterref # of iterations in constrained refinement stage {10}
PuLP-X PuLP subroutine for various stages

Table 9.1. PuLP inputs, parameters, and subroutines.

The input parameters to PuLP are listed in Table 9.1. Listed in the braces are
the default values we used for partitioning the graphs during our experiments. The

138

vertex and edge balance constraints (εu and ηu) are selected based on what might
be reasonable in practice for a typical graph analytic code running on a small-world
graph. The iteration counts we use (Iterloop, Iterbal,, Iterref) were determined
experimentally, as they demonstrated the best trade-off between computation time
and partitioning quality across our suite of test graphs for a wide range of tested
values.

9.4.3 PuLP Initialization

To first initialize our partitions, we use a randomly-sourced breadth-first search
approach similar to graph growing as implemented in prior work [29, 178]. Our
breadth-first search initialization approach is demonstrated in Algorithm 9.3. To
perform our initialization, we randomly select p initial roots (where p is the number
of desired parts) and perform a parallel multi-source level-synchronous BFS from
these roots. We use a queue-based approach where Q contains the vertices to be
explored on the current level, and Qn is the queue where vertices are placed as they
are discovered for exploration on the next level. The queues are swapped at the
end of each level. Vertices discovered as descendants from one of these roots are
marked as in the same initial part as that root. We impose no explicit constraints
during this stage. We note that an initial (vertex/edge) imbalance is expected to
occur, the severity of which is dependent on the randomly selected roots; however,
in practice, this problem is observed to be minimal, as the subsequent iterative
stages are capable of rebalancing the parts. This approach has resulted in the most
consistent and highest quality end partitions across a wide range of tested variants,
including ones that enforced loose balance constraints up to 100% imbalance.

Some of the tested variants have included the original random label propagation-
based approach [47], doing a multi-source BFS with a variety of loose balance
constraints, iteratively performing single-source BFSs through a variety of methods
to select the roots, and performing multi-source BFSs with a variety of non-random
methods to select the roots. Each of these tested variants had several additional
sub-variants; however, the approach given by Algorithm 9.3 resulted in the highest
average partition quality in terms of edge cut and max per-part cut across the
DIMACS and LAW collections of regular and irregular test graphs with part counts
as presented later in our results. This unconstrained BFS method performed

139

Algorithm 9.3 PuLP BFS-based partition initialization procedure.
procedure PuLP-Init(G(V,E), p, P)

Q← ∅,Qn ← ∅
P (1 · · · |V |) = none
for i = 1top do

v ←UniqueRand(V)
P (v)← i
Add v to Q

while Q 6= ∅ do
for all v ∈ Q do

for all (v, u) ∈ E do
if P (u) = none then

P (u)← P (v)
Add u to Qn

Q← ∅
Swap(Q, Qn)

return P

approximately 2× better on average than the other implemented BFS methods, and
approximately 20× better than the original label propagation-based approach [47]
on the regular DIMACs problems. This large improvement against the original
approach was the result of the label propagation initialization performing very
poorly on the regular graphs and meshes that do not contain any intrinsic community
structure, where the resulting partitions ended up being comprised of multiple
small and disconnected components with high relative edge cuts. The selected
method also benefits in terms of ease and scalability of parallelization.

9.4.4 PuLP Vertex Balancing and Total Edge Cut Minimization

With the initial partitioning, the PuLP-VertBal (Algorithm 9.4) balances the
vertex counts between parts to satisfy our original balance constraint. Here, we use
degree-weighted label propagation. In lieu of doing the standard label propagation
approach of assigning to a given vertex v a label based on the maximal label count,
Max(C(1 · · · p)), of all of its neighbors 〈v, u〉 ∈ E, we utilize an additional degree
weighting by considering the size of the neighborhood of u (|E(u)| in Algorithm 9.4).
A vertex v is therefore more likely to take u’s label if u has a very large degree.
This approach enables creation of dense clusters around the high degree vertices

140

that are common in small world graphs. Doing as such ends up minimizing edge
cut in practice by making it preferential for boundary vertices to be of smaller
degree, as larger degree vertices will propagate their label to all of their neighbors
in the subsequent iterations. We can generalize this to alternative objectives by
considering all C(1 · · · p) values as a benefit function for moving v to some partition
(1 · · · p). Considering, for example, communication volume, then C(1 · · · p) would
be the reduction in communication volume for moving v to each of (1 · · · p).

Algorithm 9.4 PuLP single objective vertex-constrained label propagation stage.
procedure PuLP-VertBal(G(V,E), P, p,Nvert, Ib)

i← 0, updates← 1
Maxv ← (n/p)× (1 + εu)
Wv(1 · · · p)← GetMax(Maxv/Nvert(1 · · · p)− 1,0)
while i < Iterbal and updates 6= 0 do

updates← 0
for all v ∈ V do

C(1 · · · p)← 0
for all 〈v, u〉 ∈ E do

C(P (u))← C(P (u)) + |E(u)|
for j = 1 · · · p do

if Moving v to Pj violates Maxv then
C(j)← 0

else
C(j)← C(j)×Wv(j)

x← GetMax(C(1 · · · p))
if x 6= P (v) then

Update(Nvert(P (v)), Nvert(x))
Update(Wv(P (v)),Wv(x))
P (v)← x
updates← updates+ 1

i← i+ 1
return P

There are two additional changes from baseline label propagation to make
note of. First, for any part that is overweight, i.e. the number of vertices in that
current part πq (Nvert(q) in the algorithm) is greater than our desired maximal
Maxv, we do not allow that part to accept new vertices. Maxv is the maximum
number of vertices allowed in a given part, depending on the balance constraint
εu. Second, there is an additional weighting parameter Wv(1 · · · p) that is based on

141

how underweight any part currently is. For a given part q, Wv(q) will approach
infinity as the size of that part approaches zero and will approach zero as the size
of the part approaches Maxv. For part sizes above Maxv, we will consider the
weight to be zero. As shown in Algorithm 9.4, we calculate Wv for any given part
q as Wv(q) = Maxv/Nvert(q), where Nvert(q) is the current size of part q in terms
of vertices. When Nvert(q) > Maxv, then Wv(q) = 0.

This weighting forces larger parts to give vertices away with a preference towards
the current most underweight parts. This stage is still degree-weighted and therefore
minimizes the edge cut in the aforementioned indirect way, preferring small degree
vertices on the boundary. When none of the parts are overweight and there is little
difference in Wv values, this scheme will default to basic degree-weighted label
propagation. This weighting-based approach is similar to that employed in related
work [166]. A possible drawback we will note is that the only new part assignments
any vertex is able to assume are the current part assignments of its neighbors, which
might limit the ability of the algorithm to achieve proper balance. However, due to
the low diameter and general small-world structural characteristics of the graphs
for which PuLP is designed and optimized, subdomain connectivity of partitions
is very high (i.e. there usually exists multiple edges between any given pair of qi,qj
parts). This allows vertices to move fluidly among all parts and vertex balance to
be quickly achieved. Each outer loop of Algorithm 9.4 runs in O(np+m), so it is
linear in the size of the network for a fixed p. Here, p is the number of parts/labels
and n and m and the numbers of vertices and edges in the graph, respectively, .

We further explicitly minimize edge cut with a greedy refinement stage, as given
in Algorithm 9.5. The refinement stage iteratively examines boundary vertices and
passes them to a new part if it results in a lower edge cut without violating the
vertex balance constraint (Maxv). We calculate possible refinements by examining
the part assignments of all neighbors of a given vertex v, and if the number of
neighbors in an adjacent part is greater than the number of neighbors in v’s current
part, moving v to the adjacent part will result in an overall lower edge cut. Similarly
with an alternative objective such as communication volume, we would greedily
move vertices to a new part if it improves upon the objective without violating
a constraint. As there is no work dependence on the number of parts during
refinement, each iteration of the refinement stages run in O(n+m) time.

We perform Iterloop iterations of balancing (Algorithm 9.4 and refining (Algo-

142

Algorithm 9.5 PuLP single objective vertex constrained refinement stage.
procedure PuLP-VertRef(G(V,E), P, p,Nvert, Iterref)

i← 0, updates← 1
Maxv ← (n/p)× (1 + εu)
while i < Iterref and updates 6= 0 do

updates← 0
for all v ∈ V do

C(1 · · · p)← 0
x← P (v)
for all 〈v, u〉 ∈ E do

C(P (u))← C(P (u)) + 1
if C(P (u)) > C(x) then

x← P (u)
if Moving v to Px does not violate Maxv then

P (v)← x
Update(Nvert(P (v)), Nvert(x))
updates← updates+ 1

i← i+ 1
return P

rithm 9.5) before moving on to the stages with other partitioning objectives and
constraints. However, in order to only create a vertex-constrained partitioning with
the total edge cut minimized, the algorithm can stop after this stage. We call this
PuLP Single-Constraint Single-Objective, or simply PuLP. We note that very
simple changes to Algorithms 9.4 and 9.5 would allow us to constrain edge balance
instead of vertex balance.

9.4.5 PuLP Edge Balancing and ECmax Minimization

Once we have a vertex balanced partitioning that minimizes edge cut, PuLP
balances edges per part and minimizes per-part edge cut (Algorithm 9.6). The
total edge cut might increase because of the new objective, hence the algorithm
uses a dynamic weighting scheme to achieve a balance between optimizing for the
two different objectives while also refining just for the total edge cut objective. The
algorithm also ensures the vertex and edge balance constraints will become satisfied
if possible. And while the approach uses weighted label propagation under given
constraints (similarly to Algorithm 9.4), there are a number of nuances to make
note of.

143

Algorithm 9.6 PuLP multi-objective vertex and edge-constrained label propaga-
tion stage.

procedure PuLP-CutBal(G(V,E), P, p,Nvert, Nedge, Ncut, Cut, Iterbal)
i← 0, r ← 1
Maxv ← (n/p)× (1 + εu)
Maxe ← (m/p)× (1 + ηu)
CurMaxe ← GetMax(Nedge(1 · · · p))
CurMaxc ← GetMax(Ncut(1 · · · p))
We(1 · · · p)← CurMaxe/Nedge(1 · · · p)− 1
Wc(1 · · · p)← CurMaxc/Ncut(1 · · · p)− 1
dedge ← 1, dcut ← 1
while i < Iterbal and updates 6= 0 do

updates← 0
for all v ∈ V do

C(1 · · · p)← 0
for all 〈v, u〉 ∈ E do

C(P (u))← C(P (u)) + 1
for j = 1 · · · p do

if Moving v to Pj violates Maxv, CurMaxe , CurMaxc then
C(j)← 0

else
C(j)← C(j)× (We(j)× dedge +Wv(j)× dcut)

x← GetMax(C(1 · · · p))
if x 6= P (v) then

P (v)← x
Update(Nvert(P (v)), Nvert(x))
Update(Nedge(P (v)), Nedge(x))
Update(Ncut(P (v)), Ncut(x))
Update(Cut)
Update(We(P (v)),We(x))
Update(Wc(P (v)),Wc(x))
Update(CurMaxe ,CurMaxc)
updates← updates+ 1

if CurMaxe < Maxe then
CurMaxe ←Maxe
dcut ← dcut × CurMaxc

dedge ← 1
else

dedge ← dedge × (CurMaxe/Maxe)
dcut ← 1

i← i+ 1
return P

Initially, we do not use the given edge balance constraint explicitly. Instead, a
relaxed constraint based on the current maximal edge count across all parts CurMaxe

is used to compute the edge balance weights (We(1 · · · p)). The edge balance
weights are similar to the vertex balance weights (Wv(1 · · · q)), in that these per-

144

part weighting values increase inversely proportionally with how underweight each
part is relative to the current maximum (calculated as We(q) = CurMaxe/Nedge(q)).
This results in the possibility of all parts receiving more edges with the exception of
which part is currently the largest, but no part will receive enough edges to become
greater than CurMaxe . As the largest part can only give away vertices and edges,
CurMaxe is iteratively tightened until the given edge balance constraint is met.
Once we pass the threshold given by our input constraint, we fix CurMaxe to be
equal to Maxe. To minimize the maximum edges cut per-part, we employ a similar
procedure with CurMaxc and the weightings for maximum cut edges (Wc(1 · · · p)).
We iteratively tighten this bound so that, although we have no assurance that the
global edge cut will decrease, we will always be decreasing the maximal edges cut
per-part.

We also introduce two additional dynamic weighting terms dedge and dcut that
serve to shift the focus of the algorithm between hitting the Maxe constraint and
minimizing CurMaxc . For every iteration of the algorithm that the Maxe constraint
is not satisfied, dedge is increased by the ratio of which CurMaxe is greater than
Maxe. This shifts the weighting function to give higher preference towards moving
vertices to parts with low edge counts instead of attempting to minimize the edge
cut balance. Likewise, when the edge balance constraint is satisfied, we reset dedge to
one and iteratively increase dcut to now focus the algorithm on minimizing maximal
per-part edge cut.

This iterative approach with different stages works much better in practice for
multiple constraints, as employing two explicit constraints at the beginning is a
very tough problem. The label propagation will often get stuck, unable to find
any vertices that can be moved without violating either constraint. Note that we
can very easily turn the problem in a multi-constraint single-objective problem by
not including CurMaxc and Wc in our weighting function or constraint checks. We
demonstrate this later in Section 9.5 by running PuLP Multi-Constraint Single-
Objective, or PuLP-M. Additionally, we can instead turn the problem into a
single-constraint three-objective problem by ignoring Maxe altogether and instead
just attempt to further minimize both CurMaxe and CurMaxc along with total
edge cut. Finally, we would be able to completely generalize this algorithm into
an arbitrary number of q constraints. We would do this by calculating Max1···q,
CurMax1···q , and W1···q(1 · · · p) for each of the q constraints, progressively increasing

145

one of d1···q while setting the others to 1, and then using these to calculate the
additional weightings to C(1 · · · p) as C(1 · · · p)← C(1 · · · p)×

q∑
k=1

Wk(1 · · · p) ∗ dk.
We can also again adjust the objective by altering how we initialize the C(1 · · · p)
array for each v. As with Algorithm 9.4, each iteration of Algorithm 9.6 also runs
in O(np+m).

Algorithm 9.7 PuLP multi-objective vertex and edge-constrained refinement
stage.

procedure PuLP-CutRef(G(V,E), P, p,Nvert, Nedge, Ncut, Cut, Iterref)
i← 0, updates← 1
Maxv ← (n/p)× (1 + εu)
Maxe ← (m/p)× (1 + ηu)
CurMaxe ← GetMax(GetMax(Nedge(1 · · · p)),Maxe)
CurMaxc ← GetMax(Ncut(1 · · · p))
while i < Iterref and updates 6= 0 do

updates← 0
for all v ∈ V do

C(1 · · · p)← 0
x← P (v))
for all 〈v, u〉 ∈ E do

C(P (u))← C(P (u)) + 1
if C(P (u)) > C(x) then

x← P (u)
if Moving v to Px does not violate Maxv, CurMaxe , CurMaxc then

P (v)← x
Update(Nvert(P (v)), Nvert(x))
Update(Nedge(P (v)), Nedge(x))
Update(Ncut(P (v)), Ncut(x))
Update(Cut)
updates← updates+ 1

i← i+ 1
return P

After the completion of Algorithm 9.6, we again perform a constrained refine-
ment, given by Algorithm 9.7. This algorithm uses the current maximal balance
sizes of Maxv, CurMaxe , and CurMaxc , and we again attempt to find a local
minimum for the total edge cut without violating any of these current balances.
Although we have a hard cutoff for the number of outer loop iterations Iterloop
shown in Algorithm 9.2, in practice, we continue to iterate between Algorithm 9.6

146

and Algorithm 9.7 if our secondary constraint has not been achieved and progress
is still being made towards reaching it.

9.4.6 Algorithm Parallelization and Optimization

One of the strengths of using label propagation for partitioning is that its vertex-
centric nature lends itself towards very straightforward and efficient parallelization.
For all of our listed label propagation-based and refinement algorithms, we im-
plement shared-memory parallelization over the primary outer loop of all v ∈ V .
Maxv, CurMaxe , CurMaxc , dedge, and dcut as well as Nvert, Nedge, and Ncut are all
global values and arrays and are updated in a thread-safe manner. Each thread
creates and updates its own C, Wv, We, and Wc counting and weighting arrays.

The algorithm also uses global and thread-owned queues as well as boolean
in queue arrays to speed up label propagation through employing an approach
similar to what can be used for color propagation [21]. This technique avoids having
to examine all v ∈ V in every iteration. Although it is possible, because of the
dynamic weighting functions, that a vertex doesn’t end up enqueued when it is
desirable for it to change parts on a subsequent iteration, the effects of this are
observed to be minimal in practice. We observe near identical quality between both
our queue and non-queue implementations as well as our serial and parallel code.

9.5 Results and Discussion

9.5.1 Experimental Setup

We evaluate performance of our new PuLP partitioning strategies on the small-
world networks comprising the Laboratory for Web Algorithmics (LAW) group from
the University of Florida Sparse Matrix Collection [74,75,179,180]. Additional tests
were performed on the graphs comprising the test suite from the 10th DIMACS
Implementation Challenge [27]. The LAW graphs and their global properties are
listed in Table 9.2. We omit listing the DIMACS graphs for brevity. We preprocessed
the graphs before partitioning by removing directivity in edges, deleting all degree-0
vertices and multi-edges, and extracted the largest connected component. Ignoring
I/O, this preprocessing required minimal computational time, only on the order

147

seconds in serial for each of the datasets. Table 9.2 lists the sizes and properties
of the LAW graphs after preprocessing. To determine approximate diameter, we
perform iterative breadth-first searches rooted at a randomly-selected vertex from
the farthest level of the previous search. We return the maximum number of levels
as determined by the BFSs after it doesn’t increase in ten consecutive iterations.

Network n m davg dmax D̃

enron 68 K 253 K 7.5 1.6 K 11
dblp 226 K 716 K 6.3 238 17
amazon 735 K 3.5 M 9.6 1.1 K 23
ljournal 5.4 M 50 M 18 19 K 28
hollywood 1.1 M 56 M 105 11 K 10
cnr 326 K 2.7 M 17 18 K 35
in 1.4 M 131 M 19 22 K 44
indochina 7.3 M 149 M 41 256 K 27
eu 862 K 161 M 37 69 K 22
uk-2002 18 M 261 M 28 195 K 28
arabic 23 M 552 M 49 576 K 48
uk-2005 39 M 781 M 40 1.8 M 21
webbase 113 M 845 M 15 816 K 375
it 41 M 1.0 B 50 1.3 M 26
sk 51 M 1.8 B 72 8.6 M 308

Table 9.2. Test graph characteristics after preprocessing. # Vertices (n), # Edges (m),
average (davg) and max (dmax) vertex degrees, and approximate diameter (D̃) are
listed. The bottom ten graphs are all web crawls, while the top five are of various types.
B = ×109, M = ×106, K = ×103.

Scalability and performance studies were done on the Compton testbed cluster
at Sandia National Labs. The executables were built with the Intel C++ compiler
(version 13) using OpenMP for multithreading and the -O3 option.

9.5.2 Performance Evaluation

We evaluate our PuLP partitioning methodology against both single and multi-
constraint METIS (v5.1.0) and ParMETIS (v4.0.3) as well as KaFFPa from KaHIP
(v0.71b). METIS runs used k-way partitioning with sorted heavy-edge matching
and minimized edge cut. KaFFPa results use the fastsocial option (KaFFPa-FS),

148

which does constrained label propagation during the initial graph contraction phase.
KaFFPa allows for constraints on either vertices or edges; however, using multiple
constraints concurrently is not possible with the current version. METIS allows for
multi-constraint partitioning (METIS-M in the results). KaFFPa was unable to
process the sk graph due to a 32-bit int limitation. A number of experiments were
unable to complete for METIS and ParMETIS due to memory limitations.

We use the three aforementioned variants of PuLP for comparison, which are
single-constraint single-objective (PuLP), multi-constraint single-objective (PuLP-
M), and multi-constraint multi-objective (PuLP-MM). We do comparisons on
the basis of edge cut, maximal per-part edge cut, execution time, and memory
utilization. For all experiments on the LAW networks, the vertex imbalance ratio
is set to 10%. For multi-constraint experiments, the maximal number of edges
per-part for each graph is set to the maximum of either 10% imbalance or 4×
the number of edges of the highest degree vertex of the graph. The rationale for
loosening the edge balance constraints is due to the existence of very high degree
vertices in certain graphs, which make a fixed constraint impossible to achieve for
higher part counts. We set a relatively high vertex imbalance due to how the work
requirements for a lot of graph computations are partially dependent on per-part
edges, so achieving a better edge balance at a small cost to vertex imbalance can
result in better overall work balance in practice.

9.5.3 Execution Time and Memory Utilization

We first compare PuLP to METIS-M, ParMETIS, and KaFFPa-FS in terms of
partitioning times and memory utilization. Table 9.3 gives the serial execution
times for computing 32 parts with PuLP-MM, METIS-M, and KaFFPa-FS, as
well as the parallel execution times for PuLP-MM and ParMETIS. We also give
the speedup of serial and parallel PuLP-MM relative to the fastest serial code as
well as the fastest code overall. Note that the execution time given for ParMETIS
for each graph was selected as the fastest from 1 to 16 nodes on Compton with 1
to 16 tasks per node (up to 256 total cores). In effect, the speedups we give to
PuLP relative to ParMETIS are extremely conservative. Also note that we are
comparing against one of the “fast” variants in KaFFPa.

Overall, we observe a geometric mean speedup of 1.07× relative to the next

149

Execution time (s) PuLP-MM Speedup
Serial Parallel vs Best AllNetwork PuLP-MM METIS-M KaFFPa-FS PuLP-MM ParMETIS Serial Parallel

enron 0.38 0.72 1.18 0.22 0.32 1.89× 1.45×
dblp 0.67 1.23 3.18 0.23 0.34 1.84× 1.48×
amazon 2.70 3.97 11.7 0.54 0.77 1.47× 1.43×
hollywood 41.5 47.9 189 3.88 22.0 1.15× 5.67×
ljournal 119 116 206 12.2 47.6 0.97× 3.90×
cnr 1.56 1.63 2.15 0.44 3.11 1.04× 3.73×
in 6.17 2.9 7.03 0.89 2.6 0.47× 2.92×
indochina 75.7 60.2 52.3 9.74 120 0.69× 5.37×
eu 8.22 6.82 12.0 1.23 9.93 0.83× 5.54×
uk-2002 82.9 67.6 128 7.65 77.1 0.82× 8.84×
arabic 147 129 185 13.4 0.88× 9.63×
uk-2005 336 439 34.9 1.31× 12.6 ×
webbase 521 831 45.2 1.60× 18.4 ×
it 364 409 28.6 1.12× 14.3 ×
sk 644 54.6

Table 9.3. Comparison of execution time of serial and parallel (16 cores) PuLP-
MM algorithm with serial METIS-M, KaFFPa-FS, ParMETIS (best of 1 to 256 cores),
computing 32 parts. The “All” speedup compares parallel PuLP-MM to the best of the
rest.

fastest of METIS-M and KaFFPa-FS for our serial code across the entire set of
LAW graphs. This relatively modest speedup in serial comes from the fact that,
although all PuLP variants run in O(np + m), that order of work is performed
on a per-iteration basis for up to the 90 iterations of PuLP-MM. This gives a
large initial constant factor for execution time. The primary benefits for a single
level label propagation-based approach comes from the ease of and efficiency of
parallelization as well as the low memory overhead. For our parallel code, we note
a mean speedup of 5.0×. Parallel speedups are also observed to increase with
increasing graph size, likely a result of the improved scalability of label propagation
versus the multilevel approaches.

Table 9.4 compares the maximal memory utilization of PuLP-MM, METIS-M
and KaFFPa-FS for computing 32 parts. Memory savings for PuLP versus the
best of either METIS-M or KaFFPa-FS are significant (3.0× geometric mean). We
note an increase in memory savings with increasing graph size. These memory
savings are primarily due to avoiding a multilevel approach. The only structures
PuLP needs (in addition to graph storage) are the global array of length n to store
the partition mappings; the vertex, edge count, and cut count arrays each of length
p; and the thread-owned weight arrays also each of length p. The storage cost

150

Memory Utilization Improv.Network METIS-M KaFFPa-FS PuLP-MM Graph Size
enron 50 MB 33 MB 66 MB 2.5 MB 0.5×
dblp 91 MB 83 MB 67 MB 7.4 MB 1.2×
amazon 482 MB 385 MB 106 MB 33 MB 3.6×
ljournal 10 GB 4.8 GB 616 MB 429 MB 7.8×
hollywood 7.5 GB 3.8 GB 534 MB 448 MB 7.0×
cnr 285 MB 143 MB 105 MB 24 MB 1.4×
in 1.2 GB 537 MB 208 MB 113 MB 2.6×
indochina 20 GB 5.3 GB 1.4 GB 1.2 GB 3.8×
eu 1.6 GB 786 MB 217 MB 133 MB 3.6×
uk-2002 23 GB 9.8 GB 2.6 GB 2.2 GB 3.8×
arabic 33 GB 19 GB 5.1 GB 4.5 GB 3.7×
uk-2005 - 30 GB 7.4 GB 6.4 GB 4.1×
webbase - 38 GB 9.8 GB 7.5 GB 3.9×
it - 35 GB 9.4 GB 8.3 GB 3.7×
sk - - 16 GB 15 GB -

Table 9.4. PuLP efficiency: Maximum memory utilization comparisons for generating
32 parts.

for all p length arrays is insignificant with a modest thread and part count. We
additionally utilize a few more n length integer and boolean arrays as well as smaller
thread-owned queues and arrays to speed up label propagation, as mentioned in
Section 9.4.

We also plot the scalability of our PuLP codes versus METIS-M, ParMETIS,
and KaFFPa-FS relative to increasing the parallelization and increasing the number
of parts being computed. We analyze the effects of each on execution time and
memory consumption on four selected test graphs (enron, hollywood, ljournal, and
uk-2002), as is given by Figure 9.1. The top two plots give the effect on execution
time and memory consumption when going from one to sixteen-way parallelism.
For this test, ParMETIS was run with sixteen tasks on either one node (when
possible) or sixteen nodes, with the lower execution time being reported. The
times and memory for serial METIS-M and KaFFPa-FS are plotted as flat lines for
comparison. The bottom two plots of Figure 9.1 show the effect on execution time
and memory consumption when increasing the number of parts being computed
from 2 to 1024 when running in serial for METIS-M and KaFFPa-FS and with

151

● ●
● ● ●

●

●

●
● ●

●
● ● ● ●

●

●

●
●

●

enron ljournal hollywood uk−2002

0.0

0.3

0.6

0.9

1.2

0

50

100

150

200

0

50

100

150

0

50

100

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Number of Cores

E
xe

cu
tio

n
T

im
e

(s
)

Partitioner ● PuLP PuLP−M PuLP−MM ParMETIS METIS−M KaFFPa−FS

● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

enron ljournal hollywood uk−2002

0.0

0.2

0.4

0.6

0.8

0

50

100

0

20

40

60

0

100

200

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Number of Cores

M
em

or
y

C
on

su
m

pt
io

n
(G

B
)

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

 enron ljournal hollywood uk−2002

0

2

4

6

0

100

200

300

400

0

100

200

300

0

50

100

150

2 16 128 1024 2 16 128 1024 2 16 128 1024 2 16 128 1024
Number of Parts

E
xe

cu
tio

n
T

im
e

(s
)

● ● ● ● ● ● ● ● ● ●
● ●

 enron ljournal hollywood uk−2002

0.00

0.25

0.50

0.75

1.00

0

50

100

0

20

40

60

0

100

200

2 16 128 1024 2 16 128 1024 2 16 128 1024 2 16 128 1024
Number of Parts

M
em

or
y

C
on

su
m

pt
io

n
(G

B
)

Figure 9.1. Scaling for each partitioner in terms of execution time versus number of
cores (top), total memory utilization versus number of cores (2nd from top), execution
time versus number of computed parts (3rd from top), and memory utilization versus
number of computer parts (bottom).

sixteen-way parallelism with the PuLP codes and ParMETIS.
We observe consistent strong scaling across all of our implementations in Fig-

ure 9.1, with a geometric mean speedup of 5.7× for sixteen cores across all graphs

152

and the three PuLP algorithms. We note our code strong scales better on these
instances than ParMETIS, which has a maximum speedup of less than 2×. We
also note that our memory requirements increase minimally with an increasing
numbers of threads/cores, while the memory load of ParMETIS increases almost
linearly with number of tasks. Throughout these tests, we also noted that there is
no edge cut cost for increasing parallelism, at least up to 16 cores. This is due to all
per-vertex update decisions being made by each thread use globally synchronized
information.

When computing an increasing number of parts, we note that our execution
time plots are generally flat from 2 parts up to about 128 parts, where times begin
to increase. We note a rather large increase for all codes when partitioning enron.
Analyzing the computation of the PuLP algorithms, it appears the likely cause is
the increasing difficulty to create balanced partitions with larger part counts, as
enron is one of the smallest test cases. The bottom plot of Figure 9.1 gives the
memory requirements versus part count for the various partitioners. For the PuLP
and METIS variants, the curves are close to flat. For KaFFPa, we note a slight
dependence of memory requirement on part count.

9.5.4 Edge Cut and Maximal Per-Part Edge Cut

Figure 9.2 (top) compares the quality of the computed partitions from PuLP and
METIS with the LAW test graphs for 2 to 1024 parts using multiple constraints
for both programs and minimizing the total edge cut. We report the median value
obtained over 5 experiments for each part count and method. We omit comparison
to KaFFPa-FS as it is unable to generate partitions that satisfy the multiple
concurrent constraints.

The top plots of Figure 9.2 show the edge cuts (EC) obtained for multi-
constraint METIS (METIS-M) as well as both multi-constraint (PuLP-M) and
multi-constraint multi-objective PuLP (PuLP-MM) with varying numbers of parts.
Figure 9.2 (bottom) gives the maximal per-part edge cut (ECmax) as a ratio of total
edges scaled by the number of parts (scaling was done for visualization purposes).
For all plots, a lower value indicates a higher quality partitioning. We additionally
show Table 9.5, where we quantify a performance metric in terms of edge cut
(and max per-part cut, in the three right columns) divided by the best edge cut

153

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●
● ●

●

●

●

● ● ● ●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ● ● ●
●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

enron dblp amazon ljournal hollywood

cnr in indochina eu uk−2002

arabic uk−2005 webbase it sk

0.25

0.50

0.75

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.4

0.5

0.01

0.02

0.03

0.000

0.025

0.050

0.075

0.00

0.05

0.10

0.010

0.015

0.020

0.025

0.030

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.15

0.20

0.25

2 16 128 1024 2 16 128 1024 2 16 128 1024 2 16 128 1024 2 16 128 1024
Number of Parts

E
dg

e
C

ut
 R

at
io

Partitioner ● PuLP−M PuLP−MM METIS−M

● ●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

● ● ● ● ●
● ●

●

●

●

● ● ● ● ●
●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ● ● ●
●

●
●

●

●

●

● ● ● ●
●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

enron dblp amazon ljournal hollywood

cnr in indochina eu uk−2002

arabic uk−2005 webbase it sk

0

5

10

15

0

1

2

0.0

0.5

1.0

0

4

8

12

0

5

10

15

0

5

10

15

20

0

10

20

30

0

10

20

30

0

5

10

15

0.0

0.5

1.0

1.5

0.0

2.5

5.0

7.5

0

5

10

15

0.0

0.5

1.0

1.5

2.0

0.0

2.5

5.0

7.5

0

2

4

2 16 128 1024 2 16 128 1024 2 16 128 1024 2 16 128 1024 2 16 128 1024
Number of Parts

M
ax

 P
er

−
P

ar
t C

ut
 R

at
io

Partitioner ● PuLP−M PuLP−MM METIS−M

Figure 9.2. Quality metrics of total cut edge ratio (top) and scaled maximum per-part
edge cut ratio (bottom) for PuLP-M, PuLP-MM and METIS-M.

154

Edge Cut Max Per-Part CutNetwork PuLP-M PuLP-MM METIS-M PuLP-M PuLP-MM METIS-M
enron 1.08 1.26 1.02 1.72 1.06 1.59
dblp 1.18 1.27 1.00 1.68 1.09 1.48
amazon 1.52 1.59 1.00 1.54 1.20 1.23
ljournal 1.03 1.17 1.00 2.05 1.01 2.15
hollywood 1.04 1.28 1.11 2.44 1.05 2.56
cnr 1.28 1.86 1.07 1.63 1.55 1.46
in 1.17 2.22 1.15 1.46 2.06 1.23
indochina 1.22 2.29 1.76 1.55 2.05 2.26
eu 1.39 1.72 1.00 1.73 1.47 1.68
uk-2002 1.08 1.40 1.35 1.21 1.12 1.41
arabic 1.03 1.62 1.16 1.97 1.35 2.31
uk-2005 1.00 1.39 - 2.12 1.15 -
webbase 1.02 1.20 - 1.48 1.08 -
it 1.00 1.46 - 2.05 1.31 -
sk 1.02 1.30 - 1.22 1.09 -
Small 1.17 1.57 1.13 1.71 1.32 1.71
All 1.12 1.50 - 1.70 1.27 -

Table 9.5. Performance for each partitioner and graph as the geometric mean of the
ratio of produced edge cut (EC) and max per-part cut (ECmax) relative to the best for
across each network and number of generated parts.

(and max per-part cut) out of all partitioners for each “network-number of parts”
combination. For each partitioner, we report the geometric mean for each graph
across all numbers of parts. We also report an overall mean across all graph and
number of parts combinations (All), as well as the overall mean for only the smaller
graphs that METIS-M was able to successfully partition (Small). Again for this
metric, lower is better, with a minimum score of 1.0 indicating that the partitioner
with that score produced the best partitions for all test cases. Taken together,
the top and bottom plots of Figure 9.2 and the left and right three columns of
Table 9.5 demonstrate the tradeoff offered by PuLP-M and PuLP-MM to minimize
either the total edge cut at a cost of maximal per-part edge cut or to minimize the
maximal per-part edge cut at a cost of total edge cut.

Overall, we observe in Figure 9.2 (top) and Table 9.5 that PuLP-M does better
than METIS-M for hollywood, indochina, uk-2002, and arabic; almost as good

155

PuLP-MM METIS-M % ImprovementNetwork
EC ECmax EC ECmax EC ECmax

enron 217 K 2.6 K 144 K 5.7 K -34% 116%
dblp 154 K 1.1 K 132 K 2.3 K -14% 113%
amazon 783 K 4.1 K 648 K 6.8 K -17% 68%
ljournal 24 M 140 K 21 M 600 M -15% 328%
hollywood 40 M 205 K 36 M 1.3 M -9% 513%
cnr 1.3 M 35 K 1.2 M 74 K -10% 112%
in 3.5 M 223 K 2.9 M 283 K -17% 27%
indochina 30 M 3.3 M 28 M 4.8 M -9% 44%
eu 6.3 M 85 K 5.8 M 391 K -9% 361%
uk-2002 7.4 M 218 K 7.1 M 293 M -4% 34%
arabic 32 M 860 K 26 M 5.8 M -19% 579%
uk-2005 100 M 3.9 M - - - -
webbase 25 M 957 K - - - -
it 49 M 2.0 M - - - -
sk 187 M 8.7 M - - - -

Table 9.6. Comparison of the two quality metrics, EC and ECmax for PuLP-MM and
METIS-M when computing 512 parts. The % improvement shows relative improvement
in quality for PuLP-MM with respect to METIS-M quality.

as METIS-M for enron, ljournal, in; and worse on dblp, amazon, eu, and cnr in
terms of total edge cuts. Over all graphs that METIS-M was able to partition,
PuLP-M has a slightly worse edge cut on average. PuLP-MM does worse than
METIS-M and PuLP-M in most instances for the edge cut metric but results in
much better partitions in terms of the maximal per-part edge cut on all but three
test graphs (cnr, in, and indochina), as shown in Figure 9.2 (bottom) and the right
three columns of Table 9.5. When the single objective partitioners (METIS-M
and PuLP-M) out-perform multi-objective PuLP-MM, it can be explained by the
fact that the lower total edge cut for the single objective partitioners effectively
results in a lower max cut, even if the cuts aren’t as relatively balanced as they are
with PuLP-MM. We also observe that the benefit of max per-part minimization
increases with an increasing number of parts. A consistent improvement over
METIS-M and PuLP-M is noted with part counts greater than about 16.

As mentioned, Figure 9.2 and Table 9.5 demonstrate that multi-objective PuLP
can be relatively effective at minimizing the maximal per-part edge cut on partitions
derived from these graphs at a nominal cost to total edge cut. Table 9.6 shows

156

this tradeoff explicitly between PuLP-MM and METIS-M when partitioning each
graph into 512 parts. We compare the quality of both the metrics, EC and ECmax,
and observe that PuLP-MM improves ECmax substantially (up to almost 600%
improvement) when compared with METIS-M. This is at a cost of only 4-34%
increase in total edge cut. Note that while we have been using METIS-M for
comparison, it does not explicitly attempt to minimize edge cut balance.

Additionally, we present Figure 9.3, which shows for the ljournal graph the
differences in execution time (left), edge cut (middle), and max per-part cut (right)
for computing 2 to 1024 parts with PuLP, PuLP-M, and PuLP-MM. These plots
demonstrate the effects on performance and quality with the increasing complexity
of objectives and constraints on a representative test instance. In general, the
multi-constraint PuLP-M and PuLP-MM run at least 2× slower than PuLP, as
they perform twice as many total label propagation iterations due to the secondary
constraint balancing and refinement stages. Although PuLP-MM performs the
same number of total iterations as PuLP-M, we see another relative doubling
of execution time. This is a result of the increasing difficulty involved with the
secondary (max per-part cut) objective, which consistently results in more work as
a result of more active boundary vertices in the queue on each iteration.

● ● ● ● ● ● ●
●

●

●

0

25

50

75

100

2 16 128 1024
Number of Parts

E
xe

cu
tio

n
T

im
e

(s
)

● ●
● ● ●

●

●

●

●

●

0.00

0.02

0.04

0.06

0.08

2 16 128 1024
Number of Parts

E
dg

e
C

ut
 R

at
io

Partitioner ● PuLP PuLP−M PuLP−MM

● ● ● ● ●

●

●

●

●

●

0

2

4

6

2 16 128 1024
Number of Parts

M
ax

 P
er

−
P

ar
t C

ut
 R

at
io

Figure 9.3. Comparison of PuLP, PuLP-M, and PuLP-MM with regards to execution
time, edge cut, and max per-part cut to demonstrate the effects of more complex
constraints and objectives on execution.

For the edge cut objective, we note a similar difference between PuLP-M and
PuLP-MM as observed before. PuLP-MM has a slightly worse global edge cut
as a result of the tradeoff involved with additionally optimizing the max per-part
cut. PuLP and PuLP-M generally show equivalent edge cuts, as they’re both only
optimizing for this metric, and therefore both asymptotically approach what can

157

be considered a relative “lower bound” for the general approach. As we’ll show
in the next subsection, performing considerably more iterations can improve the
objective, but only by a few percent at most. In terms of the max per-part cut as
given by the right plot, PuLP-MM shows considerably better quality, as expected,
with the relative performance improving with increasing part count. PuLP-M
shows moderately better quality for PuLP with this objective, most likely due
to a slight increase in cut balance incidentally resulting from balancing for the
secondary (edges per part) constraint.

9.5.5 Justification for Algorithmic Choices

There were several small algorithmic details noted in the earlier description of the
PuLP algorithms. We ran a set of tests examining the impact of these details
and variations on partition quality. Table 9.7 gives the percentage improvement
in quality relative to PuLP-MM with these variations. Tested variants include
using the original BigData 2014 [47] random label propagation-based initialization
procedure (BigData), not running any refinement (NoRefine), not using degree
weighted label propagation during the vertex balance stage (NoDegWgt), only
running a single iteration for the outer loops instead of three (LessIter), and
running ten iterations of the outer loops (MoreIter). We look at the global averages
across all LAW networks and part counts as well as a few select representative
instances. A negative value indicates lower quality was produced with the given
variant. We ran each “number of parts-network” test case five times and report the
geometric mean.

From Table 9.7, we note that running refinement has the largest and most
consistent impact on partition quality out of the tested variants. On average,
not performing refinement resulted in 64% higher edge cuts and 37% higher max
per-part cuts. Degree-weighted label propagation for the vertex balancing stage
is especially important for the irregular web crawls (uk-2002 and it), but shows
little quality benefit on the other network types (enron communication network
and amazon co-purchasing network). As mentioned, this is because the benefits of
weighted label propagation are partially dependent on the existence of a skewed
degree distribution and an intrinsic community structure.

Table 9.7 also gives insight into our selected number of outer loop iterations.

158

Percent Improvement for Edge Cut
Network# PartsBigDataNoRefineNoDegWgtLessIterMoreIter
enron 16 -1% -33% -2% -7% 3%
amazon 32 -38% -37% -3% -5% 6%
uk-2002 8 -19% -214% -46% -50% 5%
it 256 -1% -51% -15% -3% 3%
Global 2-1024 -6% -64% -17% -8% 3%

Percent Improvement for Max Per-Part Cut
Network# PartsBigDataNoRefineNoDegWgtLessIterMoreIter
enron 16 3% -7% 8% -8% 6%
amazon 32 -20% -21% -3% -6% 4%
uk-2002 8 -5% -180% -43% -104% 7%
it 256 0% -1% -1% -7% 4%
Global 2-1024 -1% -37% -13% -15% 5%

Table 9.7. Comparison of the multiple variants of algorithmic choices on quality in
terms of edge cut (top) and max per-part cut (bottom) relative to PuLP-MM.

We observed that three iterations is approximately the point at which diminishing
returns on partition quality becomes realized for most test instances. This can be
noted by comparing the edge cut and max per-part cut differences to baseline in
the LessIter and MoreIter columns. While the difference between a single iteration
(LessIter) and the baseline three iterations can result in a quality improvement
of over 100% on certain test instances, running up to ten iterations (MoreIter)
only improves quality by a few additional percent at most. Although running more
total outer loop iterations consistently improves partition quality, the considerably
higher computation cost doesn’t necessarily justify such a minor improvement.

To further demonstrate the effect of iterations on various metrics, we also plot
how the edge cut, max per-part cut, vertex imbalance, and edge imbalance changes
on a per-iteration basis for a run of PuLP-MM computing 64 parts on the amazon
network. We give these plots in Figure 9.4. The thin vertical lines indicate a switch
from the balancing to refinement stages, and the thicker vertical lines indicate
the beginning of both the vertex balancing/refinement outer loop and the edge
and max per-part cut balancing/refinement outer loop as given by Algorithm 9.2.
The horizontal lines on the bottom two plots indicate the given 10% imbalance
constraints for vertices and edges. As we had shown in Table 9.1, there’s 3 iterations

159

●

●

●
● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

0

250000

500000

750000

1000000

1250000

1 6 16 21 31 36 46 51 61 66 76 81 90
Total Iterations

E
dg

e
C

ut

●

●
● ● ●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ●
●

● ●

0

20000

40000

60000

1 6 16 21 31 36 46 51 61 66 76 81 90
Total Iterations

M
ax

 P
er

−
pa

rt
 C

ut

●
●

● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ●

0.0

0.3

0.6

0.9

1 6 16 21 31 36 46 51 61 66 76 81 90
Total Iterations

V
er

te
x

Im
ba

la
nc

e

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

0.0

0.4

0.8

1.2

1 6 16 21 31 36 46 51 61 66 76 81 90
Total Iterations

E
dg

e
Im

ba
la

nc
e

Figure 9.4. Per-iteration performance of PuLP-MM in terms of total edge cut, max
per-part edge cut, vertex imbalance, and edge imbalance when computing 64 parts of
amazon.

for each outer loop with each balancing stage running for 5 iterations and each
refinement stage running for 10 iterations, resulting in 90 total iterations. We
consider the plots in Figure 9.4 to be a representative instance for our test networks.
In general, we observe that the vertex balance is achieved in few iterations on most
networks. Edge balance is slower to achieve, although this is more highly-dependent
on the given imbalance ratio and the topology of the network. We note a modest
tradeoff in total edge cut and max per-part cut as the edge balance constraint
is reached. As was observed by examining the sum affects of greater and fewer
iterations with the Global row in Table 9.7, we observe the edge cut and max
per-part cut are within a modest fraction of their minimal values after a single
balancing and refinement stage. We also note consistent improvements in edge cut

160

through the refinement iterations, although these improvements are slight enough
to not be easily visible with the given scale of the plots. With a looser constraint,
we observe correspondingly lower edge cuts and max per-part cuts.

9.5.6 Re-balancing Single Constraint Single Objective Partitions

Another benefit to using a single level label propagation-based partitioner is the
ease with which it can be used on a given input partition to re-balance it for
additional objectives and constraints. To demonstrate, we used KaFFPa-FS to
compute high quality single-objective and single-constraint partitions for all of the
LAW graphs across 2-1024 parts. We then used the computed partitions as inputs
to PuLP-MM’s second loop, the edge balancing and max per-part cut minimization
stage. Figure 9.5 gives plots of amazon (top) and webbase (bottom) for edge cut
(left) and max per-part cut (right) versus number of parts.

From Figure 9.5, we can observe considerable improvement in terms of the edge
cut metric upon our baseline PuLP-MM partition when first using a high quality
single-objective and single-constraint partitioning. Additional improvements are
noted with the max per-part cut objective as well. Note that while the edge cut is
higher than just KaFFPa-FS, the KaFFPa-FS partitions violate the given balance
constraints. Overall, we calculated a geometric mean improvement relative to just
running PuLP-MM of 22% for edge cut and 17% for max per-part cut across all
tested graphs and numbers of parts. Although we don’t explicitly perform such an
analysis, this approach is also directly applicable to using PuLP to re-partition/re-
balance a dynamically changing graph.

9.5.7 DIMACS 10th Implementation Challenge Comparison

While our PuLP approaches were specifically designed for irregular small-world
graphs and the multi-objective multi-constraint scenario, we also observe relatively
good performance for single-objective single-constraint partitioning of regular net-
works. To examine the performance of PuLP relative to state-of-the-art, we used
PuLP to partition all 90 instances for the DIMACS10 test suite and compared
results to both KaFFPa, with both fast (KaFFPa-F) and fastsocial (KaFFPa-FS)
variants, and METIS. We only run the initialization and vertex balancing/refine-
ment stages for PuLP. We again calculated a performance ratio as reported for

161

●

●

●

●

●

●

●

●

●

●

amazon

0.05

0.10

0.15

0.20

0.25

2 16 128 1024
Number of Parts

E
dg

e
C

ut
 R

at
io

Partitioner ● PULP−MM KaFFPa−FS KaFFPa+PULP

●

●

●
●

●
●

●

●

●

●

amazon

0.0

0.3

0.6

0.9

1.2

2 16 128 1024
Number of Parts

M
ax

 P
er

−
pa

rt
 E

dg
e

C
ut

 R
at

io

Partitioner ● PULP−MM KaFFPa−FS KaFFPa+PULP

●

●

●

●

●

● ●
●

●

webbase

0.01

0.02

0.03

2 16 128
Number of Parts

E
dg

e
C

ut
 R

at
io

Partitioner ● PULP−MM KaFFPa−FS KaFFPa+PULP

●

● ●
● ●

●

●

●

●

webbase

0.00

0.25

0.50

0.75

2 16 128
Number of Parts

M
ax

 P
er

−
pa

rt
 E

dg
e

C
ut

 R
at

io

Partitioner ● PULP−MM KaFFPa−FS KaFFPa+PULP

Figure 9.5. Using PuLP-MM to re-partition single objective single constraint partitions
computed with KaFFPa-FS. Shown are graphs amazon (top) and webbase (bottom)
plotted with edge cut (left) and max per-part cut (right) versus number of parts.

the LAW graphs in Table 9.5, and we report the overall geometric mean across the
90 DIMACS10 test instances. Our tests showed METIS to be the highest scoring
partitioner with a ratio of 1.005. KaFFPa-FS had a ratio of 1.053, KaFFPa-F had
a ratio of 1.14, and PuLP had a ratio of 1.43. This indicates that, although PuLP
was designed for very different partitioning circumstances, the general approach is
adaptable enough to still perform within a small factor of the state-of-the-art for
other scenarios.

Figure 9.6 gives the edge cut ratio versus number of parts for PuLP, METIS,
KaFFPa-F, and KaFFPa-FS on a few test instances from the DIMACS Implemen-
tation Challenge. The number of parts chosen for each graph instance were those
used in the DIMACS challenge, and are select multiples of 2 from 2 to 1024 as can

162

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

er kron17 citeseer NLR auto kktpower

0.75

0.80

0.85

0.90

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.000

0.005

0.010

0.015

0.05

0.10

0.15

0.20

0.04

0.08

0.12

0.16

50 100 150 200 250 10 20 30 20 40 60 0 100 200 300 400 500 250 500 750 1000 0 100 200 300 400 500
Number of Parts

E
dg

e
C

ut
 R

at
io

Partitioner ● PuLP METIS KaFFPa−F KaFFPa−FS

Figure 9.6. Edge cut versus number of parts for a few select representative instances from
the 10th DIMACS Challenge for PuLP, METIS, KaFFPa-fast, and KaFFPa-fastsocial.

be discerned in the plotted results. We observe that PuLP is usually within a small
factor of the best partitioner and is sometimes better than at least one of the other
partitioners. Note that the test graphs here are mostly regular or semi-regular and
lack inherent community structure. So despite the fact that PuLP was designed for
a drastically different graph structure, the surprising quality of the results shown
here demonstrate again just how versatile the general PuLP algorithmic approach
can be for graph partitioning.

9.6 Related Work
There are a few other works known to us that use label propagation for the task of
partitioning large-scale graphs. We compare our results with their published results,
as the codes are not publicly available. Most recently, Meyerhenke et al. [163]
utilized their sized-constrained label propagation technique for coarsening [162]
in a distributed setting combined with an evolutionary partitioning algorithm to
produce fast and high quality single objective and single constraint partitions. On
a 32 core machine with 512 GB memory, they report execution times and edge
cuts for bipartitioning several graphs from the DIMACS10 and LAW collections.
We directly compare to the largest instances from each, sk-2005 and uk-2007. On
sk-2005, [163] reports execution times and edge cuts of 471 seconds with 3.2 M
cut edges and 1688 seconds with 2.9 M cut edges for their Fast and Eco variants,
respectively. On uk-2007, they report 170 seconds with 1.0 M cut edges and
723 seconds with 981 K cut edges, respectively. Running single objective single
constraint PuLP on these graphs with the same balance constraint (3%), we return

163

a cut of 6.3 M in 20 seconds on sk-2005 and a cut of 1.5 M in 30 seconds on uk-2007
on a 16 core and 64 GB node of Compton. Note, however, that PuLP generally
demonstrates better relative cut quality with increasing part counts and in the
multiple constraint scenario.

Vaquero et al. [165] implement vertex-balanced label propagation to partition
dynamically changing graphs. Martella et al. improve upon this general approach
with Spinner [166]. They report that Spinner produces a 0.45 edge cut ratio for
an edge-balanced 64-way partitioning of the SNAP LiveJournal graph [69,70]. By
comparison, PuLP produces an edge cut ratio of about 0.35 under an equivalent
constraint.

Ugander and Backstrom [164] implement label propagation for vertex-balanced
partitioning as an optimization problem. They report performance on the Live-
Journal graph for generating 100 parts, with a serial running time of 88 minutes
and resultant edge cut ratio of 0.49. By comparison, our multi-constraint and
multi-objective serial code creates 128 parts of the LiveJournal graph in about two
minutes and produces an edge cut ratio of about 0.41.

Wang et al. [161] utilize label propagation in a manner similar to KaFFPa-FS,
which is a multilevel approach with label propagation during graph coarsening. At
the coarsest level, METIS is used to partition the graph. They also implement non-
multilevel partitioning via a label propagation step followed by a greedy balancing
phase. Their multilevel single-constraint and single-objective approach to partition
LiveJournal has a serial running time of about 75 seconds, consumes about 1.5 GB
memory, and has an edge cut about 25% greater than that produced by METIS
alone. By comparison, our code consumes only 440 MB memory and produces cut
quality comparable to METIS on the same graph. Their non-multilevel approach
runs in about half the time, but at a considerable cost to cut quality.

9.7 Conclusions
In this chapter, we presented PuLP, a fast multi-objective multi-constraint parti-
tioner for scalable partitioning of irregular small-world networks. The partitioning
method in PuLP is based on the label propagation community detection algorithm.
In a fraction of the execution time, while consuming almost an order of magnitude
less memory, PuLP can produce partitions comparable or better in terms of total

164

edge cut to the k-way multilevel partitioning scheme in METIS. In addition, PuLP
produces partitions that are better in terms of the maximal number of cut edges
per-part. In the next chapter, we will actually demonstrate how one might actually
use PuLP to accelerate distributed-memory graph analytics.

165

Chapter 10 |
Distributed Graph Layout

10.1 Introduction
This chapter introduces DGL: Distributed Graph Layout, which is our scheme
for storing a large graph in distributed memory. We show how the in-memory
layout of a graph can have considerable impact on the performance of parallel graph
analytics executing on that graph. By using our PuLP partitioner to distribute
vertices among tasks and a novel ordering strategy to reorder vertices in-tasks, we
demonstrate improved performance relative to other techniques.

10.2 Distributed Graph Processing and Layout
Layouts of graphs and sparse matrices in distributed memory and shared memory
have been well-studied for regular graphs that arise in the scientific computing
domain. “Layout” in this instance refers to how vertices and edges are partitioned
among distributed-memory MPI ranks and how the vertex identifiers are ordered
in shared-memory. As has been observed, the impact of partitioning and ordering
on irregular graph computations can be considerable [172,181,182]. However, using
traditional layout strategies based on graph/hypergraph partitioners and orderings
for data layout of highly irregular small-world graphs may not be appropriate for
the following reasons:

1. Traditional partitioners and even some ordering methods, for example nested
dissection, are heavyweight tools that are expensive both in terms of memory
usage and time. They are appropriate when followed by even more expensive

166

linear solvers or when they can be computed once and used for multiple
solves. In contrast, graph analytic workloads are constantly evolving and
each analytic operation is typically much cheaper than a linear solver.

2. Previous ordering algorithms are designed for metrics appropriate for linear
solvers such as minimizing a bandwidth [183] or minimizing the fill-in in a
LU factorization [167,184]. In contrast, ordering methods that improve the
layouts in a shared memory context for small-world graphs are needed.

3. The performance of distributed-memory graph algorithms can be dependent
on both local and global graph topology. Global topology affects the number of
parallel phases and synchronization overhead, while local topological changes
impact per-phase load balance. Optimizing for aggregate measures such as
conductance or edge cut would ignore local topology changes and may not
account for dynamic variations in per-phase execution.

Graph computations on highly irregular graphs require a layout that depends
on parallel partitioners and ordering methods that are highly scalable for very large
graphs. As such, we utilize the PuLP partitioner introduced in the prior chapter.
In addition, we also introduce a breadth-first search-based ordering that is more
scalable than other ordering schemes and suitable for small-world graphs in the
shared-memory layout. In case of distributed graph processing, we consider various
partitioning-ordering possibilities, a simultaneous global partitioning and ordering
of all vertices, and a local ordering of vertices after the partitioning phase.

In short, we propose a “distributed-memory graph layout” based on vertex
partitioning using label propagation and a BFS-based parallel ordering strategy.
The proposed DGL (Distributed Graph Layout) is a fast, memory-efficient, and
scalable graph layout strategy. We demonstrate the new DGL layout scheme is
about 10-12× times faster to compute than METIS partitioning [167], and about
2.3× faster to compute than RCM-based orderings.

We demonstrate the impact of DGL and present detailed analysis on the end-to-
end performance of distinct graph analytic workloads. The graph analysis routines
include subgraph counting, breadth-first search (BFS), single-source shortest paths
(SSSP), resource description framework (RDF) queries, and PageRank. The five
algorithms were chosen to be representative of the diversity in modern graph
analytics. We chose the Fascia algorithm for subgraph counting [10, 42, 43],

167

which is a randomized parallel algorithm to generate approximate counts of tree-
structured subgraphs. Although recent related work [144, 157] primarily looks
at strong scaling of BFS and related computations on massive synthetic Graph
500 networks, our work examines the subgraph counting algorithm, an analytic
that is computationally very different from BFS. However, we also do an in-depth
evaluation of BFS and SSSP performance. The fourth benchmark evaluates a
distributed-memory implementation of the popular RDF store RDF-3X [185]. Our
final included algorithm is a highly scalable implementation of PageRank [48],
which is a popular and more computationally-intensive implementation than BFS
for benchmarking performance of frameworks and systems.

We use the end-to-end graph analysis times for partitioning-ordering-workload
in both single-threaded (MPI) and multi-threaded (MPI+OpenMP) distributed
programming models. We also consider computation and communication times of
the analytic separately, in order to better isolate the effects of partitioning and
ordering on performance. We primarily consider real-world rather than synthetic
graphs in our study. We use tuned implementations, all developed by us, in order
to ensure consistency. We also analyze trade-offs between partitioning quality on
computational load balance and communication overhead for several large real-world
networks. The following are the key contributions of this workload analysis.

1. A comprehensive study of the performance of the five analytics with several
partitioning-ordering combinations.

2. Our DGL ordering strategy is about 2× faster than RCM, and our PuLP
partitioning strategy is about 10× faster than METIS.

3. We show that DGL layout improves subgraph counting performance by
1.28× in comparison to random partitioning. Partitioning with PuLP would
enable end-to-end processing (partitioning & computation) of the counts of
ten vertex subgraphs on the 2 billion edge Twitter graph to complete in under
fifteen minutes on 16 nodes of Blue Waters.

4. DGL layout improves the communication time of BFS and SSSP by 1.48×
and 1.43× in comparison to random partitioning.

5. An informed topology-aware graph layout benefits external memory compu-

168

tations as well, improving the performance of RDF3X-MPI, our distributed-
memory implementation of the popular RDF store RDF-3X [185].

6. The total computation time of PageRank can be accelerated by about 5×
with a locality-optimizing ordering such as DGL.

7. A cross-analytics comparison reveals new and interesting trade-offs of com-
munication time, load balance, and memory utilization for various graphs.

We finally mention that DGL is not inherent to the MPI processing models
considered in this work, and can therefore be utilized as a preprocessing step while
running under other graph engines and parallel execution environments.

10.3 DGL: Distributed Graph Layout
In this section, we discuss the distributed graph layout using label propagation-
based partitioning and BFS-based ordering methods. We define a distributed
graph layout as the pair of partitioning×ordering. The partitioning part of the
layout affects the number of parallel phases and synchronization overhead in a
graph computation. It is important to balance the computation in different parallel
phases as well as minimize the communication overhead. We explore trade-offs in
work and memory balance and communication minimization between tasks with
different partitioning strategies. Work performed and memory utilization per-task
roughly correlates with the number of vertices and adjacent edges stored on each
task. The communication requirements roughly correlates with the number of
inter-task edges, or edge cut resulting from partitioning. The ordering part of the
layout affects the per-phase computation time in graph computations. We ideally
want to increase intra-node memory access locality to reduce cache misses and
improve execution times. In order to be practical the partitioning×ordering pair
must be computed in parallel, scalable fashion.

10.3.1 Partitioning

We utilize three partitioners in this work. We use a random partitioning to establish
a baseline for benchmarking. We use the well-known METIS [167] partitioner as a
representation of the state-of-the-art. We also utilize the PuLP partitioner, which is

169

specifically optimized to partition the small-world graphs we are considering in this
work. We consider both single constraint and multi-constraint partitioning scenarios,
where we either balance partitions for vertices or for both vertices and edges. We
attempt to minimize total edge cut for both PuLP and METIS. Additionally, for
PuLP, we also attempt to balance communication among parts by minimizing the
maximal number of cut edges coming out of any single part.

Algorithm 10.1 Label Propagation Algorithm
procedure Label-Prop(G(V,E))

for all v ∈ V do . Thread-level parallelism
L(v)← Vid(v)

updates← 1
while updates 6= 0 do

updates← 0
for all v ∈ V do . Thread-level parallelism

Counts(1 · · · |V |)← 0
for all 〈v, u〉 ∈ E do

Counts(L(u))← Counts(L(u)) + 1
if Max(Counts(1 · · · |V |) 6= L(v) then

L(v)← Max(Counts(1 · · · |V |)
updates← updates+ 1

return L

The PuLP partitioner is based off of the community detection label propagation
algorithm [145]. Label propagation methods are attractive as they have low
computational overhead, low memory utilization, are easy to parallelize, and
demonstrate scaling to graphs with billions of vertices. An overview of the basic
label propagation algorithm is given in Algorithm 10.1. The algorithm runs as
follows. Initially, each vertex v in a graph G with vertex set V and edge set E has
its label L(v) initialized to a unique identifier. For simplicity, the initial labels are
often just the vertices’ numeric vertex identifiers Vid. We then consider each vertex
in the graph, and update its label to the most common label appearing among all
of its neighbors with ties broken randomly (e.g. vertex v has five neighbors, two of
which have label a and three of which have label b; v will update its own label to
b). This loop can be parallelized without any explicit synchronizations or locking
with minimal effect on solution quality [47]. This process continues until no labels
are updated, or, more commonly, after some number of iterations of the outermost

170

While loop (usually 10 or fewer iterations is sufficient).

Algorithm 10.2 PuLP Multi-Constraint Multi-Objective Algorithm Overview
Initialize p parts
Execute degree-weighted label propagation.
for k1 iterations do

Balance parts for vertex constraint.
Refine parts to minimize edge cut.

for k2 iterations do
Balance parts to satisfy edge constraint
and minimize max per-part cut.

Refine parts to minimize edge cut.

PuLP’s subroutines essentially use variants of Algorithm 9.1 that limit the
number of possible labels to the number of desired parts and impose additional
weighting criteria on the Counts array to create balanced partitions. This weighted
form of label propagation is utilized in two separate stages during execution of
PuLP. Algorithm 10.2 gives a very broad overview of the PuLP multi-constraint
(vertices and edge per part) multi-objective (minimize total edge cut and maximum
edge cut per part) algorithm that demonstrates these two stages. After initialization,
we first utilize weighted label propagation in k1 alternating stages to balance the
initial parts for our vertex constraint and then refining to minimize the total edge
cut. Next, we perform k2 alternating stages of balancing for our edge constraint
while minimizing the secondary objective of max per-part cut and then again refining
to minimize the total edge cut. In prior work [47], we describe the algorithm in
considerably greater detail and demonstrate the approach’s effectiveness in terms of
cut quality and runtime with respect to other traditional partitioners. However, it
is critical to show that such label propagation-based partitionings are not only easy
to compute, but that they also improve the end-to-end runtimes of graph analytic
applications. With DGL, we are able to utilize such a partitioner in the layout
strategy and demonstrate its applicability for the first time.

10.3.2 Ordering

For a distributed graph computation, a good graph partitioning will reduce inter-
node communication cost. The goal of on-node vertex ordering is to increase locality
of intra-node memory references, and thereby reduce intra-node computation time.

171

RCM is a commonly-used vertex ordering strategy in sparse matrix and graph
applications. We propose a BFS-based ordering (see Algorithm 10.3) which can
be considered an approximation to RCM. It avoids the costly sorting step used
in RCM where it tries to order the nodes with the same parent in terms of the
degree. Recently, a similar ordering was proposed for improving the matrix-vector
multiply time and bandwidth reduction [186]. The primary focus of that approach
was to arrive at parallel orderings to improve the linear solver time. Our focus is
to improve the graph computations’ end-to-end time.

We randomly choose a minimal-degree vertex as the root and perform a standard
BFS routine, tracking visitation status with visited and the current level with level.
We add vertices to level sets L when they are visited, as with RCM. We avoid
explicit sorting by assuming that each L0···Maxlevel

, where Maxlevel is the maximum
BFS level, is mostly sorted in the order of decreasing vertex degree, as there is a
higher likelihood of encountering high-degree vertices sooner in any given level for
most real world graphs. We assign new labels using an incrementing value of n
by starting with the vertices in the highest level and working backwards to those
in the lowest level. As we will show in the next section, this approach performs
better than both random and RCM orderings in applications that have a high
number of irregular memory accesses. As with RCM in [186], Algorithm 10.3 can
be straightforwardly parallelized.

With the five partitioning methods (random, METIS {single constraint, single
objective and multiple constraint, single objective} and PuLP {multiple con-
straint, single objective and multiple constraint, multiple objective} and three
ordering methods (random, RCM and DGL) we evaluate all the combinations of
partitioning×ordering pairs and demonstrate that the DGL layout with PuLP
partitioner and DGL-based ordering performs the best in irregular graph computa-
tions.

10.4 Parallel Graph Computations
In this section, we will give an overview of the five distributed graph analytics
used during our experimental analysis of the impact of partitioning and ordering
on analytic performance. In an attempt to best understand the general effects of
varying partitioning and ordering on the performance, the graph analytics were

172

Algorithm 10.3 DGL BFS-based vertex ordering algorithm.
Vid ← DGL-order(G(V,E))
for all v ∈ V do

Vid(v)← v

level← 0
root← SelectRoot()
Q← root
V isited(1 · · · |V |)← false
while Q 6= ∅ do

for all v ∈ Q do
Insert v into Llevel
for all 〈v, u〉 ∈ E do

if V isited(u) = false then
V isited(u)← true
Insert u into Q

level← level + 1
Maxlevel ← level
n← 0
for i = Maxlevel · · · 1 do

for j = 1 · · · |Li| do
Vid(Li(j))← n
n← n+ 1

selected as to represent a wide range of execution characteristics. The test suite
includes an implementation which is relatively computation-heavy, PageRank,
algorithms which are relatively more communication-heavy, breadth-first search
and single source shortest paths, an algorithm which is both very computation and
communication intensive, color-coding subgraph counting, as well as an algorithm
whose performance is dependent on the sizes of the n-hop neighborhoods of each
partition, distributed query processing of Resource Description Framework stores.

10.4.1 Distributed PageRank

Our distributed PageRank algorithm is given by Algorithm 10.4. We use an
MPI+OpenMP approach and an |V |

p
partitioning, with each of p MPI tasks calcu-

lating the counts for an equivalent portion of the |V | vertices in the graph G. With
one MPI task per node, we then use thread parallelism while updating the counts
of owned vertices. With the exception of the single MPI communication call on

173

Algorithm 10.4 Distributed PageRank
1: procedure PageRank-dist(G(V,E), δ)
2: for all v ∈ V do . Thread-level parallelism
3: PageRanks(v)← 1

|V |

4: for i = 1toiter do
5: All-to-all exchange of updates in PageRanks
6: for all v ∈ V do . Thread-level parallelism
7: PageRanks(v)← 0
8: for all 〈v, u〉 ∈ E do
9: PageRanks(v)← PageRanks(v) + PageRanks(u)

|E(u)|

10: PageRanks(v)← PageRanks(v)× δ
11: PageRanks(v)← PageRanks(v) + 1−δ

|V |

12: return PageRanks

each iteration, all per-task work can be done in parallel. Updates are passed among
neighbors using an MPI all-to-all exchange. In practice, this specific implementation
has been observed to be very efficient and scalable, giving per-iteration costs of
less than a few seconds for networks of over 100 billion edges while running on 256
compute nodes. The specific technical details of the implementation are omitted,
but please see [48] for a more in-depth discussion.

10.4.2 Subgraph Counting

Subgraph counting is a computationally challenging task, with the naïve approach
scaling as O(nk), where n is the number of vertices in a graph and k the number
of vertices in the subgraph being counted. The best known exact algorithm [187]
improves the exponent by a factor of α

3 , where α is the exponent for fast matrix
multiplication. Because of these extremely high execution time bounds, recent
work has focused on approximation algorithms. One such approach for counting
tree-structured subgraphs utilizes the color-coding technique of Alon et al. [49].

In prior work, we developed a fast parallel implementations of color-coding sub-
graph counting in both shared-memory and distributed-memory environments [10,
42,43]. The distributed version of our approach uses several optimizations, including
fully partitioning and compressing the memory-intensive dynamic programming
table (Count) to decreases memory requirement across all tasks, further compress-

174

Algorithm 10.5 Subgraph counting Fully Partitioned Counting Approach.
Partition subgraph S using single edge cuts
for it = 1 to Niter do

Randomly color G(V,E) with k colors
for all Si in reverse order of partitioning do

Init CountSi
for Vr (vertex partition on task r)

for all v ∈ Vr do . Thread-level parallelism
for all c ∈ Ci do

Compute all CountSi,c,v

〈N, I,B〉 ← Compress(Tablei,r)
All-to-all exchange of 〈N, I,B〉
Update CountSi

based on information received
Countr+ =

Vr∑
v

CT∑
c
CountT,c,v

Count← Reduce(Countr)
Scale Count based on Niter and colorful embed prob.

ing the table during communication to reduce the total transfer volume, and using
all-to-all exchanges in lieu of broadcasts to reduce communication times. These
optimizations demonstrate good scaling and enable us to count subgraphs of 10
and 11 vertices on billion-edge networks in minutes on a modest number of 16
nodes. An overview of the main subgraph counting algorithm as implemented here
is given in Algorithm 10.5. For space consideration, we omit a detailed description
of our implementation. Instead, please refer to [43] for an in-depth discussion of
the stages and execution of the algorithm.

10.4.3 SSSP and BFS

We also assess the performance impact of layout on tuned implementations for
parallel breadth-first search (BFS) and single-source shortest paths (SSSP) compu-
tation in this chapter. Our parallel BFS approach can take advantage of both 1D
and 2D graph distributions [172,188,189]. We use a 1D distribution in this work, as
it is easier to correlate communication time with edge cut after partitioning with a
1D distribution. Recent BFS and SSSP implementations use a 1D partitioning and
direction-optimizing search [112] for work-efficient and highly scalable execution
on Graph 500 test instances. For an overview of the current state-of-the-art in
performance optimizations for these routines, we refer the reader to [144,157].

175

We use an optimized parallel implementation [190] of the ∆-stepping algo-
rithm [191] for parallel SSSP in this chapter. Each BFS iteration and ∆-stepping
phase is comprised of three main steps: local discovery, all-to-all exchange, and
local update. To aid adjacency queries, we use a distributed compressed sparse row
representation for a graph. The distance array is also partitioned and distributed
along with the distributed vertices (for ∆-stepping). In the local discovery step,
both algorithms expand their frontiers by listing all corresponding adjacencies and
their proposed distance based on vertices in a queue of recently-visited vertices (for
BFS) or in a current bucket (for ∆-stepping). Note that BFS visits each reachable
vertex only once while ∆-stepping may visit each reachable vertex multiple times
before it is settled.

Once all vertices in the queue are processed or the current bucket is empty (with
no more vertex reinsertions), all p tasks exchange vertices in these generated lists
to make them local to the owner tasks. This step is the same for both BFS and
∆-stepping, and uses an all-to-all collective communication routine. At the end of
each BFS iteration and ∆-stepping phase, each task locally updates the distance of
its own vertices using the exchanged information. The update in BFS is only on
unvisited vertices, while ∆-stepping updates all vertices whose distances can be
decreased. Thus, the ∆-stepping algorithm performs more computation and has a
higher communication complexity.

Since our goal is to analyze and evaluate the effect of graph partitioning and
vertex reordering, we have not yet implemented all the optimizations in [144,157].
However, our approach has three new optimizations: (i) A semi-sort of vertex
adjacencies based on weights is used prior to execution of the algorithm. (ii)
Memory-optimized queues are used to represent the bucket data structure. This
decreases the algorithm memory requirement, while slightly increasing the running
time. (iii) An array of all local unique adjacencies is created and locally used to
track tentative distance of adjacencies. This array improves efficiency by filtering
out unnecessary requests to be added in the new frontiers.

10.4.4 Distributed RDF Stores and SPARQL Query Processing

Resource Description Framework (RDF) [192] is a popular data format for storing
web data sets. Informally, the RDF format specifies typed relationships between

176

entities, and the basic record in an RDF data set is a triple. There are a grow-
ing number of publicly-available RDF data sets that contain billions of triples.
Thus, database methodologies for storing these RDF data sets, also called triple
stores [193,194], are becoming popular. We have developed a distributed MPI-based
implementation of an open-source triple store called RDF-3X [185]. Our distributed
RDF store is called RDF3X-MPI [195].

An alternate approach to viewing an RDF data set is as a directed graph
with edge types. RDF data sets can be queried using a language called SPARQL.
We extend the distributed RDF store methodology of RDF-3X to the SPARQL
querying phase as well. Thus our RDF3X-MPI tool has two phases, a load phase
and a query phase. In the load phase, the given triple data set is partitioned into
several independent files, one per task, and each task then constructs an index
for helping answering SPARQL queries. It is possible to parallelize some query
evaluation in a purely data-parallel manner (i.e., with no communication between
tasks), provided there is sufficient replication of triples among partitions. Formally,
if the triple partitions satisfy an n-hop guarantee, then SPARQL queries in which
all pairs of join variables are at distance of less than n hops from each other can be
solved without any inter-task communication [196]. So the role of graph partitioning
in this application is to reorder vertices such that the number of triples that are
replicated between tasks after applying an n-hop guarantee are minimized. If the
number of triples that are replicated is reduced, then the database indexes are
smaller, making them potentially faster to query. For this application, we study
the impact of partitioning on the number of replicated triples. A smaller value of
replication is desired, and further, smaller index sizes should translate to faster
query times.

10.5 Experimental Setup
We evaluate performance of our new partitioning and ordering strategy DGL and
the graph analytics workload on a collection of nine large-scale low diameter graphs,
listed in Table 10.1. LiveJournal, Orkut, and Twitter (follower network) are crawls
of online social networks obtained from the SNAP Database and the Max Planck
Institute for Software Systems [69,73]. uk-2005 and sk-2005 are crawls of the United
Kingdom (.uk) and Slovakian (.sk) domains performed in 2005 using UbiCrawler

177

and downloaded from the University of Florida Sparse Matrix Collection [74,75,179].
WebBase is similarly a crawl obtained in 2001 by the Stanford WebBase crawler.
We created the BSBM and LUBM graphs from RDF data sets generated using
the Berlin SPARQL benchmark [197] and Lehigh University Benchmark [198]
generators. DBpedia was created from RDF triples extracted from Wikipedia [199].

The Orkut graph is undirected and the remaining graphs are directed. For the
web and social graphs, we preprocessed the graphs before executing PageRank,
BFS, SSSP, and subgraph counting. Specifically, we removed all degree-0 vertices,
multi-edges, and extracted the largest (weakly) connected component. Further,
edge directivity was ignored when partitioning the graphs using PuLP and METIS
and reordering with RCM and DGL. Table 10.1 lists the sizes of these nine graphs
after preprocessing.

Network Category n m davg dmax D̃ Source
LiveJournal OSN 4.8 M 42 M 18 39 K 21 [70]
Orkut OSN 3.1 M 117 M 76 33 K 9 [72]
Twitter OSN 44 M 2.0 B 37 750 K 36 [73]
uk-2005 WWW 39 M 781 M 40 1.8 M 21 [179]
WebBase WWW 113 M 844 M 15 816 K 376 [179]
sk-2005 WWW 44 M 1.6 B 73 15 M 308 [179]
BSBM RDF 16 M 67 M 8.6 3.6 M 7 [197]
LUBM RDF 33 M 133 M 8.1 11 M 6 [198]
DBpedia RDF 62 M 190 M 6.1 7.3 M 7 [199]

Table 10.1. Test graph characteristics after preprocessing. Graphs belong to three
categories, OSN: Online social networks, WWW: Web crawl, RDF: graphs constructed
from RDF data. # Vertices (n), # Edges (m), average (davg) and max (dmax) vertex
degrees, and approximate diameter (D̃) are listed. B = ×109, M = ×106, K = ×103.

The scalability studies for subgraph counting, BFS, SSSP, and RDF query
processing were done primarily on Blue Waters, a large petascale supercomputer at
the National Center for Supercomputing Applications (NCSA). Each XE compute
node of Blue Waters is a dual-socket system with 64 GB main memory and AMD
6276 Interlagos processors at 2.3 GHz. The system uses a Cray Gemini 3D torus
interconnect. We built our programs with the GNU C++ compiler (version 4.8.2),
using OpenMP for multithreading and the -O3 optimization parameter during
compilation. For the pre-processing phases of DGL (partitioning and reordering)

178

and some scalability runs, we utilized Compton, a testbed cluster. Compton has
a dual socket setup with Intel Xeon E5-2670 (Sandy Bridge) CPUs at 2.60 GHz
and 64 GB main memory. Due to the large memory requirements of partitioning
with METIS, we also had to use the large memory nodes on Carver at NERSC
for partitioning the larger networks (Twitter, uk-2005, Webbase, and sk-2005).
Carver’s large memory nodes have 1024 GB main memory and four Intel Xeon
X7550 ("Nehalem-EX") CPUs at 2.00 GHz.

●

●

●

●

10

100

1000

1 2 4 8 16
Number of Nodes

To
ta

l B
an

dw
id

th
 (

G
B

/s
)

Benchmark ● AllGather AlltoAll RandomAccess StreamRead

Figure 10.1. Bandwidth of Blue Waters for various memory and MPI benchmarks.

To give a relative sense of the intra-node data access and inter-node collective
communication performance on Blue Waters, we present some memory and collec-
tive communication performance results in Figure 10.1 using micro benchmarks
These benchmarks include all-gather and all-to-allv MPI bandwidths and intra-
node memory bandwidth sustained for regular stride-1 reads and random memory
accesses, as a function of processing nodes.

10.6 Results and Discussion

10.6.1 DGL Performance Evaluation

We first evaluate our DGL label propagation-based partitioning methodology,
PuLP, against METIS partitioning by examining total running time for generating
16 and 64 partitions. We consider two versions of both PuLP and METIS. For
PuLP, we have an implementation that has both maximal vertex and edge balance

179

constraints and minimizes both total edge cut and maximal per-part edge cut. We
consider this our baseline implementation, and label it in figures as PuLP-MM
(PuLP multi-objective multi-constraint). We also have a dual constraint version
that only attempts to minimize the total edge cut, which we call PuLP-M. Similarly
for METIS, the dual constraint single objective version is termed METIS-M, while
the single constraint (vertex balance) and single-objective version is termed simply as
METIS. METIS-M and PuLP-M are solving the same problem. For our constraints,
we fix the maximal vertex imbalance ratio at 1.10 and the edge imbalance ratio
at 1.50. The results will show that the multi-constraint, multi-objective mode of
PuLP-MM can be important for irregular graph computations.

Table 10.2 shows the partitioning time of PuLP-MM along with METIS-M
running on Compton. Due to METIS’s large memory requirements (close to
500GB for Twitter), only LiveJournal, Orkut, and the RDF graphs could be
partitioned on Compton. The larger web graphs and Twitter were all partitioned
on a large memory node of Carver. We also report the relative speedup of PuLP
to METIS. We omit time comparison to ParMETIS, as the only graphs it was
able to successfully partition on any system were LiveJournal and Orkut. Further,
ParMETIS’s speedups relative to METIS for those two instances were minimal
(less than 2× with 16-way parallelism). From Table 10.2 we observe considerable
speedup for PuLP, with a geometric mean speedup of 12.4× for 16 parts and
10.1× for 64 parts.

The partitioning quality in terms of both vertex and edge balance constraints
and edge cut and maximal per-part edge cut objectives for the different partitioners
is shown in Table 10.3. In terms of the total edge cut (EC), the single-constraint,
single-objective METIS does the best, but it performs poorly in the maximum
per-part edge cut (ECmax) and edge balance (Emax). PuLP-MM also performs
better than all the methods in the ECmax metric without sacrificing a lot in EC
and still respecting the vertex balance and edge balance constraints. Also note the
much larger Emax of single constraint METIS. As we will demonstrate, this can have
a considerably impact of execution time for the applications in our benchmarks.
Note that while METIS does better in #CC, it does not affect the graph analytic
applications. Traditional partitioners tend to look for fully connected components.
In small-world graphs and the applications that use them this does not necessarily
translate into better performance.

180

16-way partitioning 64-way partitioningNetwork METIS-M PuLP-MM METIS-M PuLP-MM
time (s) time (s) Speedup time (s) time (s) Speedup

LiveJournal 75 7.4 10× 74 7.3 10×
Orkut 156 10 16× 197 13 15×
Twitter 12348 530 23× 12484 565 22×
uk-2005 255 15 17× 353 80 4.4×
WebBase 539 39 14× 551 42 13×
sk-2005 465 39 12× 514 65 7.9×
BSBM 348 28 12× 395 32 12×
LUBM 707 88 8.0× 966 123 7.9×
DBpedia 898 133 6.8× 1001 133 7.5×

Table 10.2. PuLP-MM and METIS-M partitioning time with 16-way and 64-way
partitioning. PuLP-MM uses multi-constraint multi-objective partitioning. METIS-M
uses multi-constraint single-objective partitioning.

Partitioning Vmax Emax EC(imp) ECmax(imp) #CC(imp)
Random 1.15 1.70 1.00 1.00 1.00
METIS 1.10 3.88 7.71 2.39 202
METIS-M 1.10 1.50 4.40 2.16 62.1
PuLP-M 1.10 1.50 5.50 2.10 72.0
PuLP-MM 1.10 1.50 5.00 3.18 22.9

Table 10.3. Average partitioning characteristics across all graphs. Geometric mean of
vertex balance Vmax, edge balance Emax, improvement over random partitioning for edge
cut ratio EC and max per-part edge cut ECmax, and the mean improvement (decrease)
in the average total number of connected components for all parts (#CCs) are shown.
The best values for each of the last three columns are in bold font.

We additionally compare our DGL vertex ordering strategy to RCM. Table 10.4
gives the average running times of both DGL and RCM in serial across all three
partitioning strategies for reordering the vertices within each partition. DGL
reordering results in a 2.3× average speedup compared to RCM for reordering both
16 and 64 parts. This reduction is due to the avoidance of explicit sorting required
by RCM. There does not seem to be a large dependence of running times on the
number of partitions, although with a greatly increased partition count for a fixed
graph, it would be expected that running time decreases due to a lower diameter

181

16-way partitioning 64-way partitioningNetwork RCM DGL RCM DGL
time (s) time (s) Speedup time (s) time (s) Speedup

LiveJournal 2.3 1.0 2.3× 2.3 1.0 2.3×
Orkut 3.9 1.9 2.1× 3.9 1.9 2.1×
Twitter 50 24 2.1× 61 29 2.1×
uk-2005 16 8.4 1.9× 17 7.6 2.2×
Webbase 33 13 2.5× 35 17 2.1×
sk-2005 24 11 2.2× 23 11 2.1×
BSBM 5.1 2.3 2.2× 4.7 2.3 2.0×
LUBM 5.7 1.7 3.4× 5.7 1.7 3.4×
DBpedia 16 6.1 2.6× 17 6.9 2.5×

Table 10.4. DGL serial reordering time with 16-way and 64-way partitioning.

BFS search and overall increased cache utilization. Both these methods can be
parallelized as DGL can use a parallel BFS and RCM can be implemented using
the parallel version [186]. However, their timings are insignificant in the end-to-end
performance of complex analytics such as our subgraph counting benchmark.

We include one more table to demonstrate how our DGL ordering strategy
might improve cache performance of executing codes. To improve the performance
of linear solvers, a common ordering metric to optimize for is graph bandwidth,
which is the maximum integer distance between vertex identifiers for vertices that
share a single neighbor. RCM is an effective means of bandwidth reduction for
regular matrices. However, for small-world graphs, the bandwidth is usually going
to be large, on the order of dmax, where dmax is the maximal degree of any vertex
in the graph. Comparing bandwidth measures between different orderings therefore
won’t show any global improvements in compaction for rows of much lesser degree
vertices.

As such, we look at other metrics to give an indication of the possible cache
efficiency in practice. Across the entire adjacency array, we measure how often
edges listed in order also have identifiers within a single integer value of each other.
This indicates that these edges would be neighboring nonzeros in the same row
of an adjacency matrix. Co-located edges improve cache utilization of per-vertex
information accesses, such as checking visitation status for BFS or PageRank value
lookups. To quantify how many co-located vertex identifiers for the edges are in the

182

adjacency list, we report two values. First, we report a ratio of how co-located all
edges are, where a value of zero indicates that no edges are co-located and a value
of one indicates that all edges are co-located. Second, we report a running “cost”
as the sum of the distances, or gaps, between vertex identifiers in the adjacency
list. We scale the distances by their log, as a distance of one or close to it indicates
that vertices are closely co-located and would have minimal cache cost for their
subsequent accesses, and the cost difference between large and very large distances is
minimal, since it’s likely a new cache line would need to be loaded in both instances.
Finding an ordering that minimizes this sum is referred to in the literature as
the Minimum Logarithmic Gap Arrangement problem, which is NP-hard [200]. In
an attempt to give a graph-independent ratio, we further scale the log sum by a
worst-case possible value of m log n. The true dependence of cache utilization on
distance would be architecture-specific, but the approximation of this cost gives
enough insight for comparative purposes when examining ordering quality.

16-way partitioning 64-way partitioningNetwork Co-loc. Ratio Gap Sum Ratio Co-loc. Ratio Gap Sum Ratio
DGL RCM DGL RCM Rand DGL RCM DGL RCM Rand

LiveJournal 0.115 0.010 0.036 0.034 0.043 0.104 0.014 0.009 0.006 0.012
Orkut 0.028 0.001 0.046 0.057 0.054 0.021 0.001 0.010 0.020 0.011
Twitter 0.032 0.005 0.037 0.035 0.038 0.026 0.006 0.013 0.010 0.016
uk-2005 0.659 0.176 0.015 0.022 0.046 0.582 0.184 0.005 0.006 0.011
Webbase 0.562 0.162 0.020 0.039 0.050 0.519 0.172 0.005 0.006 0.011
sk-2005 0.613 0.149 0.018 0.026 0.050 0.689 0.167 0.002 0.004 0.013
BSBM 0.146 0.146 0.040 0.040 0.062 0.146 0.153 0.007 0.006 0.009
LUBM 0.105 0.105 0.026 0.026 0.045 0.094 0.105 0.006 0.006 0.009
DBpedia 0.442 0.257 0.028 0.036 0.046 0.398 0.267 0.006 0.008 0.010
Overall 0.298 0.112 0.030 0.034 0.048 0.274 0.119 0.007 0.008 0.011

Table 10.5. Ordering performance for DGL, RCM, and Random in terms co-location
ratio (Co-loc. Ratio) and log sum of gap distances (Gap Sum Ratio) for 16-way and
64-way partitioning, averaged across the five different partitioning strategies.

Table 10.5 gives both the co-location ratio (Co-loc. Ratio) as well as the log
sum of gap distances ratios (Gap Sum Ratio) for all ordering combinations across
all graphs for 16 and 64 parts. We report the geometric mean values across all five
partitioning strategies (Random, METIS, METIS-M, PuLP-M, PuLP-MM). For
co-location ratio, higher indicates better locality, while for the log gap sum ratio,
lower indicates better locality. We omit reporting the co-location ratio for Random

183

ordering in Table 10.5, as all values are close to zero, a few orders of magnitudes
less than RCM and DGL. We observe nearly that DGL ordering results in the best
co-location ratio and lowest log gap sum ratio ratio across almost all instances. The
computational timings results we’ll report next in our benchmarks will demonstrate
that these measurements translate into real performance benefits across a wide
range of graph analytics.

10.6.2 PageRank Performance

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0

1

2

0.0
0.5
1.0
1.5
2.0
2.5

0.0

0.5

1.0

1.5

0.0

2.5

5.0

7.5

10.0

0

5

10

0

2

4

6

8

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

Partitioner

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

1.25

0.0

0.5

1.0

0

1

2

3

4

5

0

1

2

3

4

5

0.0

0.3

0.6

0.9

1.2

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

Ordering

S
pe

ed
up

 v
s.

 R
an

do
m

Figure 10.2. Communication speedup of the PageRank implementation on 16 nodes
with various partitioning options (top) and computation speedup of PageRank with
various ordering strategies (bottom).

Partitioning OrderingNetwork METIS METIS-M PuLP-M PuLP-MM RCM DGL
LiveJournal 2.560 2.453 2.561 2.832 1.404 1.325
Orkut 2.519 1.689 1.784 2.068 1.214 1.205
Twitter 1.454 1.459 1.871 1.716 1.346 1.292
uk-2005 8.913 3.518 4.427 9.725 4.641 5.039
WebBase 13.99 10.87 11.92 11.93 3.776 4.870
sk-2005 6.170 8.293 7.287 6.797 1.100 1.155
Overall 3.621 3.525 3.395 4.465 1.881 1.970

Table 10.6. Speedups of various partitioning and ordering strategies versus random
partitioning and random ordering for the PageRank counting benchmark.

184

For our first set of experimental benchmarks results, we examine the effect of
partitioning and ordering on a distributed PageRank implementation. We will
first show the effect that different partitionings have on communication times,
and then we will show the effect that orderings have on computation times. For
these experiments we use the three social network graphs (LiveJournal, Orkut, and
Twitter) as well as the three web crawls (uk-2005, WebBase, sk-2005). Figure 10.2
(top) gives the speedups relative to random partitioning for METIS single and
multiple constraint partitionings and PuLP multiple constraint with single and
multiple objective partitionings. Figure 10.2 (bottom) gives the speedups relative
to random ordering for DGL and RCM. Table 10.6 gives the explicit speedup
values and overall geometric means across the six test graphs. These value are for
20 iterations of PageRank executing on 16 nodes of Blue Waters.

We observe that all partitionings offer considerable speedups relative to random.
In general, the web crawls show even greater speedups than the social networks.
This is due to the web crawls being greater in diameter and more separable than
social networks, resulting in a decrease in the number of cut edges and subsequently
greater performance improvements relative to random. Averaged across all six test
graphs, PuLP multiple constraint and multiple objective partitioning offers the
greatest speedup. The performance benefit is due to the implementation’s use of
an iterative bulk synchronous model and moderately low required communication,
so the improved communication balance resulting from PuLP-MM’s decrease in
max per-part cut becomes apparent in the timings.

Additionally, we note that both RCM and DGL offer considerable speedups for
total computation times relative to random ordering. On the uk-2005 and WebBase
graphs, the speedups for DGL are about 5×. Again we observe that the social
networks generally show less performance benefit relative to random, and this is
again due to their lower diameter and small-world characteristics, which makes
effective ordering more difficult. However, we still observe a consistent 20%-40%
speedups with the improved orderings. Overall, DGL gives a greater performance
speedup over RCM by about 10%, a result we expected based on our measurement
of potential locality and cache performance as demonstrated in Table 10.5.

185

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.0

0.5

1.0

1.5

2.0

0.0
0.5
1.0
1.5
2.0
2.5

0.0

0.5

1.0

1.5

0

2

4

0

1

2

3

0

2

4

6

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

Partitioner

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

Ordering

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0

50

100

150

200

0

100

200

300

0

5000

10000

15000

0

1000

2000

3000

0

2000

4000

0

1000

2000

3000

4000

5000

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

Partitioner

E
nd

−
to

−
en

d
E

xe
cu

tio
n

T
im

e

Step Computation Communication Partitioning

Figure 10.3. Speedups achieved with subgraph counting for total communication time
of the various partitioning strategies relative to random partitioning, all with random
ordering. Additionally, the speedups for the RCM and DGL orderings relative to random
ordering with PuLP multi objective partitioning. The bottom plot gives total end-to-end
execution time in terms of the initial partitioning, total computation time, and total
communication time.

Partitioning OrderingNetwork METIS METIS-M PuLP-M PuLP-MM RCM DGL
LiveJournal 2.099 2.202 2.211 2.150 1.009 1.020
Orkut 2.307 2.400 2.411 2.350 1.014 1.015
Twitter 1.378 1.399 1.580 1.271 1.041 1.029
uk-2005 - 5.433 5.476 5.642 1.049 1.057
WebBase - 3.412 3.375 3.311 1.125 1.148
sk-2005 5.568 5.675 5.772 5.621 1.072 1.091
Overall - 3.033 3.106 2.961 1.051 1.059

Table 10.7. Speedups of various partitioning and ordering strategies versus random
partitioning and random ordering for the subgraph counting benchmark.

10.6.3 Subgraph Counting Performance

We next compare the impact of various partitioning and ordering strategies with
regards to the running times of our subgraph counting implementation. We run on

186

16 node of Blue Waters. We compare communication times resulting from each of
the 5 partitioners with a fixed random ordering. We also compare the computation
times resulting from the 3 ordering strategies with fixed PuLP-MM partitioning.
The speedups for each strategy on the 6 test graphs are given in Figure 10.3 and
Table 10.7. We also look at total end-to-end execution time for the five partitioning
strategies with random ordering in terms of total time spent in the communication,
computation, and partitioning steps. Note that the results with single constraint
METIS for the uk-2005 and WebBase graphs are absent. This is due to execution
times taking longer than 24 hours for these instances.

Several trends can be observed in Figure 10.3. The top subfigure gives the
speedup of the communication phase of subgraph counting for each of the par-
titioning strategies relative to random partitioning. We again note considerable
speedup for all partitioners. We note that the PuLP methods give the best
improvement for five out of the six tested graphs. Overall PuLP-M gives the
highest speedup overall. This implementation doesn’t benefit as highly from the
more communication-balanced PuLP-MM partitioning due to the overall higher
communication requirements (the Twitter graph requires compression and transfer
of several terabytes of data in total for the Count table exchanges between tasks)
and lower overall synchronization cost relative to PageRank, so total edge cut
is observed to have a greater effect in practice. This emphasizes the fact that a
one-size-fits all solution is not optimal in practice, and implementation knowledge
is required to extract the best performance for any given running application when
utilizing a layout strategy.

The middle subfigure of Figure 10.3 plots the speedup relative to random
ordering for the DGL and RCM reordering strategies with PuLP-MM partitioning.
We again note that DGL reordering demonstrates the highest speedup for five out
of the six test instances. Note that DGL ordering can both be computed faster
than RCM and can also result in better application performance. The reordering
makes more noticeable impact on the larger graphs, where the importance of cache
efficiency is higher, as is expected. Overall, we note about a 6% improvement
for DGL and 5% improvement for RCM ordering relative to random. These
improvements are much lower than PageRank’s improvement due to considerably
more information stored per-vertex in the stored counts table, so greater cache
locality has less of an effect in preventing re-accesses to main memory; however,

187

we note even a modest 5%-6% consistent improvement can be noteworthy in this
instance. On processors with larger cache, this relative improvement would be
expected to increase.

Finally, the bottom subfigure of Figure 10.3 shows the total end-to-end execution
times for initial partitioning plus running of the subgraph counting application. We
further split subgraph counting into the sum of time spent in each of its computation
and communication phases. We observe that our partitioning and ordering strategies
result in the fastest end-to-end running times for all test instances. The time spent
for partitioning is considerable relative to execution time for METIS, as is the
extra communication costs that result with random partitioning. The additional
partitioning time cost for METIS might be amortized in practice by re-using the
same partitions for subsequent analysis, but we note that PuLP partitioning
shows an immediate decrease in total end-to-end time after a single
analytic run.

10.6.4 Execution Timelines

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 Compute

Idle
Communicate
Idle

Time (s)

M
P

I t
as

k
#

0 50 100 150 200

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Compute
Idle
Communicate
Idle

Time (s)

M
P
I
ta
sk
 #

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Compute
Idle
Communicate
Idle

Time (s)

M
P
I
ta
sk
 #

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Compute
Idle
Communicate
Idle

Time (s)

M
P
I
ta
sk
 #

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Compute
Idle
Communicate
Idle

Time (s)

M
P
I
ta
sk
 #

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 10.4. Subgraph counting (top, single color-coding iteration with a 10-vertex
template) and PageRank (bottom, 10 iterations) execution timelines on 16 tasks and 32
threads with (left to right) random, single and multi-constraint METIS, and PuLP-MM
partitioning strategies. Random ordering was used in all cases.

To offer visual explanation of the performance of balanced constraint partitioning
on total execution time, we give execution timelines in Figure 10.4 of a single run
of counting a 10 vertex template on the LiveJournal graph and 10 iterations of

188

PageRank on the Webbase graph. We used the Compton system for these tests
and random, single-constraint METIS, multi-constraint METIS, and PuLP-MM
partitioning (from left to right, respectively) with random ordering. On looking
at subgraph counting (top), we note first the two extreme cases. Random shows
the lowest total computation times at a high cost of communication, while single
objective METIS results in low communication times but high total times during
the execution stages. This is due to unbalanced work among each task, which
is directly proportional to the edge balance among each part. We observe that
balanced multi-objective PuLP partitioning gives the best tradeoff in terms of
work balance and communication requirements. For PageRank, we note a large
performance gap between Random partitioning and the other strategies. This is
due to the implementation’s computational and communication requirements for
each task being dependent on the one hop neighborhood and per-part cut. These
values are much higher with Random partitioning. We observe that PuLP gives
the best performance, due to the fact that the multiple objectives are explicitly
optimizing for these metrics while keeping work balance very consistent. Overall,
we notice about a 5-10% total execution time improvement for PuLP versus the
METIS variants by using multi-objective partitioning. As noted, considering total
end-to-end execution time with partitioning costs, this speedup would be even more
dramatic.

10.6.5 SSSP and BFS Performance

In this section, we analyze the performance of our SSSP and BFS implementation
when using the different partitioning and ordering layouts. These benchmarks were
run on 64 nodes of Blue Waters. While the running time of distributed subgraph
counting is dominated by large-scale data transfers during the communication
phases, SSSP’s performance is more dependent on intra-task computation, similar
to PageRank, but has considerably less communication. BFS has the overall lowest
communication and computation requirements out of all of the benchmarks thus
far.

Figure 10.5 and Table 10.8 show the speedups for communication and computa-
tion for SSSP performance with 64 MPI tasks. The top subfigure of Figure 10.5
shows the communication speedups relative to random partitioning for the other

189

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.0

0.5

1.0

1.5

0.0

0.5

1.0

0.00
0.25
0.50
0.75
1.00
1.25

0

1

2

3

4

0.0

0.5

1.0

1.5

2.0

0
1
2
3
4

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

Partitioner

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.0

0.3

0.6

0.9

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

Ordering

S
pe

ed
up

 v
s.

 R
an

do
m

Figure 10.5. Communication time of SSSP implementation on 64 nodes with various
partitioning options (top) and computation time of SSSP with various ordering strategies
(bottom).

Partitioning OrderingNetwork METIS METIS-M PuLP-M PuLP-MM RCM DGL
LiveJournal 1.575 1.422 1.400 1.372 1.117 1.097
Orkut 1.346 1.123 1.131 1.111 1.041 1.026
Twitter 1.172 1.224 1.109 1.141 1.063 1.094
uk-2005 4.008 3.122 3.044 3.187 1.399 1.328
WebBase 1.971 1.998 2.092 2.035 1.407 1.612
sk-2005 4.693 3.934 4.159 3.963 1.689 1.870
Overall 2.125 1.907 1.897 1.884 1.266 1.304

Table 10.8. Speedups of various partitioning and ordering strategies versus random
partitioning and random ordering for the SSSP counting benchmark.

partitioning strategies. Due to the relatively lower communication requirements for
this SSSP implementation, we correspondingly observe lower speedups relative to
what was observed in Figure 10.3 with subgraph counting. We note that METIS
gives the highest communication speedup, due to the lower overall communication
load and total synchronization costs which emphasize a lower total workload than
explicit balance. We observe speedups for computation times on all graphs, and
especially the web crawls, with both ordering strategies. DGL ordering gives
around 30% speedup overall.

The two subfigures of Figure 10.6 and Table 10.9 give the speedup in commu-
nication time with different partitioners and speedups in computation time with

190

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

0

1

2

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

 R
andom

 P
uLP

−
M

 P
uLP

−
M

M

 M
E

T
IS

−
M

 M
E

T
IS

Partitioner

S
pe

ed
up

 v
s.

 R
an

do
m

LiveJournal Orkut Twitter uk−2005 WebBase sk−2005

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

 R
andom

 D
G

L

 R
C

M

Ordering

S
pe

ed
up

 v
s.

 R
an

do
m

Figure 10.6. Communication time of BFS implementation on 16 nodes with various
partitioning options (top) and computation time of BFS with various ordering strategies
(bottom).

Partitioning OrderingNetwork METIS METIS-M PuLP-M PuLP-MM RCM DGL
LiveJournal 1.100 1.141 1.110 1.124 1.007 0.987
Orkut 1.125 1.083 1.138 1.038 0.913 0.991
Twitter 1.127 1.060 1.047 1.076 1.099 1.109
uk-2005 1.655 1.929 1.920 1.763 1.023 1.068
WebBase 1.709 1.657 1.732 1.756 1.287 1.335
sk-2005 2.798 2.624 2.393 2.737 0.960 0.977
Overall 1.494 1.491 1.480 1.483 1.042 1.071

Table 10.9. Speedups of various partitioning and ordering strategies versus random
partitioning and random ordering for the BFS counting benchmark.

different orderings for the BFS implementation. We notice similar trends to SSSP
in these plots. Overall, the lower total computation and communication workload
of BFS contributes to lower speedups when using better ordering and partitioning
strategies compared to random.

10.6.6 SPARQL Query Processing

In this final section, we study the impact of partitioning and ordering on the
performance of RDF stores and SPARQL querying, a benchmark algorithm that
is very different than the previous ones. In Table 10.10, we report replication

191

ratios observed when an undirected 2-hop guarantee is enforced. Our RDF3X-
MPI implementation uses a 2-hop guarantee to partition the graph, and a lower
replication ratio indicates a smaller index size, which should translate to faster
query times in practice. Table 10.10 compares PuLP-MM with METIS-M and
random partitioning for 16 and 64 parts on the 3 RDF graphs. Out of the 6 total
graph-part count scenarios, the PuLP-MM approach shows the lowest replication
ratio for half of them. Note that none of these partitioners are explicitly optimizing
for this metric, so the performance of PuLP-MM in this instance is indirect.

16-way 64-wayPartitioning BSBM LUBM DBpedia BSBM LUBM DBpedia
Random 7.256 10.58 5.580 22.07 34.84 10.50
METIS 5.566 9.714 1.552 19.02 36.56 2.257
METIS-M 5.577 9.146 1.552 19.01 38.02 2.255
PuLP-M 5.308 8.944 1.905 14.73 36.86 2.815
PuLP-MM 5.112 9.227 2.448 13.78 29.94 2.963

Table 10.10. Distributed RDF store replication ratios using various partitioning strate-
gies. An undirected 2-hop guarantee is enforced. Lower values are better and best value
for each graph and parts count is in bold.

In Table 10.11, we report sum of query times of RDF3X-MPI averaged over
the BSBM, LUBM, and DBpedia data sets. We use a selection of queries from
the Berlin SPARQL Benchmark. We use the 16 part partitions for this test
and additionally look at the performance affects of the three ordering strategies.
PuLP-MM partitioning with random ordering yields the best performance, while
PuLP-MM further demonstrates the highest performance when using the other
two ordering strategies as well. This corresponds to PuLP-MM having the lowest
replication ratios. We note that since PuLP-MM is faster and much more memory-
efficient than METIS, this is a promising result, and future work can attempt
to optimize PuLP for the one and two hops replication ratio metrics for further
improvements. The effect of ordering strategy on query times is interesting, in
that the higher-locality orderings demonstrate correspondingly worse performance.
To store the RDF data, RDF3X-MPI converts the input RDF graph structure
into multiple indexes, which are created by sorting the RDF data, creating B+
trees, and then performing compression. We note that the worsened performance

192

with locality-optimized ordering is most likely an artifact of this pre-processing
stage. This further indicates that knowledge of a graph analytic’s algorithmic
details is important when determining an optimal graph layout, as unexpected and
counter-intuitive performance impacts are a real possibility.

OrderingPartitioning Random DGL RCM
Random 3.41 4.58 4.32
PuLP-M 3.41 3.97 3.94
PuLP-MM 3.32 4.01 3.51
METIS 3.71 4.41 3.91
METIS-M 3.87 4.20 4.13

Table 10.11. Total query times in seconds relative for the various partitioning and
ordering strategies, summed over all 3 graphs with 16 parts.

10.7 Related Work
We selected METIS and RCM for comparison to the partitioning and ordering
aspects of DGL, as they represent the most popular and current state-of-the-
art approaches for these problems in terms of both speed of computation and
quality produced. There are various other partitioning algorithms and methods,
including multi-level partitioners similar to METIS [27,162,201], coordinate and
geometry-based partitioners [202, 203], and hypergraph partitioners [204]. Hy-
pergraph partitioners can often calculate higher quality partitions than graph
partitioners for regular matrices, but at a considerably higher cost to compute.
Other graph partitioners have utilized label propagation in single or multilevel
approaches [161, 163–166], demonstrating improved algorithm execution times with
these partitions versus naïve methods. However, while some of these partitioners
produce very high partition quality with good computational efficiency [163], they
only consider single constraint partitioning scenarios. As we’ve demonstrated,
using multi-constraint partitioning is important for optimal algorithm performance.
Other recent work [205] has correspondingly demonstrated that complex parti-
tioning objectives beyond simply edge cut and/or communication volume are a
necessary consideration for optimal performance in distributed computations.

193

In addition to RCM ordering, Cuthill-McKee (CM) [183], nested dissection [167],
and Approximate Minimum Degree (AMD) [184] are a few examples of sparse
matrix reordering strategies used in the past. Some techniques, such as space-filling
curves [206] or spectral bisection and orderings based on calculated eigenvectors [207]
have been utilized for both partitioning and ordering of sparse matrices. These
and similar methods and their variants are often very effective for improving
cache performance for computations on regular graphs and meshes [208]. Ordering
methods on irregular networks such as social and Internet graphs has been studied
for the purposes of visualization [209] and compression [180,200,210]. Although the
authors know of no performance analysis of the effects of applying these ordering
techniques to distributed graph computation in literature, promising future work
might involve utilizing and optimizes these ordering for such purposes.

10.8 Conclusions
In this chapter, we presented DGL, a methodology for distributed graph layout
(partitioning, vertex ordering) using the scalable PuLP partitioner and a new vertex
ordering strategy. We give a comprehensive performance analysis by examining
the effects of graphs layouts on several varied graph analytics. In general, we
note that graph analytics which have a high relative computation cost can benefit
greatly from our locality-optimizing vertex ordering strategy. Graphs analytics
that have a relatively high communication volume but few synchronizations might
benefit most from a partitioning that optimizes explicitly for edge cut, while
computations which consist of numerous synchronizations would benefit from a
more balanced partitioning in terms of per-task communication loads. In general,
the higher the computation/communication cost for a given analytic, the more
that partitioning and ordering makes an impact. While the layout of a graph in
distributed memory can significantly impact the performance of analytics processing
on it, the actual implementation methodology of the analytic algorithm can have
an even greater impact. In the next chapter, we’ll describe in detail a simple
and effective methodology for the implementation of distributed-memory graph
analytics that is applicable to a broad algorithmic class.

194

Chapter 11 |
Distributed Graph Processing

11.1 Introduction
This chapter further builds upon the ideas previously discussed in how to develop
generalizable approaches for graph processing. Here, instead of focusing on single-
node performance with multicore and manycore processors, we consider system-
level performance of a large high performance computing system. We identify
disparate algorithm classes based on distributed communication patterns and
develop optimized baseline approaches for these classes. We then take the baseline
approaches and use it to implement several algorithms fitting each of the classes.
We will show that our techniques are highly effective, giving orders-of-magnitude
performance improvements over prior art, enabling the distributed analysis of
massive scale networks.

11.2 Graph Processing on HPC
The growth of the Internet along with online social networks has motivated con-
siderable interest in the study of large-scale and irregular graphs. Understanding
the structure of such graphs, of any scale, has many uses. Being able to efficiently
search such irregular data sets to extract useful information is perhaps one of the
main applications. Research in the areas of social and web graph analysis has led
to the creation of several frameworks designed to make the study of such graphs
easier and faster, be it through simplified programming models, abstraction of
parallelism, exploiting latent graph structure, or processing large computations with-

195

out specialized hardware. These frameworks include those both targeted towards
large-scale distributed processing, such as Pregel [37], Giraph [36], Trinity [39],
GraphLab [32], PowerGraph [33], PowerLyra [34], PEGASUS [38], and others,
as well as those designed for highly-efficient shared memory processing, such as
Galois [211], Ligra [115], STINGER [212], and FlashGraph [35].

In this chapter, we study well-known computations on such graphs from a High
Performance Computing (HPC) perspective. While our main goal is to provide an
informed commentary on the efficiency, scalability, and ease of implementation of
graph analytics on current high-end computing systems, we also demonstrate how
the same techniques we apply to high-end systems can also accelerate analytics
at the smaller scale. We consider the largest publicly-available hyperlink graph:
the 2012 Web Data Commons graph1, which was in-turn extracted from the open
Common Crawl web corpus2, and we design clean-slate parallel algorithms and
implementations for the Blue Waters supercomputer, one of the world’s most
powerful computing platforms. After demonstrating scalability on up to 65,536
cores of Blue Waters, we then show how our implementations, without large
modifications, can also outperform state-of-the-art frameworks on a small testbed
cluster.

As there is a lot of current work on graph algorithms, analytic frameworks, and
graph data management systems, the following aspects motivate our present work
and differentiates it from other related research efforts:

• Most parallel computing research efforts focus on a single computational
routine and study its scalability for a collection of large graphs [157, 188].
Instead, we want to simultaneously analyze performance of multiple analytics,
and make decisions about graph data representations and decomposition
strategies based on our findings. To help with this, we have picked some of
the largest possible real-world graphs that are publicly available.

• Synthetic graphs can never substitute real-world graph instances, as there
are always some topological aspects that parsimonious models miss. For
real-world graphs, we may be able to exploit more structure when designing
analysis algorithms. There may also be some intricacies associated with real-

1http://webdatacommons.org/hyperlinkgraph/
2http://commoncrawl.org

196

world graphs that do not manifest in synthetic graphs. One of our objectives
is to precisely quantify some challenges for a collection of graph analytics on
an extremely large graph. We also want to identify known optimizations that
work for such graph instances.

• Algorithms that are commonly used for graph analytics have per-iteration
operation counts that scale linearly (in the asymptotic case) with the number
of vertices and edges. Furthermore, memory requirements and communication
costs are also linear. Thus, the constant factors in the implementations are
what lead to large performance gaps on real systems. Distributed graph
analytic frameworks that provide linear-work algorithms should thus be
evaluated on the largest-available graphs.

• I/O costs are often ignored when doing in-memory graph analytics. There
is also quite a lot of research on external and semi-external memory graph
algorithms and frameworks, where minimizing I/O costs, and not wallclock
time, is the primary focus. An end-to-end evaluation of multiple analytics,
considering I/O, memory, and network costs, would be more representative
of real-world performance.

This chapter presents a methodology for in-memory, end-to-end analysis of large
publicly-available data sets. We consider parallel I/O, graph construction, and
running multiple useful analytics. In addition, this chapter makes the following new
algorithmic and parallel implementation contributions to analyze massive graphs:

• We present a fast and memory-efficient scheme to read and store massive
graphs in a distributed setting.

• We present algorithms for analyzing the connectivity, centrality rankings,
PageRank, and community structures of such graphs.

• We describe the approaches for our implementations in detail and present
optimizations applicable across a broad class of graph algorithms.

We also claim that graph analysis at large-scale concurrencies need not be
daunting. All the analyses discussed in this chapter fit into less than 2000 C++
source lines and use only MPI and OpenMP for parallelization, with no other

197

external library dependencies. Each analytic itself is only around 200 lines of code.
If one makes informed algorithmic and data structure choices, end-to-end execution
times can be quite fast. Using just 256 compute nodes of Blue Waters, we are
currently able to perform all six implemented analytics in under 20 minutes, and
this includes graph I/O and preprocessing. Using our analytics, we are additionally
able to obtain new insights into the global structure of the web graph. Some of these
insights are from, to our best knowledge, the first in-memory global community
structure experiment on this massive graph.

11.3 Design Choices and Optimization
We’ll now describe our end-to-end methodology for storing, reading, and performing
distributed computations on the web crawl. We will describe our distributed graph
storage format as well as our implemented algorithms and their optimizations.
While our largest example problem is the web crawl, the techniques we describe
here are applicable to many large real world graph instances and HPC systems.

11.3.1 I/O and pre-processing

We store the web graph in binary format as a list of edges, where each directed edge
is represented by two vertices of 32-bit unsigned integer type 〈v0, v1〉 (64-bit
integers would be required for a graph with a number of vertices exceeding 232).
We ingest data by calculating offsets for each MPI task, with each task being given
a nearly-identical portion of the file to read. To achieve high read bandwidth from
Blue Waters’ shared Lustre-based scratch filesystem, we striped the input file across
storage units. In the web graph case it is a 1 TB file across 160 storage units.

We chose a memory-efficient one-dimensional graph representation in this work
(Section 11.3.3), where each MPI task owns n

p
vertices and all of the incoming

and outgoing edges of these vertices. After each task reads its share of outgoing
edges, the edges are exchanged using an MPI Alltoallv step. We then proceed to
reverse the edges and do another Alltoallv exchange. Once each task has all of
the outgoing and incoming edges for the vertices owned by this task, they can then
convert the edge arrays into a compressed sparse row (CSR)-like representation.

The graph ingestion and creation stage is the most memory-intensive part of

198

our implementation. To hold the outgoing edge list in memory, we require 8m
bytes of global memory, where m is the number of edges in the graph. This implies
approximately 1 TB of aggregate memory. In order to use MPI collectives in
the edge exchange step, we also need to create send and receive buffers, which
require an additional 16m bytes of memory. However, the necessary memory
will be multiplied by the maximum edge imbalance among all tasks. This is an
important consideration for partitioning graphs with a skewed degree distribution
and it is dependent on partitioning strategy. Using a one dimensional vertex block
partitioning with the web crawl, we observe up to 2× edge imbalance with a task
counts between about 100 and 512. This effectively bounds the minimum number
of tasks required to be about 188, which is also observed in practice.

11.3.2 Partitioning Strategy

The performance and scalability of distributed algorithms can be highly dependent
on the chosen partitioning strategy. For graph algorithms, the effect of partitioning
can be even more drastic, as the ratio of computation versus communication can
be significantly lower than traditional scientific applications. The most common
partitioning strategy for graph analytics is a one dimensional variant, where each
task owns some subset of vertices in the graph and all outgoing and incoming edges
for those vertices. Ideally, it is desired for each task to own equivalent numbers of
vertices and edges, with the ratio of internal edges (edges between owned vertices)
to external edges (edges to vertices owned by another task) as high as possible.
The number of external edges is commonly called the edge cut.

Current traditional high quality partitioners are unable to process graphs of the
scale being considered. As such, we consider three primary partitioning strategies
in this work. We implement vertex block partitioning, where each task gets n

p

vertices distributed in natural (or some computed) ordering, edge block partitioning,
where each task gets approximately m

p
edges again distributed with some ordering,

and random partitioning, where each vertex is randomly assigned to a task. In
general, there can be significant edge imbalance among tasks with vertex block
partitioning and vertex imbalance with edge block partitioning. This can make
time to complete computational stages highly variable, which increases idle time
at synchronization points for all tasks except the one with the highest workload.

199

For random partitioning, there is generally a reasonable balance among tasks
(though this can be dependent on the graph’s degree skew and the number of tasks).
However, random partitioning suffers from an inherent lack of intra-task and inter-
task locality, which increases computation load within a task and communication
load among tasks.

11.3.3 Distributed Graph Representation

The design choices for our distributed graph representation have two primary goals:
compactness in memory and speed of access for any task-local graph information.
Table 11.1 gives an overview of the primary structural information we store.

Table 11.1. Distributed Graph Representation.
Data Size Description

n_global 1 Num. of global vertices
m_global 1 Num. of global edges

n_loc 1 Num. of locally owned vertices
n_gst 1 Num. of ghost vertices
m_out 1 Num. of locally owned out edges
m_in 1 Num. of locally owned in edges

out_edges m_out Array of out-edges
out_indexes n_loc Start indices for local out-edges

in_edges m_in Array of in-edges
in_indexes n_loc Start indices for local in-edges

map n_loc+n_gst Hash table for global to local ids
unmap n_loc+n_gst Array for local to global ids
tasks n_gst Array for tasks of ghost vertices

It is common for many graph algorithms to have tasks repeatedly access and
update data stored per-vertex for both local and ghost vertices. Having each
task store this data in an n_global length array is not scalable, so a common
strategy is to use a hash map. To avoid accessing a slow hash map and using
arrays instead, we relabel all locally owned and ghost vertices. Local vertices are
relabeled from [0 to (n_local-1)], while ghost vertices assume labels from [n_local
to (n_local+n_ghost)]. This relabeling is done to the out- and in-edge arrays.
We can then store and access any vertex information in an (n_local+n_ghost)
length array.

200

To look up the local label for any global vertex id, such as when receiving
a message from a neighboring task, we utilize a fast linear-probing hash map
(map[global_id] = local_id). To map from local vertex ids to global vertex ids,
such as when sending a message about per-vertex information to a neighboring task,
we have the unmap array (unmap[local_id] =global_id). Finally, we also have
an array of length n_ghost that stores which task owns each local ghost vertex.
Although with simple block partitioning, we can easily calculate this task using the
global_id on-the-fly, for more complex partitioning or re-ordering scenarios, we
are required to hold this information.

The per-task memory storage requirement for this distributed representation
is dependent on the partitioning strategy. A vertex block partitioning will have
imbalance among tasks with the in- and out-edge arrays, an edge block partitioning
will have imbalance with the indexing and unmap arrays as well as the hash map,
and a random partitioning will have imbalance through having a much higher
number of ghost vertices. The actual level of imbalance is highly dependent on
graph structure.

11.3.4 Implemented Algorithms

We’ll now describe some of the algorithm-specific optimizations we implemented.
For these optimizations, we strove for a strong balance between high performance,
relative ease of implementation, and applicability across a large number of analytics.
For ease of discussion, we consider that our implementation efforts focus on what
can be reduced to two distinct but closely related classes of graph algorithms.
The first class of algorithms have all vertices propagating per-vertex information
to all neighbors. We consider our implementations of PageRank and the Label
Propagation community detection algorithm [145] to fall under this class. The
second class includes algorithms which begin by propagating information from an
original root through it’s neighbors with what can be considered a global queue.
This second class doesn’t necessarily pass per-vertex information, and can instead
only pass vertex identifiers themselves, with per-vertex data updated locally. These
algorithms use some derivate of breadth-first search (BFS) as a central subroutine.
Our implemented analytics that use this approach include routines for extracting
the strongly connected component (SCC) containing a given vertex using the

201

Forward-Backward approach [19], a routine for determining approximate k-cores (a
maximal subgraph in which all vertices have degrees of k or greater), as well as a
routine for calculating the harmonic centrality [213] for a given vertex. Additionally,
we have implemented the Multistep [21] algorithm for weakly connected component
(WCC), which has its first stage similar to the algorithms in latter class (BFS-like)
and second stage similar to the algorithms in the former class (PageRank-like).

Both of the aforementioned classes can be considered to fall under a broader
class of graph algorithms that follow a tri-nested loop structure, with loops over
some number of iterations, vertices in a queue or in the entire graph, and a final
loop of the edges of the vertices being considered in the middle loop [45]. This
structure both fits a very large number of graph algorithms and is amenable
to a bulk synchronous parallel (BSP) model of parallel computation due to the
dependencies imposed by the outer iterative loop. We admit by no means that
all graph algorithms fit the aforementioned classes, but a great many more that
have not been explicitly implemented in this current work might benefit from our
described optimizations.

11.3.4.1 Algorithm Overviews

As mentioned, we implemented WCC, SCC, harmonic centrality, an approximate
k-core decomposition algorithm, PageRank, and the label propagation community
detection algorithm [145]. We use a BFS-based approach for finding the largest
weakly-connected component (WCC) and strongly connected component (SCC).
For SCC, we utilize the Forward-Backward approach [19]. To find the remaining
WCCs, we use the Multistep algorithm [21]: after removing the largest WCC, we
then perform color propagation to find the remaining smaller components. We
calculate harmonic centrality for a given vertex in the standard way, by calculating
the distances of all vertices that can reach the given vertex using a BFS and then
performing a sum of the inverses of all the distances for all of these vertices. A k-core
of a graph is the . To calculate approximate k-core scores, we create a set of seed
vertices using the 1000 largest in-degree vertices and use those seeds to iteratively
identify maximal components containing vertices of some minimal power-of-two
degree. This effectively gives us an upper bound on true k-core values. For our
label propagation implementation, we use an approach similar to the constrained
label propagation implementation by Meyerhenke et al. [162]. We ignore directivity

202

of edges and consider them all undirected; labels can propagate in either direction.
We calculate PageRank using the standard original algorithm.

11.3.4.2 PageRank-Like Algorithms

We’ll now describe in more detail our PageRank, label propagation, and the second
phase of our weakly connected components algorithms. As mentioned, the first class
of algorithms we consider potentially propagate some stored per-vertex value to all
neighbors on every iteration. For PageRank, this would be the vertex’s PageRank
value to all of its out-edge neighbors. For label propagation and weakly connected
components, this would be the vertex’s current label or color being passed to both
in- and out-edge neighbors. Our implementations of these algorithms all follow a
consistent pattern. We demonstrate this pattern by using PageRank as our example
in Algorithm 11.1. The algorithm is run on each MPI task, with G being the
task-local distributed graph representation and V and E being the local vertex and
edge sets, respectively.

We initially pass our per-vertex information in two queues. One queue holds the
global vertex ids being passed (vSend) and the other queue holds the associated
PageRank values for each vertex (pSend). Due to the nature of small world graphs,
subdomain connectivity is extremely high among different task partitions. As such,
we utilize MPI Alltoallv collectives in lieu of explicit sends and receives to simplify
the communication process. Alltoallv requires us to calculate the number of items
being passed to each task (NumSend) as well as the offsets in the send queues
for where the items for each task begin (SendOffs). To initialize our queues, we
therefore need to loop over all local vertices and edges to first count the numbers
of items being sent and then to actually place the items in our queues. We utilize
a boolean array (ToSend) while examining the edges of each vertex (v ∈ V) to
track which tasks we’ve already going to send our vertex information to. We then
calculate prefix sums of the per-task counts to create our offset array. During the
second loop through, we calculate the initial PageRank for each vertex, and then
place that PageRank as well as the global id of the vertex into the actual send
queues using a copy of the offsets array (SendOffsCpy) where we increment the
current offset after each item placement. For label propagation and WCC, we
would be initializing and sending labels and colors in lieu of PageRanks in our
queue. We perform thread-based parallelization over these loops. It is nontrivial,

203

Algorithm 11.1 Distributed PageRank
1: procedure PageRank-dist(G(V,E), δ)
2: nprocs← numTasksMPI()
3: procid← localTaskNum()
4: NumSend(1 · · ·nprocs)← 0
5: for all v ∈ V thread parallel do
6: ToSend(1 · · ·nprocs)← false
7: for all u ∈ E(v) do
8: t = getTask(u)
9: if t 6= procidand ToSend(t) 6= true then
10: ToSend(t)← true
11: NumSend(t)← NumSend(t) + 1
12: SendOffs(1 · · ·nprocs)← prefSums(NumSend)
13: SendOffsCpy ← SendOffs
14: for all v ∈ V thread parallel do
15: PageRanks(v)← initPR(v)
16: ToSend(1 · · ·nprocs)← false
17: for all u ∈ E(v) do
18: t = getTask(u)
19: if t 6= procidand ToSend(t) 6= true then
20: ToSend(t)← true
21: vSend(SendOffsCpy(t))← globalId(v)
22: pSend(SendOffsCpy(t))← PageRanks(v)
23: SendOffsCpy(t)← SendOffsCpy(t) + 1
24: vRecvs← Alltoallv(vSend,NumSend, SendOffs)
25: pRecvs← Alltoallv(pSend,NumSend, SendOffs)
26: for i · · · |vRecvs| thread parallel do
27: vIndex = localId(vRecvs(i))
28: vRecv(i) = vIndex
29: PageRank(vIndex) = pRecvs(i)
30: for i = 1toiter do
31: for all v ∈ V thread parallel do
32: PageRanks(v)← CalcPR(v, E ′(v))
33: for i ∈ |vSend| thread parallel do
34: pSend(i)← PageRanks(vSend(i))
35: pRecvs← Alltoallv(pSend,NumSend, SendOffs)
36: for i ∈ |vRecv| thread parallel do
37: PageRanks(vRecv(i))← pRecv(i)
38: return PageRanks

204

so we’ll describe how we implement it in detail in a later section.
Once the second loop over all vertices and edges completes, we perform our initial

sends and receive into buffers for vertices (vRecv) and PageRanks (pRecv). We
then update all of our local PageRank values based on the vertices and associated
values in the queue. When we first examine vRecv, the vertices are in the buffer
as global ids. We first must convert them back to their local ids using the hash
map in our distributed graph representation. Since this implementation assumes
all PageRank values will be updated on each iteration, we can utilize a couple of
optimizations. We first cut the size of data being sent in half for each iteration by
retaining the vertex queue and only updating and sending the PageRank queues.
Since we don’t update the vertex queue, we simply save in vRecv the local ids in
place of the global ids for each vertex and use those when doing the PageRank
updates on subsequent iterations. This avoids multiple (relatively) costly hash map
accesses. Be retaining queues, we also avoid having to completely rebuild them
on each iteration. Experimentally, a certain cutoff can be determined for when it
would be better in terms of the computation-communication trade-off to switch
from retaining the queues to rebuilding them.

The bulk of time during the run of the algorithm is spent in the main loop, shown
in Algorithm 11.1 as i = 1toiter (a stopping criteria other than fixed iterations is
also common for this loop). This loop has four main phases. First, we update our
PageRank values for all local vertices. Second, we loop over the size of our retained
send queues to update the values in pSend. We then perform the exchange of the
updates value among all tasks. We finally loop to update the PageRanks with
those received in pRecv using our retained vRecv. All of these three primary loops
are trivial to parallelize in shared memory, and we observe consistent and high
speedups when doing so. Our WCC and label propagation algorithms follow an
identical pattern to PageRank, with the primary difference being how we initialize
and calculate updates for the per-vertex values.

11.3.4.3 BFS-like Algorithms

As mentioned, the second class of implemented algorithms we consider don’t
explicitly pass per-vertex information, instead creating a queue only of vertices,
with all per-vertex updated happening locally on each task. Updates might be
visitation statuses, levels in a BFS tree, or some other data. We demonstrate

205

the general outline used for our implementations in Algorithm 11.2 with a BFS
that tracks distances from a root vertex. Although a lot of recent work has
focused on optimizing distributed BFS for the Graph500, we omit any BFS-specific
optimizations in our discussion and focus on those generalizable to all of the
algorithms we are considering.

As Algorithm 11.2 demonstrates, we utilize task-local queues (Q) as a basis
for the work to be performed during each iteration. The queue is initialized first
with the root vertex for the task that owns it, and we use task parallelism when
looping over the contents of the queue. We use an array (Status) to determine
visitation status (as needed for WCC). In this instance, Status is also used to
hold the distances from the root for each visited vertex (as needed for harmonic
centrality). The Status value is set to −2 initially, and updated to −1 when the
vertex has been visited. This first update is done to signify that the vertex has
either been added to the local queue for the next level or the send queue for a
neighboring task, so the exploration of subsequent edges incident on the vertex
don’t end up re-queuing that vertex. If the vertex is local, the Status value will be
updated to the current level on the next iteration. We track the number of vertices
to send to each neighboring task (NumSend) during exploration, and then create
a send queue and perform an Alltoallv collective at the end of the iteration similar
to how we create the original queue with PageRank. We also track the sum size
of all queues over all tasks (globalSize) and use it as a stopping criteria for the
algorithm (i.e. there are no more vertices left to explore on any task). Again, our
implemented algorithms that follow this template are extremely parallelizable, with
the only serial portions being the global communication operations. We’ll describe
in a bit more detail how we handle the queues within shared memory next.

11.3.5 MPI+OpenMP

Due to the overheads associated with handling graphs in distributed memory, which
tend to increase with an increasing MPI task count, utilizing all available intra-node
parallelism is extremely important for maximizing performance. As mentioned, we
employ OpenMP shared-memory parallelism to allow us all available cores while
keeping MPI task counts as low as possible. The biggest concerns with this model
are the addition of synchronization overheads among threads as well as minimizing

206

Algorithm 11.2 Distributed BFS
1: procedure BFS-dist(G(V,E), root)
2: nprocs← numTasksMPI()
3: procid← localTaskNum()
4: Status(1 · · · v)← −2
5: level = 0
6: globalSize = 1
7: if getTask(root) = procid then
8: Q← root

9: while globalSize 6= 0 do
10: NumSend(1 · · ·nprocs)← 0
11: for all v ∈ Q thread parallel do
12: if Status(v) ≥ 0 then
13: continue
14: else
15: Status(v)← level

16: for u ∈ E(v) do
17: if Status(u) = −2 then
18: Status(u)← −1
19: t = getTask(u)
20: if t = procid then
21: Qnext ← u
22: else
23: Qsend ← u
24: NumSend(t)← NumSend(t) + 1
25: SendOffs(1 · · ·nprocs)← prefSums(NumSend)
26: SendOffsCpy ← SendOffs
27: for all v ∈ Qsend thread parallel do
28: t = getTask(v)
29: vSend(SendOffsCpy(t))← globalId(v)
30: SendOffsCpy(t)← SendOffsCpy(t) + 1
31: vRecv ← Alltoallv(vSend,NumSend, SendOffs)
32: for i ∈ |vRecv| thread parallel do
33: Qnext ← localId(i)
34: swap(Q,Qnext

35: globalSize← Allreduce(|Q|, SUM)
36: level← level + 1

the effects of intra-node load imbalance.
All of our implemented algorithms use some form of a queue for passing updates

207

between tasks. Having multiple threads concurrently writing to a shared queue is
not necessarily scalable in terms of both cache utilization efficiency and the number
of atomic operations required. To minimize the impact of these unavoidable
issues, we implement thread-local queues. To demonstrate our thread-local queue
implementation, we explicitly show how they are used during the initialization
of the vSend and pSend queue for PageRank in Algorithm 11.3. This method is
generalizable for updating queues in all of our algorithms.

For Algorithm 11.3, we assume first thatNumSend, SendOffs, and SendOffsCpy
have already been initialized. We then initialize thread-owned queues vSendt and
pSendt that will be used to temporarily hold updates to the vSend and pSend

queues. The size of these thread-owned queues will optimally be dependent on CPU
architecture and cache size. We also have another thread-owned array NumSendt
that holds per-task counts for the current contents of the thread’s queues. When
a thread fills its queue, it pushes updates to the global queues. First, it does the
equivalent of an atomic fetch-and-add to get an offset (ot) for the location in the
send queue for each task. We can just overwrite the values in NumSendt to hold
these offsets. It then goes through the contents of its queues, placing the vertices
and per-vertex PageRank values into the task-level queues starting at the proper
offsets. When a thread finishes all of it’s work during the main loop, it empties
whatever remains of its queue in the same way. This straightforward strategy
can improve cache performance and greatly decrease the total number of atomic
operations when using thread queues. We utilize variants of this strategy within
each of our implemented algorithms.

11.4 Data and Setup
We primarily use the NCSA Blue Waters supercomputer for our large scale graph
analysis. Blue Waters is a hybrid Cray XE6/XK7 system with around 22,500
XE6 compute nodes, and 4200 XK7 compute nodes. Each XE6 node contains two
AMD Interlagos 6276 processors. There are four NUMA domains per node, each
with four cores and sharing a 8 MB L3 cache. The memory capacity of each node
is 64 GB and the peak memory bandwidth is 102.4 GB/s. We do not use the
GPU-accelerated XK7 partition of Blue Waters. One of the main reasons we chose
Blue Waters was the high-performance file system. The Lustre-based scratch file

208

Algorithm 11.3 Distributed PageRank initialization demonstrating OpenMP
thread queuing.
1: procedure PageRank-dist(G(V,E), δ)
2: nprocs← numTasksMPI()
3: procid← localTaskNum()
4: · · ·
5: begin parallel
6: vSendt[Q_SIZE]← ∅
7: pSendt[Q_SIZE]← ∅
8: NumSendt(1 · · ·nprocs)← 0
9: for all v ∈ V thread parallel do
10: PageRanks(v)← initPR(v)
11: ToSend(1 · · ·nprocs)← false
12: for all u ∈ E(v) do
13: t = getTask(u)
14: if t 6= procid and ToSend(t) 6= true then
15: ToSend(t)← true
16: vSendt ← globalID(v)
17: pSendt ← PageRanks(v)
18: NumSendt(t)← NumSendt(t) + 1
19: count← count+ 1
20: if count > Q_SIZE then
21: for i = 1 · · ·nprocs do
22: atomic capture
23: ot ←
24: SendOffsCpy(t) + = NumSendt(t)
25: NumSendt(t)← ot −NumSendt(t)
26: for i = 1 · · · count do
27: tt← getTask(vSendt(i))
28: vSend(NumSendt(tt))← vSendt(i)
29: pSend(NumSendt(tt))← pSendt(i)
30: NumSendt(tt)← NumSendt(tt) + 1
31: NumSendt(1 · · ·nprocs)← 0
32: for i = 1 · · ·nprocs do
33: atomic capture
34: ot ← SendOffsCpy(t)+ = NumSendt(t)
35: NumSendt(t)← ot −NumSendt(t)
36: for i = 1 · · · count do
37: tt← getTask(vSendt(i))
38: vSend(NumSendt(tt))← vSendt(i)
39: pSend(NumSendt(tt))← pSendt(i)
40: NumSendt(tt)← NumSendt(tt) + 1
41: barrier
42: · · ·
43: return PageRanks

system uses 180 Scalable Storage Units (SSUs) and the rated I/O bandwidth is

209

a remarkable 960 GB/s. We compile our C++ programs using Intel’s compilers
(version 15.0.0) and use the Intel Programming Environment (version 5.2.40) and
Cray-MPICH version (7.0.3). Some of our experiments were also run on the Sandia
National Labs Compton testbed. Each node of Compton is a dual-socket system
with 64 GB main memory and Intel Xeon E5-2670 (Sandy Bridge) CPUs at 2.60
GHz and 20 MB last-level cache running RHEL 6.1.

Graph n m Davg Source
Web Crawl 3.5 B 129 B 36 [214]

R-MAT 3.5 B 129 B 36 [87]
G(n, p) 3.5 B 129 B 36
R-MAT 225-232 229-236 16 [87]
G(n, p) 225-232 229-236 16

Host 89 M 2.0 B 22 [214]
Pay 39 M 623 M 16 [214]

Twitter 53 M 2.0 B 38 [73]
LiveJournal 4.8 M 69 M 14 [70]

Google 875 K 5.1M 5.8 [70]

Table 11.2. Real world and generated graphs used during experiments.

For our large-scale experiments, we run our analysis codes on the largest publicly
available graph known to the authors: the 2012 Web Data Commons hyperlink
graph. The 2012 graph is available for download with three levels of aggregation:
at page-level, at the granularity of subdomains/hosts, and at the granularity of pay-
level-domain (PLD). We primarily work with the page-level graph in this chapter,
but use the smaller graphs for comparisons to related work. Also for our comparitive
analysis, we run on the LiveJournal and Google graphs from SNAP [69, 70] and
the Twitter crawl from the Max Planck Institute [73]. For additional large-scale
experiments, we generated an R-MAT and Erdös-Rényi G(n, p) graphs of equivalent
size to the web crawl for comparative analysis. We also generated R-MAT and
G(n, p) graphs of scale 25 to 32 for a weak scaling analysis. The R-MAT graphs
were generated with Graph500 parameters (A=0.57, B=0.19, C=0.19, D=0.05).
We do not pre-process or prune the graphs in any way, and use the ordering as
given from the original source (or as generated) when determining vertex and edge
block partitionings. A summary of all graphs is given in Table 11.2.

210

11.5 Performance Results

11.5.1 End-to-end Analytic Execution Time

We demonstrate the performance of the data ingestion and graph creation phases.
Column 2 of Table 11.3 lists the total web graph I/O read time when varying the
number of compute nodes on Blue Waters, with a single MPI task per node. These
times correspond to read bandwidths between 20-30 GB/s, which is under a minute
total to read the edges into memory. We primarily note that using a larger number
of tasks generally corresponds to faster I/O. This is possibly due to the lower read
volume requirement for each task, so slowdowns from a single task due to network
traffic and concurrent file system accesses end up having a lesser effect on total
time. Table 11.3 also shows the running times in seconds for exchanging both
outgoing and incoming edges, as well as the time to create the final distributed
CSR representation when varying the numbers of tasks. We note a degree of strong
scaling with increasing task count. We also include in Table 11.3 a performance
rate in billions of edges processed per second (GE/s), corresponding to the total
number of edges processed (128 billion in- and 128 billion out-edges).

Time (s) Perf
Nodes Read Excg LConv Total Rate (GE/s) Speedup

256 47 109 41 197 1.30 1.00×
512 45 90 33 168 1.52 1.17×
1024 42 61 27 130 1.97 1.51×
2048 34 55 24 113 2.27 1.74×
4096 39 68 23 130 1.97 1.51×

Table 11.3. Parallel performance for various stages of graph construction.

Table 11.4 gives the total execution times of all of our algorithms with the
web crawl running on 256 nodes of Blue Waters with the various partitioning
strategies (WC-np, WC-mp, WC-rand). We also include times for the equivalently-
sized R-MAT and G(n, p) graphs; we just use vertex block partitioning for the
synthetic graphs. We note the total end-to-end execution time for the vertex block
partitioning strategy (WC-np) to be about 20 minutes when including I/O and
preprocessing. The k-core and label propagation algorithms are noted as taking
the longest computation time, as k-core requires multiple iterations of breadth-first

211

searches and label propagation is the most computationally challenging due to the
repeated hash map accesses on its inner loop. However, both of these algorithms
each still finish in well under 10 minutes under all three partitioning sceneries with
the hyperlink graph. The synthetic graphs take longer to perform label propagations
due to lack of good locality in either graph, and additionally poor load imbalance
for the R-MAT graph.

Analytic WC-np WC-mp WC-rand R-MAT G(n, p)
PageRank 87 111 227 125 121

Label Propagation 400 435 367 993 992
WCC 19 21 41 59 69

Harmonic Centrality 54 46 101 252 84
K-core 445 363 583 579 481
SCC 184 108 184 89 83

Table 11.4. Exec. Times on 256 Nodes of Blue Waters.

11.5.2 Weak and Strong Scaling

We run two sets of experiments to examine the scalability of our approach. First
we’ll examine how our algorithms perform under weak scaling on generated graphs.
Figure 11.1 gives the execution time of harmonic centrality and PageRank on
generated R-MAT and GNP graphs. The R-MAT graphs are generated with
Graph500 parameters and all graphs have an average degree of 16. The number of
nodes being run on is varied from 8 to 1024 with 223 vertices per node (graphs of
scale 25 to 32). We just assume a simple vertex block partitioning for these tests.
We observe that our harmonic centrality code scales extremely well on the GNP
until 1024 nodes, where communication times for the collective operations begin
to increase. We note that the R-MAT graph doesn’t scale quite as well, due to
communication and work imbalances introduced by the large degree vertices. For
PageRank, we note that the code scales moderately well on both graph instances.

Next, we will look at strong scaling at the large scale. Figure 11.2 gives the
strong scaling of our label propagation implementation running on 256-4096 nodes
of Blue Waters. We look at the scaling of the web crawl with the various partitioning
strategies as well as generated R-MAT and GNP graphs with equivalent numbers of
vertices and edges. We note that our label propagation code scales quite well on the

212

● ● ●
●

●

●

●

●

● ● ●
●

●

●

●
●

 HarmonicCentrality PageRank

0

50

100

150

200

250

8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Nodes

E
xe

cu
tio

n
T

im
e

(s
)

Graph ● R−MAT GNP

Figure 11.1. Weak scaling of R-MAT and GNP graphs of scale 25 to 32 size running
on 8-1024 nodes of Blue Waters.

generated graphs and best on the web crawl when using the random partitioning,
with a geometric mean speedup of 3.6× across all tests. The scaling drops off on
the block partitioning strategies at high node counts due to load imbalance.

●
●

● ● ●

3

6

9

256 512 1024 2048 4096
Nodes

S
pe

ed
up

Graph ● WC−np WC−mp WC−rand R−MAT GNP

Figure 11.2. Strong scaling of the Web Crawl graph as well as R-MAT and GNP graphs
of equivalent size running Label Propagation on 256-4096 nodes of Blue Waters.

To more closely examine the effect of partitioning selection on scalability,
we break our execution time into three components: time each task spends in
computation, time each task spends idle waiting for updates from other tasks,
and total time spent in communication. We track the minimum, maximum, and
average across all tasks for each of these stages. For the web crawl on 256-4096
these results are reported for PageRank. For consistency, we scale each data point
as the execution time ratio for each component relative to the total time.

Looking at Figure 11.3, we note that average relative computational time is

213

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

 Avg Max Min

0.0

0.2

0.4

0.6

0.8

0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.2

0.4

0.6

25
6

51
2

10
24

20
48

40
96 25

6

51
2

10
24

20
48

40
96 25

6

51
2

10
24

20
48

40
96E
xe

c.
 R

at
io

 (
C

om
p)

Partitioning ● Random EdgeBlock VertBlock

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

 Avg Max Min

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

25
6

51
2

10
24

20
48

40
96 25

6

51
2

10
24

20
48

40
96 25

6

51
2

10
24

20
48

40
96E

xe
c.

 R
at

io
 (

C
om

m
)

●
● ●

●
●

●

●

●

●

●

● ● ●

●

●

 Avg Max Min

0.2

0.4

0.6

0.2

0.4

0.6

0.8

0e+00

2e−04

4e−04

6e−04

25
6

51
2

10
24

20
48

40
96 25

6

51
2

10
24

20
48

40
96 25

6

51
2

10
24

20
48

40
96

Nodes

E
xe

c.
 R

at
io

 (
Id

le
)

Figure 11.3. Minimum, maximum, and average per-task execution time ratio of com-
putation, communication, and idle times for scaling from 256 to 4096 nodes on Blue
Waters.

very high for random partitioning versus the block methods. This is due to two
reasons. This first being that we retain the relatively good ordering with the
block-based strategies, which gives us good intra-node cache performance. The
block strategies also have a lower relative number of ghost nodes and therefore
lower number of total global and local id lookups and hash map accesses. The
maximal computational ratios are consistent among partitionings due to very high
degree vertices that result in long computational times regardless of placement.
We note that the communication ratio increases with increasing node count, as is
expected when strong scaling. The idle times are mostly related to imbalances in
computation, as larger computation imbalance leads to some tasks being delayed at
a synchronization or communication point while waiting for the longest running task
to complete its portion of work. We in general observe that random partitioning has
the lowest average and max idle times as it inherently has the best work balance.
Minimum idle times are near zero, as is expected. What appears to be a large

214

increase in idle time for random at 2048 is just system noise; its unscaled value is
still well under one second.

11.6 Comparison to Prior Work
We will now directly compare our code against some of the most popular available
frameworks designed for large graph analysis. For direct comparison, we focus
on frameworks that utilize in-memory graph storage. We compare to GraphX,
PowerLyra, and PowerGraph. GraphX is the Apache Spark API designed for
parallel graph computation in memory. PowerGraph and PowerLyra are both
GraphLab derivatives designed to more efficiently process graphs with a skewed
degree distribution, such as the web crawls and social networks we test on, with
PowerLyra offering a more advanced partitioning strategy that differentiates between
high and low degree vertices. In addition, we also compare to the external memory
framework of FlashGraph, which can utilize arrays of external SDDs, as it is the only
other framework known to the authors that has reported performance numbers on
the Web Crawl. Although our primary goal was to maximize the balance between
ease of implementation and computational efficiency, we admit that there are far
more metrics for comparison than what we will show by just comparing execution
times (fault tolerance, programmability, etc.).

We perform our comparison on Compton. Figure 11.4 gives comparison of
our code running on 16 nodes (SRM-16) to GraphX (GX), PowerGraph (PG),
and PowerLyra (PL). We also compare our single node performance (SRM-1)
to FlashGraph. We compare to FlashGraph running in both in-memory only
standalone (FG-SA) and while using external SDD and SAFS (FG) modes. We
note that we did not have an SSD array at our disposal for these experiments, as
each Compton node only has a single SSD attached, so the numbers for FlashGraph
running with SAFS are much higher than what is reported by the FlashGraph
authors. The numbers might only be considered as what typically would be
measured in an average high performance computing setting without access to
specialized hardware. We look at the performance of our PageRank and WCC
implementations on the Host, Pay, Twitter, LiveJournal, and Google graphs using
random partitioning. We compare directly to the supplied implementations of
PageRank and (weakly) connected components for each of the frameworks. We

215

setup each framework to explicitly utilize all available memory and cores on each
node when possible.

 Google LiveJournal Twitter Pay Host

0.1

1

10

100
S

R
M

−
1

S
R

M
−

16 F
G

F
G

−
S

A
G

X
P

G P
L

S
R

M
−

1
S

R
M

−
16 F
G

F
G

−
S

A
G

X
P

G P
L

S
R

M
−

1
S

R
M

−
16 F
G

F
G

−
S

A
G

X
P

G P
L

S
R

M
−

1
S

R
M

−
16 F
G

F
G

−
S

A
G

X
P

G P
L

S
R

M
−

1
S

R
M

−
16 F
G

F
G

−
S

A
G

X
P

G P
L

P
R

 E
xe

c.
 T

im
e

(s
)

 Google LiveJournal Twitter Pay Host

0.1
1

10
100

S
R

M
−

1
S

R
M

−
16 F
G

F
G

−
S

A
G

X
P

G P
L

S
R

M
−

1
S

R
M

−
16 F
G

F
G

−
S

A
G

X
P

G P
L

S
R

M
−

1
S

R
M

−
16 F
G

F
G

−
S

A
G

X
P

G P
L

S
R

M
−

1
S

R
M

−
16 F
G

F
G

−
S

A
G

X
P

G P
L

S
R

M
−

1
S

R
M

−
16 F
G

F
G

−
S

A
G

X
P

G P
L

Framework

W
C

C
 E

xe
c.

 T
im

e
(s

)

Figure 11.4. Comparison of our code running on Compton to various popular graph
analytic frameworks.

As can be seen in Figure 11.4, we observe considerably higher performance
with our code on both PageRank (top) and WCC (bottom). Running on 16 nodes,
GraphX, PowerGraph, and PowerLyra all failed to process some of the larger graphs.
None of the three were able to process the Twitter graph for either algorithm. The
causes of failure were noted as being out of memory and related errors. Overall, our
code offers geometric mean speedups relative to the other distributed codes across
all graphs of 38× for PageRank and 201× for WCC (mean of 78× across both
algorithms and all frameworks) on 16 nodes. Running on a single node, FlashGraph
in standalone mode gave the most comparable results, with our code having a mean
speedup of 2.4× and 2.6× relative to FlashGraph-SA and 12× and 19× relative to
FlashGraph with SAFS for PageRank and WCC, respectively. We point out that
our speedups for WCC are likely much larger than the speedups for PageRank due
to our use of the relatively more efficient Multistep algorithm instead of traditional
single-stage WCC approaches.

216

11.6.0.1 Further Comparisons

Other works have recently processed or analyzed graphs of similar scale on similar
scale systems, so we will also do some implicit comparisons of our execution times
relative to those reported in literature. A recent paper [41] describing Facebook’s
Giraph processing framework ran label propagation and PageRank on several
Facebook snapshots of similar scale to the web crawl. On a 701 M vertex and 48 B
edge graph, they report per-iteration times of 9.5 minutes for a label propagation
algorithm on 200 nodes. On a 2 B vertex and 400 B edge graph, they report
per-iteration times of 5 minutes for PageRank. By comparison, on the 3.5 B
vertex and 129 B edge web crawl on 256 nodes, our per-iteration times are 40
seconds and 2.15 seconds for label propagation and PageRank, respectively. Recent
related work by Microsoft demonstrated their Trinity graph processing system [39].
They report per-iteration times for PageRank and BFS on 8 nodes for processing
an approximately scale 28 R-MAT graph of average degree 13 to be about 15
seconds per iteration for PageRank and 200 seconds for BFS. Re-running the same
experiments on 8 nodes of Compton, we observe execution times of 1.5 seconds per
iteration for PageRank and a total time of about 32 seconds for BFS. Although
hardware limitations limited our ability to directly compare against FlashGraph
on the web crawl, they report [35] execution times of 461 seconds for WCC and
68 seconds per iteration for PageRank on a test machine with 32 cores and an
attached array of 15 SSDs. Our time on 256 nodes for WCC was 19 seconds and
for PageRank it was 2.15 seconds per iteration as mentioned.

11.6.0.2 Other Related Work

Orthogonal to the above efforts, there are a number of other graph frameworks for
graph analytics in distributed memory systems. Satish et al. [215] compare a subset
of these frameworks, hand-optimized code, and other codes. They demonstrate
that the performance gap between native code and using a framework is huge:
2-30× in most cases but as high as 300× in some cases. While processing their
largest real-world graph of a Twitter crawl with 61 M vertices and 1.4 B edges,
their hand optimized version takes ∼3 seconds for an iteration of the PageRank
and ∼5 seconds for the BFS using four nodes.

The introduction of the Graph500 benchmark [124] has increased the relevance

217

of supercomputers for graph analytics. The top ten of the most recent Graph500
list are all supercomputers designed for general problems. The focus of Graph500
is on one benchmark application (BFS) with a synthetic graph (R-MAT). This
has lead to renewed interest in the race for achievable GTEPS and algorithms for
BFS/R-MAT related problems [157,173,188]. All these work focused on scaling the
Graph500 benchmark or similar algorithm on various synthetic graphs. They vary
on the data layout (vertex vs edge distribution), handling of high degree vertices,
communication layer and the BFS algorithm used. These works are some of the
largest analysis on synthetic graphs before this work. In contrast, we analyze a
real world graph of similar size but use richer analytics. Additionally, some of the
optimizations used for the optimized BSF benchmark are not necessarily applicable
across a broader algorithmic class.

11.7 Web Graph Analysis
Using our implementations, we were able to explore the structure of the web crawl
in detail. We present some of the more interesting results in this section.

11.7.1 Computing Global Statistics

To verify the integrity of the ingested binary web crawl data and get a sense of
the global structure, we first computed and now present the out- and in-degree
distributions. In Figure 11.5, we plot these distributions as cumulative fractions of
total edges versus total vertices, with vertices sorted in decreasing order of degree.
We also plot an in-degree distribution of our generated similar-scale G(n, p) random
graph.

As was observed by Muesel et al. [216], we see a very skewed degree distribution.
A small fraction of vertices account for the vast majority of the total incoming
edges. The solid vertical line indicates a 5% cumulative fraction of vertices, which
own over 83% of all incoming edges. The highest in-degree vertex in the crawl,
www.youtube.com, has about 93 million incoming links. The bias for outgoing
edges is not as skewed, with 5% of vertices owning 34% of the edges and a maximal
degree of about 56 thousand. However, we mention that there were also some
settings in the original crawl that prevented exploring pages with a large collection

218

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Cumulative Vertex Fraction

C
um

ul
at

iv
e

E
dg

e
F

ra
ct

io
n

Type GNP−In WC−In WC−Out

Figure 11.5. Cumulative vertex versus in and out edge fraction for the web crawl and
random graph.

of hyperlinks, and so the out-degree is artificially bounded.
We note two additional observations about the web crawl that were not men-

tioned in the prior Muesel et al. paper. Firstly, there are about 120 million vertices
in the crawl having no incoming or outgoing connections. Secondly, there is a large
number of repeated edges. For some of the high degree vertices, only about 75% of
their incident edges are unique. This knowledge is especially useful for trimming
and preprocessing the graph in order to reduce storage requirements and improve
execution times of algorithms that ignore repeated edges during execution (e.g.
SCC, harmonic centrality). We believe both may be artifacts of the web crawl,
especially the first, possibly due to the large number of seeds.

11.7.2 Centrality Measures

We also compute several centrality metrics as part of our analytics test suite.
Centrality measures generally indicate the relative importance of a single vertex in
graph. We look at the centrality measures of harmonic centrality, PageRank, as
well as in-degree and out-degree.

Previously, the Web Data Commons team and Meusel et al. calculated centrality
measures on the condensed host graph. In order to gain a different perspective on
the highest vertices by centrality, we chose instead to calculate centrality measures
on the full page graph. The top-scoring results for centrality values of out-degree,
in-degree, PageRank, and harmonic centrality are given in Table 11.5. Note that

219

Out-degree In-degree PageRank* Harmonic*

photoshare.ru/.. youtube.com youtube.com wordpress.org
dvderotik.com/.. wordpress.org youtube.com/t/.. twitter.com
zoover.be/.. youtube.com/t/.. youtube.com/testtube twitter.com/privacy
cran.r-project.org/.. youtube.com/.. youtube.com/t/.. twitter.com/about
cran.rakanu.com/.. youtube.com/t/.. youtube.com/t/.. twitter.com/tos
linkagogo.com/.. youtube.com/.. tumblr.com twitter.com/account/..
cran.r-project.org/.. youtube.com/t/.. google.com/intl/en/.. twitter.com/account/..
fussballdaten.de/.. gmpg.org/xfn/11 wordpress.org twitter.com/about/resources
fussballdaten.de/.. google.com google.com/intl/.. twitter.com/login
fussballdaten.de/.. google.com/intl/.. google.com twitter.com/about/contact

Table 11.5. The top 10 web pages according to different centrality indices (* Harmonic,
PageRank centrality rankings are approximate).

we consider the PageRank values approximate, as we report the top scores after 20
iterations. The harmonic centrality values are also considered approximate, because
we only calculated the values for the top 100 vertices by in-degree.

There are several conclusions that can be reached based on the results of
Table 11.5. The foremost being that out-degree does not have any significance
as a centrality measure in this crawl. Looking at the other three columns, we
note consistent similarities in the sites that appear between our results, and those
calculated on just the host level graph (e.g. youtube, wordpress, google, gmpg,
twitter). However, we also note how pages belonging to the same host consistently
appear together in the rankings. As we will show with our next analytic, a number
of these vertices are found to additionally appear in similar dense communities. We
observe this trend continuing well beyond just the top 10 scoring pages, though
these additional results are omitted for brevity. Overall, it is apparent that using the
full page-level graph can be quite noisy, indicating the necessity for preprocessing
and aggregating the page-level graph. While considering only the host-level graph
for analysis and extraction of useful information is one way to do this (e.g. Meusel
et al.), other potential approaches require further study.

11.7.3 Community Structure

Exploring dense clusters or communities in networks has been the focus of a lot of
recent research [47,70,72,217–221]. Recently, the label propagation algorithm [145]
has received considerable attention due to the fact that it gives high-quality and
stable communities, is very scalable, and is also easy to implement and parallelize.
Table 11.6 gives the largest communities obtained after running our label prop-

220

nin min mcut Representative vertex
57 1600 30 www.youtube.com
55 46 440 www.google.com/intl/en/..
17 370 400 www.tumblr.com
13 383 226 www.amazon.com
9 515 84 creativecommons.org/..
7 176 426 wordpress.org/..
5 38 194 www.flickr.com/..
4 120 147 www.google.com
4 281 18 tripadvisor.com
1 19 30 gmpg.org/xfn/

112 2126 32 www.youtube.com
18 548 277 www.tumblr.com
9 516 84 creativecommons.org/..
8 186 85 wordpress.org/..
7 57 83 www.amazon.com
6 41 21 www.flickr.com/..
6 39 58 askville.amazon.com
4 133 142 www.google.com
4 280 18 tripadvisor.com
3 78 13 www.househunt.com

Table 11.6. The top 10 communities ordered by vertex count, as given by our clustering
output. The top half shows the list after 10 iterations, and the bottom list is after 30
iterations.

agation algorithm for 10 (top) and 30 (bottom) iterations. We give the number
of vertices in the community (nin), the number of intra-community edges (min),
and well as the number of cut edges (mout). These results are produced from
separate runs, but demonstrate the previously-observed stability of communities
produced from label propagation [222], as we note high similarity between the two
lists (this is especially apparent with the Tumblr, WordPress, and TripAdvisor
communities). The biggest difference we observe when increasing the number of
iterations of label propagation is that the communities become denser and the
intra-community versus inter-community edge ratio increases. Additionally, it is
possible that large communities end up merging. Notably, it appears the two largest
communities from the 10 iteration run would have eventually combined in the sub-
sequent iterations, possibly a result of the high number of outgoing edges from the

221

www.google.com/intl/en/.. community into the www.youtube.com community.

Figure 11.6. Frequency plot of community structure

We plot the frequency of community sizes produced after 30 iterations of label
propagation on the web crawl in Figure 11.6. This plot has a striking similarity to
the frequency plots of in-degree, out-degree, WCC, and SCC in Meusel et al. [216].
We note that this potentially gives additional credibility to the notion of an intrinsic
heavy-tailed structure that has been observed previously in web crawls.

11.7.4 K-core Distribution

We finally use our approximate k-core implementation to explore the k-core decom-
position of the web crawl. We capture the maximal approximate k-core sizes versus
k-core values we retrieved during our analysis of the web crawl. These are plotted
as cumulative fractions in Figure 11.7. We observe the sizes of the approximate
k-cores are quite large, dropping below 500 million vertices only after reaching a
k-core value of 128. However, by about a k-core value of 1024, only a small fraction
of vertices remain (20 million, or about 0.5%). This demonstrates the existance of a
very highly connected and dense central component to the web. These approximate
k-core results can be refined, if necessary, to compute exact k-core values.

11.8 Conclusion
In this chapter, we focused on the implementation and optimization of graph
analytics on HPC systems to process billion vertex scale graphs. We introduce our

222

0.25

0.50

0.75

1.00

1 2 8 2^5 2^10 2^15 2^20 2^25
Approximate K−core

C
um

ul
at

iv
e

V
er

te
x

F
ra

ct
io

n

Figure 11.7. Cumulative fraction of vertices versus approximate k-core values.

approach in detail along with our implemented algorithms and describe how our
approach might be extended to a broader class of graph analytics. We demonstrate
that our code can both scale to over 65 K cores of a large scale supercomputer
while also delivering high performance on a single node. Comparing to previous
works, we show our code runs up to several orders of magnitude faster and is able
to process larger graphs than other frameworks in the limited memory of a small
cluster. Our code isn’t needlessly complex, either. Each implemented analytics fits
in only a couple hundred lines of C code. Using our implementation, we’re able to
run an end-to-end analysis of a 3.5 billion vertex and 129 billion edge web crawl in
minutes, and provide novel insight into the structure of the web.

223

Chapter 12 |
Concluding Remarks

Graph-structured data is ubiquitous throughout all of the social and physical
sciences. From protein interaction networks to electrical networks to human
interaction and epidemiological networks, the ability to study and analyze graphs
is challenging in its variance. With the explosive growth of the Internet and on-line
communication possible between a majority of humans and their devices, the scale of
real-world datasets makes utilizing modern high performance computing hardware
a necessity for complex graph analysis. Overall, this thesis sought to find general
purpose techniques for implementing a wide variety of complex analytics aimed
at graphs from a wide variety of domains utilizing modern computational systems.
This thesis further opens the door for considerable future work across all of the
topics introduced and explored.

12.1 Summary of Contributions
This thesis introduced a new and highly optimized implementations of the color-
coding approach for subgraph counting and enumeration, Fascia, as well as for
minimum-weight path finding, FastPath. Utilizing work avoidance strategies,
memory-reduction techniques, efficient parallelization, and a low-cost representation
of the basic color-coding algorithm, Fascia and FastPath demonstrated orders-
of-magnitude improvement versus prior work. Utilizing Fascia, tree-structured
subgraphs were demonstrated as being a powerful analytic for cross-domain graph
analysis. Additionally, the tree-structured subgraphs found by Fascia were also
demonstrated to be a very useful feature for determining high quality network
alignments with FastAlign.

224

This thesis also introduced new algorithms for various graph connectivity
problems. Using knowledge from a study of prior decomposition techniques, the
Multistep approach for graph connectivity, weak connectivity, and strong con-
nectivity was introduced. Through various shared-memory optimizations, such as
multi-level queuing and other cache considerations, minimization of synchronization
overheads, and subroutine optimizations such as utilizing a direction-optimizing
breadth-first-search, the Multistep algorithms offered at least a 2× average
speedup compared to prior art. These various optimizations were leveraged while
developing new algorithms for biconnectivity, which again offered considerable
speedups when compared to the prior art. These optimizations were used along
with new optimizations, such as loop collapse methods, to develop a general ap-
proach for implementing these and similarly-structured algorithms on manycore
processors such as GPUs and Intel Xeon Phis.

As scalability for graph algorithms in a distributed environment is highly depen-
dent on the methodology used for storing and partitioning a given input graph to
the algorithm, another central topic of this thesis was graph layout and partitioning
in distributed memory. This thesis introduced PuLP, a graph partitioner designed
explicitly to account for the structural characteristics of real-world graphs commonly
arising from human and natural interactions. PuLP is able to calculate partitions
of a quality equal or better than other state-of-the-art approaches in a fraction of
the time while using a fraction of memory. Combing PuLP with a novel ordering
algorithm produced a method for distributed graph layout, DGL. While utilizing
DGL on a wide variety of distributed graph computations, consistent reductions in
execution times of up to an order-of-magnitude resulted when compared to naïve
approaches.

A final aspect of this thesis considered an end-to-end approach for efficient
distributed graph computations on graphs of very small to very large scales. This
approach utilized a number of the shared and distributed memory optimization
techniques as determined during prior research efforts. Compared to modern state-
of-the-art graph processing frameworks, several orders-of-magnitude speedups were
noted. Additionally, scalability to graphs with billions of vertices and hundreds of
billions of edges was possible, which enabled the analysis of what is the current
largest publicly available web crawl.

225

12.2 Future Directions
Future work will further extend Fascia to even larger networks and for scaling
to larger compute platforms. The all-to-all exchange step of Fascia is currently
a bottleneck in the distributed-memory implementation, and future work could
investigate alternatives communication approaches. For FastPath, combing the
general color-coding techniques introduced with Fascia, along with optimizations
of prior art to reduce per-iteration and total execution costs [65, 66, 101], would
further reduce computational costs for minimum weight pathway search and allow
scaling to larger networks and longer pathways. Future work with FastAlign
might explore a more complex network alignment approach that utilizes network-
specific information beyond degrees and subgraph counts. Additionally, combining
both graphlet and treelet counts might prove promising, although the development
of a similarity metric that combines subgraphs of varying sizes and structure might
be challenging. Further work would also strive to analyze node and interaction
correctness in addition to edge correctness, as these metrics are much more powerful
in providing better insight into the actual effectiveness of the alignment approaches.
Further quality and performance comparisons of sampling methods for subgraph
counting vs. the color-coding approach and the use of graphlets vs. treelets would
also make for interesting future work.

Future work with Multistep might be a more in-depth study of performance
optimizations for distributed processing of large-scale graph instances. The bi-
connectivity algorithms could benefit from a more theoretical analysis to identify
potential worst-case instances, with mitigation efforts to minimize the performance
effects. Focusing on more general performance tuning and experimental analysis of
the biconnectivity algorithms would also be useful future work. Using biconnectiv-
ity decompositions and relative component sizes to characterize graph structures,
particularly community structure in real-world social networks, will perhaps provide
novel insight. With regards to manycore processing, future work might involve
applying the developed methodology to a wide range of other graph analytics.
Further, there are several research efforts on using both the host and the accelerator
for graph analytic workloads [26, 156, 223], and this would correspondingly be
another avenue for future work.

Promising future work with PuLP would be to implement PuLP in a dis-

226

tributed setting to partition graphs too large to fit in the main memory of a
single compute node. The scalability of the label propagation technique makes
this a promising approach for partitioning larger graph instances than have ever
been demonstrated. Although not investigated with DGL, there are several other
promising ordering methods that might be applied to accelerate the computational
portions of distributed graph analysis [180,200,209,210]. More generally, a study
of the effects of a wider variety of ordering methods and partitioning objectives
and constraints might lead to greater insight into how best to represent graphs in
distributed memory space.

The work in a general approach for distributed graph analysis lays the foundation
for future research in three different directions. An investigation into a performance
portable compression method will allow us to run analytics in-memory with an even
smaller footprint on a small number of nodes. A smarter partitioning methodology,
while introducing considerably more complexity into the code, would allow us
to scale up to even larger graphs on system-scale runs of hundreds of thousands
of cores. This would be a definite use-case for a future distributed version of
PuLP. Additionally, the techniques described could be applied to dozens of other
graph analytics that follow the same general computational pattern, allowing more
in-depth analyses of graph instances up to massive scales.

227

Bibliography

[1] Pržulj, N. (2007) “Biological Network Comparison Using Graphlet Degree
Distribution,” Bioinformatics, 23(2), pp. e177–83.

[2] Conte, D., P. Foggia, C. Sansone, and M. Vento (2004) “Thirty years
of graph pattern matching in pattern recognition,” International Journal of
Pattern Recognitition and Artificial Intelligence.

[3] Broecheler, M., A. Pugliese, and V. Subrahmanian (2010) “Cosi:
Cloud oriented subgraph identification in massive social networks,” in Inter-
national Conference on Advances in Social Networks Analysis and Mining.

[4] Milo, R., S. Shen-Orr, S. Itzokovitz, N. Kashtan, D. Chklovskii,
and U. Alon (2002) “Network motifs: simple building blocks of complex
networks,” Science.

[5] Chandola, V., A. Banerjee, and V. Kumar (2009) “Anomaly detection:
a survey,” ACM comput. Surv.

[6] Defense Advanced Research Projects Agency (2008) DARPA Math-
ematical Challenges, Tech. Rep. BAA-07-68, DARPA.

[7] Babcock, B., S. Babu, M. Datar, R. Motwani, and J. Widom (2002)
“Models and issues in data stream systems,” in Proceedings of the 21st ACM
SIGNMOD-SIGACT-SIGART symposium on Priciples of database systems.

[8] et al., N. J. (1985) “On the complexity of the subgraph problem,” Common
Math.

[9] Zhao, Z., G. Wang, A. R. Butt, M. Khan, V. S. Kumar, and M. V.
Marathe (2012) “SAHAD: Subgraph analysis in massive networks using
Hadoop,” in IEEE 26th International Parallel and Distributed Processing
Symposium.

[10] Slota, G. M. and K. Madduri (2013) “Fast Approximate Subgraph
Counting and Enumeration,” in 2013 International Conference on Parallel
Processing (ICPP13).

228

[11] Broder, A., R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener (2000) “Graph structure in the
Web,” Computer Networks, 33, pp. 309–320.

[12] Mislove, A., M. Marcon, K. Gummadi, P. Druschel, and B. Bhat-
tacharjee (2007) “Measurement and analysis of online social networks,” in
Proc. 7th ACM SIGCOMM Conf. on Internet measurement (IMC ’07), pp.
29–42.

[13] Pinheiro, C. A. R. (2011) Social Network Analysis in Telecommunications,
SAS Institute Inc.

[14] Sarıyüce, A. E., K. Kaya, E. Saule, and U. V. Catalyürek (2013)
“Incremental Algorithms for Closeness Centrality,” in IEEE International
Conference on BigData.

[15] Orzan, S. (2004) On Distributed Verification and Verified Distribution, Ph.D.
thesis, Vrije Universiteit.

[16] Pothen, A. and C.-J. Fan (1990) “Computing the block triangular form
of a sparse matrix,” ACM Trans. on Mathematical Software (TOMS), 16(4),
pp. 303–324.

[17] Hopcroft, J. and R. Tarjan (1973) “Efficient Algorithms for Graph
Manipulation,” CACM, 16(6), pp. 374–378.

[18] Tarjan, R. E. (1972) “Depth first search and linear graph algorithms,”
SIAM Journal of Computing, 1, pp. 146–160.

[19] Fleischer, L. K., B. Hendrickson, and A. Pinar (2000) “On Identifying
Strongly Connected Components in Parallel,” in Parallel and Distributed
Processing, vol. 1800 of LNCS, Springer Berlin Heidelberg, pp. 505–511.

[20] Tarjan, R. E. and U. Vishkin (1985) “An efficient parallel biconnectivity
algorithm,” SIAM Journal on Computing, 14(4), pp. 862–874.

[21] Slota, G. M., S. Rajamanickam, and K. Madduri (2014) “BFS and
Coloring-based Parallel Algorithms for Strongly Connected Components and
Related Problems,” in Proc. Int’l. Parallel and Distributed Processing Symp.
(IPDPS).

[22] Saule, E. and U. V. Çatalyürek (2012) “An early evaluation of the
scalability of graph algorithms on the Intel MIC architecture,” in Parallel
and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International, IEEE, pp. 1629–1639.

229

[23] Hong, S., S. K. Kim, T. Oguntebi, and K. Olukotun (2011) “Acceler-
ating CUDA graph algorithms at maximum warp,” ACM SIGPLAN Notices,
46(8), pp. 267–276.

[24] Davidson, A. A., S. Baxter, M. Garland, and J. D. Owens (2014)
“Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths,” in
International Parallel and Distributed Processing Symposium, vol. 28.

[25] Merrill, D., M. Garland, and A. Grimshaw (2012) “Scalable GPU
graph traversal,” in ACM SIGPLAN Notices, vol. 47, ACM, pp. 117–128.

[26] Hong, S., T. Oguntebi, and K. Olukotun (2011) “Efficient parallel
graph exploration on multi-core CPU and GPU,” in Parallel Architectures and
Compilation Techniques (PACT), 2011 International Conference on, IEEE,
pp. 78–88.

[27] Bader, D. A., H. Meyerhenke, P. Sanders, and D. Wagner (2013)
“Graph Partitioning and Graph Clustering, 10th DIMACS Implementation
Challenge Workshop,” Contemporary Mathematics, 588.

[28] Bader, D. A., H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes,
and D. Wagner (2014) “Benchmarking for Graph Clustering and Partition-
ing,” in Encyclopedia of Social Network Analysis and Mining, pp. 73–82.
URL http://dx.doi.org/10.1007/978-1-4614-6170-8_23

[29] Karypis, G. and V. Kumar (1998) “A Fast and High Quality Multi-
level Scheme for Partitioning Irregular Graphs,” SIAM Journal on Scientific
Computing, 20(1), pp. 359–392.

[30] Slota, G. M., K. Madduri, and S. Rajamanickam, “Distributed Graph
Layout for Scalable Small-World Network Analysis,” .

[31] Gonzalez, J. E., R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica (2014) “GraphX: Graph Processing in a Distributed Dataflow
Framework,” in OSDI’14.

[32] Low, Y., J. E. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein (2014) “GraphLab: A New Framework For Parallel
Machine Learning,” CoRR, abs/1408.2041.

[33] Gonzalez, J. E., Y. Low, H. Gu, D. Bickson, and C. Guestrin (2012)
“PowerGraph: Distributed Graph-parallel Computation on Natural Graphs,”
in Proc. OSDI.

[34] Chen, R., J. Shi, Y. Chen, and H. Chen (2015) “Powerlyra: Differentiated
graph computation and partitioning on skewed graphs,” in Proc. ECCS, ACM,
p. 1.

230

[35] Zheng, D., D. Mhembere, R. C. Burns, and A. S. Szalay (2015)
“FlashGraph: Processing Billion-Node Graphs on an Array of Commodity
SSDs,” in Proc. FAST.

[36] Ching, A. and C. Kunz (2011) “Giraph: Large-scale graph processing
infrastructure on Hadoop,” Hadoop Summit, 6(29), p. 2011.

[37] Malewicz, G., M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski (2010) “Pregel: a system for large-scale
graph processing,” in Proc. SIGMOD, ACM, pp. 135–146.

[38] Kang, U., C. E. Tsourakakis, and C. Faloutsos (2009) “PEGASUS:
A Peta-Scale Graph Mining System Implementation and Observations,” in
Proc. ICDM.

[39] Shao, B., H. Wang, and Y. Li (2013) “Trinity: A distributed graph engine
on a memory cloud,” in Proc. SIGMOD.

[40] McSherry, F., M. Isard, and D. G. Murray, “Scalability! But at what
COST,” .

[41] Ching, A., S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukr-
ishnan (2015) “One trillion edges: graph processing at Facebook-scale,”
Proceedings of the VLDB Endowment, 8(12), pp. 1804–1815.

[42] Slota, G. M. and K. Madduri (2014) “Complex Network Analysis using
Parallel Approximate Motif Counting,” in 28th IEEE International Parallel
and Distributed Processing Symposium (IPDPS14).

[43] ——— (2015) “Parallel Color-Coding,” Parallel Computing, Systems & Ap-
plications, 47, pp. 51–69.

[44] ——— (2014) “Simple Parallel Biconnectivity Algorithms for Multicore Plat-
forms,” in IEEE International Conference on High Performance Computing.

[45] Slota, G. M., S. Rajamanickam, and K. Madduri (2015) “High-
performance Graph Analytics on Manycore Processors,” in International
Parallel & Distributed Processing Symposium (IPDPS).

[46] Slota, G. M., K. Madduri, and S. Rajamanickam (under review),
“Complex Network Partitioning Using Label Propagation,” .

[47] ——— (2014) “PuLP: Scalable Multi-Objective Multi-Constraint Partitioning
for Small-World Networks,” in IEEE International Conference on Big Data.

231

[48] Slota, G. M., S. Rajamanickam, and K. Madduri (2016) “A Case Study
of Complex Graph Analysis in Distributed Memory: Implementation and
Optimization,” in To appear in the Proc. IEEE Int’l. Parallel and Distributed
Proc. Symp. (IPDPS).

[49] Alon, N., R. Yuster, and U. Zwick (1995) “Color-coding,” J. ACM,
42(4), pp. 844–856.

[50] Cook, S. A. (1971) “The complexity of theorem-proving procedures,” in
Proceedings of the third annual ACM symposium on Theory of computing,
ACM, pp. 151–158.

[51] Pržulj, N., D. G. Corneil, and I. Jurisca (2004) “Modeling Interactome,
Scale-Free or Geometric?” Bioinformatics, 20(18), pp. 3508–3515.

[52] Alon, N., P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. Sahinalp
(2008) “Biomolecular network motif counting and discovery by color coding,”
Bioinformatics, 24(13), pp. i241–i249.

[53] Huan, J., W. Wang, and J. Prins (2003) “Efficient Mining of Frequent
Subgraphs in the Presence of Isomorphism,” in Proc. 3rd IEEE Int’l. Conf.
on Data Mining (ICDM), p. 549.

[54] Kuramochi, M. and G. Karypis (2001) “Frequent subgraph discovery.” in
In Proc. IEEE Int’l. Conf. on Data Mining (ICDM).

[55] Kashtan, N., S. Itzkovitz, R. Milo, and U. Alon (2004) “Efficient
sampling algorithm for estimating subgraph concentrations and detecting
network motifs,” Bioinformatics, 20(11), pp. 1746–1758.

[56] Wernicke, S. (2004) “Efficient Detection of Network Motifs,” IEEE/ACM
Trans. on Computational Biology and Bioinformatics, 3(4), pp. 347–359.

[57] Rahman, M., M. Bhuiyan, M. Al Hasan, et al. (2014) “Graft: An
efficient graphlet counting method for large graph analysis,” Knowledge and
Data Engineering, IEEE Transactions on, 26(10), pp. 2466–2478.

[58] Chen, J., W. Hsu, M. L. Lee, and S.-K. Ng (2006) “NeMoFinder:
dissecting genome-wide protein-protein interactions with meso-scale network
motifs,” in Proc. 12th ACM SIGKDD Int’l. Conf. on Knowledge Discovery
and Data mining (KDD), pp. 106–115.

[59] Pržulj, N., D. Corneil, and I. Jurisica (2006) “Efficient estimation
of graphlet frequency distributions in protein-protein interaction networks,”
Bioinformatics, 22(8), pp. 974–980.

232

[60] Milenkovič, T. and N. Pržulj (2008) “Uncovering Biological Network
Function via Graphlet Degree Signatures,” Cancer Informatics, 6, pp. 257–
273.

[61] Bordino, I., D. Donata, A. Gionis, and S. Leonardi (2008) “Mining
large networks with subgraph counting,” in Proc. 8th IEEE Int’l. Conf. on
Data Mining (ICDM), pp. 737–742.

[62] Zhao, Z., M. Khan, V. S. A. Kumar, and M. V. Marathe (2010)
“Subgraph Enumeration in Large Social Contact Networks using Parallel Color
Coding and Streaming,” in Proc. 39th Int’l. Conf. on Parallel Processing
(ICPP), pp. 594–603.

[63] Gülsoy, G., B. Gandhi, andT. Kahveci (2012) “Topac: alignment of gene
regulatory networks using topology-aware coloring,” Journal of bioinformatics
and computational biology, 10(01).

[64] ——— (2011) “Topology aware coloring of gene regulatory networks,” in
Proceedings of the 2nd ACM Conference on Bioinformatics, Computational
Biology and Biomedicine, ACM, pp. 435–440.

[65] Gabr, H., A. Dobra, and T. Kahveci (2012) “From Uncertain Protein
Interaction Networks to Signaling Pathways Through Intensive Color Coding,”
in Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
World Scientific, pp. 111–122.

[66] Hüffner, F., S. Wernicke, and T. Zichner (2008) “Algorithm engi-
neering for color-coding with applications to signaling pathway detection,”
Algorithmica, 52(2), pp. 114–132.

[67] Beckenbach, E. (1981) Applied Combinatorial Mathematics, Krieger Pub
Co.

[68] Klimmt, B. and Y. Yang (2004) “Introducing the Enron corpus,” in Proc.
1st Conf. on Email and Anti-Spam (CEAS).

[69] “Stanford Large Network Dataset Collection,” http://snap.stanford.edu/
data/index.html, last accessed July 2014.

[70] Leskovec, J., K. Lang, A. Dasgupta, and M. Mahoney (2009) “Com-
munity Structure in Large Networks: Natural Cluster Sizes and the Absence
of Large Well-Defined Clusters,” Internet Mathematics, 6(1), pp. 29–123.

[71] Network Dynamics and Simulation and Science Laboratory (2006)
Synthetic Data Products for Societal Infrastructures and Proto-Populations:
Data Set 1.0, Tech. Rep. NDSSL-TR-06-006, Virginia Polytechnic Institute
and State University.

233

[72] Yang, J. and J. Leskovec (2012) “Defining and Evaluating Network
Communities based on Ground-truth,” in Proc. IEEE Int’l. Conf. on Data
Mining (ICDM), pp. 745–754.

[73] Cha, M., H. Haddadi, F. Benevenuto, and K. P. Gummadi (2010)
“Measuring User Influence in Twitter: The Million Follower Fallacy,” in Proc.
Int’l. Conf. on Weblogs and Social Media (ICWSM).

[74] Boldi, P., B. Codenotti, M. Santini, and S. Vigna (2004) “UbiCrawler:
A Scalable Fully Distributed Web Crawler,” Software: Practice & Experience,
34(8), pp. 711–726.

[75] Davis, T. A. and Y. Hu (2011) “The University of Florida Sparse Matrix
Collection,” ACM Transactions on Mathematical Software, 38(1), pp. 1–25.

[76] Xenarios, I., L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and
D. Eisenberg (2002) “DIP, the Database of Interacting Proteins: a research
tool for studying cellular networks of protein interactions,” Nucleic Acids
Research, 30(1), pp. 303–305.

[77] Radivojac, P., K. Page, W. T. Clark, B. J. Peters, A. Mohan,
S. M. Boyle, and S. D. Mooney (2008) “An integrated approach to
inferring gene-disaese assicoations in humans,” Proteins.

[78] Omidi, S., F. Schreiber, and A. Masoudi-Nejad (2009) “MODA: an
efficient algorithm for network motif discovery in biological networks,” Genes
Genet Syst, 84(5), pp. 385–395.

[79] Leskovec, J., A. Singh, and J. Kleinberg (2006) “Patterns of influence
in a recommendation network,” Proc. 10th Pacific-Asia Conf. on Advances
in Knowledge Discovery and Data Mining (PAKDD), pp. 380–389.

[80] Kunegis, J., “KONECT - the Koblenz Network Collection,” konect.
uni-koblenz.de, last accessed July 2014.

[81] Leskovec, J., J. Kleinberg, and C. Faloutsos (2007) “Graph Evolution:
Densification and Shrinking Diameters,” ACM Trans. on Knowledge Discovery
from Data, 1(1).

[82] Bimal, V., A. Mislove, M. Cha, and K. Gummadi (2009) “On the
evolution of user interaction in Facebook,” in Proc. 2nd ACM Workshop on
Online Social Networks (WOSN), pp. 37–42.

[83] Ripeanu, M., A. Iamnitchi, and I. Foster (2002) “Mapping the Gnutella
Network: Properties of Large-Scale Peer-to-Peer Systems and Implications
for System Design,” IEEE Internet Computing, 6(1), pp. 50–57.

234

[84] Csardi, G. and T. Nepusz (2006) “The igraph software package for complex
network research,” InterJournal, Complex Systems, p. 1695.

[85] McAuley, J. and J. Leskovec (2012) “Learning to Discover Social Circles
in Ego Networks,” in Proc. 26th Annual Conf. on Neural Inf. Proc. Systems
(NIPS), pp. 548–556.

[86] Richardson, M., R. Agrawal, and P. Domingos (2003) “Trust Manage-
ment for the Semantic Web,” in Proc. 2nd Int’l. Semantic Web Conf. (ISWC),
pp. 351–368.

[87] Chakrabarti, D., Y. Zhan, and C. Faloutsos (2004) “R-MAT: A
Recursive Model for Graph Mining,” in Proc. Int’l. Conf. on Data Mining
(SDM).

[88] Ruskey, F., “The (Combinatorial) Object Server,” http://theory.cs.
uvic.ca/root.html, last accessed Feb 2014.

[89] Kuchaiev, O., T. Milenkovič, V. Memisević, W. Hayes, and
N. Pržulj (2010) “Topological network alignment uncovers biological func-
tion and phylogeny,” Journal of the Royal Society Interface.

[90] ——— (2010) Supplementary Information for: Topological network alignment
uncovers biological function and phylogeny, Tech. rep., University of California,
Irvine.

[91] Milenkovič, T., W. L. Ng, W. Hayes, and N. Pržulj (2010) “Optimal
Network Alignment with Graphlet Degree Vectors,” Cancer Informatics.

[92] Kuchaiev, O. and N. Pržulj (2011) “Integrative Network Alignment
Reveals Large Regions of Global Network Similarity in Yeast and Human,”
Bioinformatics.

[93] Memisević, V. and N. Pržulj (2012) “C-GRAAL: common-neighbors-
based global GRAph ALignment of biological networks,” Integrative Biology.

[94] Dost, B., T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, and R. Sharan
(2007) “QNet: a tool for querying protein interaction networks,” in Research
in Computational Molecular Biology, Springer, pp. 1–15.

[95] Shlomi, T., D. Segal, E. Ruppin, and R. Sharan (2006) “QPath: a
method for querying pathways in a protein-protein interaction network,” BMC
bioinformatics, 7(1), p. 199.

[96] Http://bio-nets.doc.ic.ac.uk/GRAAL_suppl_inf/.

235

[97] Collins, S. R., P. Kemmeren, X.-C. Zhao, J. F. Greenblatt,
F. Spencer, F. C. Holstege, J. S. Weissman, and N. J. Krogan (2007)
“Toward a comprehensive atlas of the physical interactome of Saccharomyces
cerevisiae,” Molecular & Cellular Proteomics, 6(3), pp. 439–450.

[98] Dyer, M. D., C. Neff, M. Dufford, C. G. Rivera, D. Shattuck,
J. Bassaganya-Riera, T. M. Murali, and B. W. Sobral (2010) PLoS
One.

[99] Shimoda, Y., S. Shinpo, M. Lphara, Y. Nakamura, S. Tabata, and
S. Sato (2008) DNA Res.

[100] Http://bio-nets.doc.ic.ac.uk/C-GRAAL/.

[101] Scott, J., T. Ideker, R. M. Karp, and R. Sharan (2006) “Efficient
algorithms for detecting signaling pathways in protein interaction networks,”
Journal of Computational Biology, 13(2), pp. 133–144.

[102] Kelley, B. P., R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R.
Stockwell, and T. Ideker (2003) “Conserved pathways within bacteria
and yeast as revealed by global protein network alignment,” Proceedings of
the National Academy of Sciences, 100(20), pp. 11394–11399.

[103] Steffen, M., A. Petti, J. Aach, P. D’haeseleer, and G. Church
(2002) “Automated modelling of signal transduction networks,” BMC bioin-
formatics, 3(1), p. 34.

[104] Chatr-Aryamontri, A., A. Ceol, L. M. Palazzi, G. Nardelli, M. V.
Schneider, L. Castagnoli, and G. Cesareni (2007) “MINT: the Molec-
ular INTeraction database,” Nucleic acids research, 35(suppl 1), pp. D572–
D574.

[105] Hüffner, F., S. Wernicke, and T. Zichner (2007) “FASPAD: fast
signaling pathway detection,” Bioinformatics, 23(13), pp. 1708–1709.

[106] Huang, D. W., B. T. Sherman, and R. A. Lempicki (2009) “System-
atic and integrative analysis of large gene lists using DAVID bioinformatics
resources,” Nature Protocols, 4(1), pp. 44–57.

[107] ——— (2009) “Bioinformatics enrichment tools: paths toward the compre-
hensive functional analysis of large gene lists,” Nucleic Acids Research, 37(1),
pp. 1–13.

[108] Deininger, M. W. N., J. M. Goldman, and J. V. Melo (2000) “The
molecular biology of chronic myeloid leukemia,” Blood, 96(10), pp. 3343–3356.

236

[109] Xie, A. and P. Beerel (2000) “Implicit enumeration of strongly connected
components and an application to formal verification,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 19(10), pp. 1225–
1230.

[110] Edwards, J. A. and U. Vishkin (2012) “Better speedups using simpler
parallel programming for graph connectivity and biconnectivity,” in Proc.
2012 Int’l. Workshop on Programming Models and Applications for Multicores
and Manycores, ACM, pp. 103–114.

[111] Agarwal, V., F. Petrini, D. Pasetto, and D. Bader (2010) “Scalable
Graph Exploration on Multicore Processors,” in Proc. Supercomputing.

[112] Beamer, S., K. Asanović, and D. Patterson (2012) “Direction-
Optimizing Breadth-First Search,” in Proc. Supercomputing (SC).

[113] Chhugani, J., N. Satish, C. Kim, J. Sewall, and P. Dubey (2012) “Fast
and Efficient Graph Traversal Algorithm for CPUs: Maximizing Single-Node
Efficiency,” in Proc. Supercomputing.

[114] Hong, S., N. C. Rodia, and K. Olukotun (2013) “On fast parallel
detection of strongly connected components (SCC) in small-world graphs,”
in Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, ACM, p. 92.

[115] Shun, J. and G. Blelloch (2013) “Ligra: A Lightweight Graph processing
Framework for Shared Memory,” in Proc. 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), pp. 135–146.

[116] Aho, A. V., J. E. Hopcroft, and J. D. Ullman (1983) Data Structures
and Algorithms, Addison-Wesley.

[117] W. McLendon III, B. Hendrickson, S. J. Plimpton, and L. Rauchw-
erger (2005) “Finding strongly connected components in distributed graphs,”
Journal of Parallel and Distributed Computing, 65(8), pp. 901–910.

[118] Barnat, J. and P. Moravec (2006) “Parallel Algorithms for Finding SCCs
in Implicitly Given Graphs,” Formal Methods: Applications and Technology,
4346, pp. 316–330.

[119] Plimpton, S. J. and K. D. Devine (2011) “MapReduce in MPI for Large-
scale graph algorithms,” Parallel Comput., 37(9), pp. 610–632.

[120] Intel (2011) Intel 64 and IA-32 Architectures Software Developer’s Manual,
System Programming Guide, Part 1, vol. 3A, Intel Press.

237

[121] Mehlhorn, K., S. Näher, and P. Sanders (2007), “Engineering DFS-
Based Graph Algorithms,” .

[122] Madduri, K. and D. A. Bader, “GTgraph: A suite of synthetic graph gen-
erators,” http://www.cse.psu.edu/~madduri/software/GTgraph/, last ac-
cessed Aug 25, 2014.

[123] Leskovec, J., D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani (2010) “Kronecker Graphs: An Approach to Modeling
Networks,” Journal of Machine Learning Research, 11, pp. 985–1042.

[124] “Graph 500,” http://www.graph500.org, last accessed Aug 25, 2014.

[125] Cong, G. and D. A. Bader (2005) “An experimental study of parallel
biconnected components algorithms on symmetric multiprocessors (SMPs),”
in Proc. Int’l. Parallel and Distributed Processing Symp. (IPDPS).

[126] Nagamochi, H. and T. Ibaraki (1992) “A linear-time algorithm for finding
a sparse k-connected spanning subgraph of a k-connected graph,” Algorithmica,
7(1-6), pp. 583–596.

[127] Cong, G. and D. A. Bader (2004), “TV-Filter Biconnected components
implementation,” http://www.cc.gatech.edu/~bader/code.html, last ac-
cessed Aug 25, 2014.

[128] Bader, D. A. and J. JáJá (1999) “SIMPLE: A Methodology for Program-
ming High Performance Algorithms on Clusters of Symmetric Multiprocessors
(SMPs),” Journal of Parallel and Distributed Computing, 58(1), pp. 92–108.

[129] Eckstein, D. M. (1979) BFS and biconnectivity, Tech. Rep. 79-11, Dept.
of Computer Science, Iowa State University of Science and Technology.

[130] Savage, C. and J. JáJá (1981) “Fast, efficient parallel algorithms for some
graph problems,” SIAM J. Computing, 10(4), pp. 682–691.

[131] Tsin, Y. H. and F. Y. Chin (1984) “Efficient Parallel Algorithms for a Class
of Graph Theoretic Problems,” SIAM J. Computing, 31(2), pp. 245–281.

[132] Maon, Y., B. Schieber, andU. Vishkin (1986) “Parallel ear decomposition
search (EDS) and st-numbering in graphs,” Theoretical Computer Science,
47, pp. 277–298.

[133] Miller, G. L. andV. Ramachandran (1992) “A new graph triconnectivity
algorithm and its parallelization,” Combinatorica, 12(1), pp. 53–76.

238

[134] Hsu, T.-S., V. Ramachandran, and N. Dean (1994) “Implementation of
parallel graph algorithms on the MasPar,” in Third DIMACS Implementation
Challenge: Parallel Algorithms (N. Dean and G. E. Shannon, eds.), vol. 15 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
AMS, pp. 165–198.

[135] Ausiello, G., D. Firmani, L. Laura, and E. Paracone (2012) “Large-
Scale Graph Biconnectivity in MapReduce,” Department of Computer and
System Sciences Antonio Ruberti Technical Reports, 4(4).

[136] Ausiello, G., D. Firmani, et al. (2012) “Real-time monitoring of undi-
rected networks: Articulation points, bridges, and connected and biconnected
components,” Networks, 59(3), pp. 275–288.

[137] Westbrook, J. and R. E. Tarjan (1992) “Maintaining bridge-connected
and biconnected components on-line,” Algorithmica, 7(1-6), pp. 433–464.

[138] Wikimedia Foundation (2013), “Wikipedia links, English network dataset
– KONECT,” .
URL http://konect.uni-koblenz.de/networks/wikipedia_link_en

[139] Janna, C., M. Ferronato, and G. Gambolati (2012) “Parallel inex-
act constraint preconditioning for ill-conditioned consolidation problems,”
Computational Geosciences, 16(3), pp. 661–675.

[140] Burtscher, M., R. Nasre, and K. Pingali (2012) “A Quantitative Study
of Irregular Programs on GPUs,” in Proc. IEEE Int’l. Symp. on Workload
Characterization (IISWC).

[141] Davidson, A., S. Baxter, M. Garland, and J. D. Owens (2014) “Work-
Efficient Parallel GPU Methods for Single-Source Shortest Paths,” in Proc.
IEEE Int’l. Parallel and Distributed Proc. Symp. (IPDPS).

[142] Banerjee, D. S., S. Sharma, and K. Kothapalli (2013) “Work efficient
parallel algorithms for large graph exploration,” in Proc. Int’l. Conf. on High
Performance Computing (HiPC).

[143] Zhong, J. and B. He (2014) “Medusa: Simplified Graph Processing on
GPUs,” IEEE Transactions on Parallel and Distributed Systems, 25(6), pp.
1543–1552.

[144] Chakaravarthy, V. T., F. Checconi, F. Petrini, and Y. Sabharwal
(2014) “Scalable Single Source Shortest Path Algorithms for Massively Parallel
Systems,” in Proc. IEEE Int’l. Parallel and Distributed Proc. Symp. (IPDPS).

239

[145] Raghavan, U. N., R. Albert, and S. Kumara (2007) “Near linear time
algorithm to detect community structures in large-scale networks,” Physical
Review E, 76(3), p. 036106.

[146] McLaughlin, A. and D. A. Bader (2014) “Scalable and High Perfor-
mance Betweenness Centrality on the GPU,” in Proc. Int’l. Conf. for High
Performance Computing, Networking, Storage and Analysis (SC).

[147] Dal, G. H., W. A. Kosters, and F. W. Takes (2014) “Fast diameter
computation of large sparse graphs using GPUs,” in Parallel, Distributed
and Network-Based Processing (PDP), 2014 22nd Euromicro International
Conference on, IEEE, pp. 632–639.

[148] Montresor, A., F. D. Pellegrini, and D. Miorandi (2011), “Dis-
tributed k-Core Decomposition,” ArXiv:1103.5320.

[149] Gregor, D. and A. Lumsdaine (2005) “Lifting sequential graph algorithms
for distributed-memory parallel computation,” in Proc. ACM SIGPLAN Conf.
on Object Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2005).

[150] Berry, J. W., B. Hendrickson, S. Kahan, and P. Konecny (2007)
“Software and Algorithms for Graph Queries on Multithreaded Architectures,”
in Proc. Workshop on Multithreaded Architectures and Applications (MTAAP).

[151] Kulkarni, M., K. Pingali, B. Walter, G. Ramanarayanan, K. Bala,
and L. P. Chew (2007) “Optimistic parallelism requires abstractions,” in
Proc. ACM SIGPLAN Conf. on Programming language design and implemen-
tation (PLDI).

[152] Staudt, C. L., A. Sazonovs, and H. Meyerhenke (2014), “Net-
worKit: An Interactive Tool Suite for High-Performance Network Analysis,”
ArXiv:1403.3005.

[153] Carter Edwards, H., C. R. Trott, and D. Sunderland (2014)
“Kokkos: Enabling manycore performance portability through polymorphic
memory access patterns,” Journal of Parallel and Distributed Computing.

[154] Bacon, D. F., S. L. Graham, and O. J. Sharp (1994) “Compiler transfor-
mations for high-performance computing,” ACM Computing Surveys, 26(4),
pp. 345–420.

[155] (2009) Optimizing Loop-Level Parallelism in Cray XMT Applications, Tech.
rep., Cray Inc.

240

[156] Gao, T., Y. Lu, B. Zhang, and G. Suo (2014) “Using the Intel Many
Integrated Core to accelerate graph traversal,” International Journal of High
Performance Computing Applications, p. 1094342014524240.

[157] Checconi, F. and F. Petrini (2014) “Traversing Trillions of Edges in
Real-time: Graph Exploration on Large-scale Parallel Machines,” in Proc.
IEEE Int’l. Parallel and Distributed Proc. Symp. (IPDPS).

[158] Nguyen, D., A. Lenharth, and K. Pingali (2013) “A Lightweight
Infrastructure for Graph Analytics,” in Proc. ACM Symp. on Operating
Systems Principles (SOSP).

[159] Quick, L., P. Wilkinson, and D. Hardcastle (2012) “Using Pregel-
like Large Scale Graph Processing Frameworks for Social Network Analysis,”
in Proc. Int’l. Conf. on Advances in Social Networks Analysis and Mining
(ASONAM).

[160] Guo, Y., M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and
T. L. Willke (2013) “Towards Benchmarking Graph-processing platforms,”
in Proc. Supercomputing (SC), poster.

[161] Wang, L., Y. Xiao, B. Shao, and H. Wang (2014) “How to partition a
billion-node graph,” in Data Engineering (ICDE), 2014 IEEE 30th Interna-
tional Conference on, IEEE, pp. 568–579.

[162] Meyerhenke, H., P. Sanders, and C. Schulz (2014) “Partitioning Com-
plex Networks via Size-Constrained Clustering,” in Experimental Algorithms
- 13th International Symposium, SEA 2014, Copenhagen, Denmark, June 29
- July 1, 2014. Proceedings, pp. 351–363.
URL http://dx.doi.org/10.1007/978-3-319-07959-2_30

[163] ——— (2015) “Parallel Graph Partitioning for Complex Networks,” in 2015
IEEE International Parallel and Distributed Processing Symposium, IPDPS
2015, Hyderabad, India, May 25-29, 2015, pp. 1055–1064.
URL http://dx.doi.org/10.1109/IPDPS.2015.18

[164] Ugander, J. and L. Backstrom (2013) “Balanced Label Propagation
for Partitioning Massive Graphs,” in Proc. Web Search and Data Mining
(WSDM).

[165] Vaquero, L., F. Cuadrado, D. Logothetis, and C. Martella (2013)
“xDGP: A Dynamic Graph Processing System with Adaptive Partitioning,”
CoRR, abs/1309.1049.

241

[166] Martella, C., D. Logothetis, A. Loukas, and G. Siganos (2014)
“Spinner: Scalable Graph Partitioning in the Cloud,” arXiv preprint
arXiv:1404.3861.

[167] Karypis, G. and V. Kumar, “MeTis: A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices. Version 5.1.0,” http://glaros.dtc.umn.edu/
gkhome/metis/metis/download, last accessed July 2014.

[168] ——— (1996) “Parallel Multilevel K-way Partitioning Scheme for Irregular
Graphs,” in Proc. ACM/IEEE Conference on Supercomputing (SC).

[169] ——— (1998) “Multilevel Algorithms for Multi-constraint Graph Partition-
ing,” in Proc. ACM/IEEE Conference on Supercomputing (SC).

[170] Schloegel, K., G. Karypis, and V. Kumar (2000) “Parallel Multilevel
Algorithms for Multi-constraint Graph Partitioning,” in Proc. Euro-Par 2000
Parallel Processing.

[171] Sanders, P. and C. Schulz (2013) “Think Locally, Act Globally: Highly
Balanced Graph Partitioning,” in Proceedings of the 12th International Sym-
posium on Experimental Algorithms (SEA’13), vol. 7933 of LNCS, Springer,
pp. 164–175.

[172] Boman, E. G., K. D. Devine, and S. Rajamanickam (2013) “Scalable
matrix computations on large scale-free graphs using 2D graph partitioning,”
in Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, ACM, p. 50.

[173] Pearce, R., M. Gokhale, and N. M. Amato (2013) “Scaling Techniques
for Massive Scale-Free Graphs in Distributed (External) Memory,” in Proc.
IEEE Int’l. Parallel and Distributed Proc. Symp. (IPDPS).

[174] Pinar, A. and B. Hendrickson (2001) “Partitioning for Complex Ob-
jectives,” in Proceedings of the 15th International Parallel & Distributed
Processing Symposium, IPDPS ’01, IEEE Computer Society, Washington,
DC, USA, pp. 121–.

[175] Uçar, B. and C. Aykanat (2004) “Encapsulating multiple communication-
cost metrics in partitioning sparse rectangular matrices for parallel matrix-
vector multiplies,” SIAM Journal on Scientific Computing, 25(6), pp. 1837–
1859.

[176] Catalyürek, Ü. V., M. Deveci, K. Kaya, and B. Uçar (2013) “UMPa:
A Multi-objective, multi-level partitioner for communication minimization,”
Contemporary Mathematics, 588.

242

[177] Fiduccia, C. M. and R. M. Mattheyses (1982) “A linear-time heuristic
for improving network partitions,” in Proc. Conf. on Design Automation.

[178] George, A. and J. W. Liu (1981) Computer solution of large sparse positive
definite systems, Prentice-Hall.

[179] Boldi, P. and S. Vigna (2004) “The WebGraph Framework I: Compres-
sion Techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), ACM Press, Manhattan, USA, pp. 595–601.

[180] Boldi, P., M. Rosa, M. Santini, and S. Vigna (2011) “Layered Label
Propagation: A MultiResolution Coordinate-Free Ordering for Compressing
Social Networks,” in Proceedings of the 20th international conference on
World Wide Web, ACM Press.

[181] Cong, G. and K. Makarychev (2012) “Optimizing Large-scale Graph
Analysis on Multithreaded, Multicore Platforms,” Parallel and Distributed
Processing Symposium, International, 0, pp. 414–425.

[182] Frasca, M., K. Madduri, and P. Raghavan (2012) “NUMA-aware
graph mining techniques for performance and energy efficiency,” in Proc.
Supercomputing (SC).

[183] Cuthill, E. and J. McKee (1969) “Reducing the Bandwidth of Sparse
Symmetric Matrices,” in Proc. 1969 24th Nat’l. Conf., ACM ’69, ACM, New
York, NY, USA, pp. 157–172.

[184] Amestoy, P. R., T. A. Davis, and I. S. Duff (2004) “Algorithm 837:
AMD, an Approximate Minimum Degree Ordering Algorithm,” ACM Trans.
Math. Softw., 30(3), pp. 381–388.

[185] Neumann, T. and G. Weikum (2010) “The RDF-3X engine for scalable
management of RDF data,” VLDB J., 19(1), pp. 91–113.

[186] Karantasis, K. I., A. Lenharth, D. Nguyen, M. J. Garzarán, and
K. Pingali (2014) “Parallelization of Reordering Algorithms for Bandwidth
and Wavefront Reduction,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’14,
IEEE Press, pp. 921–932.

[187] Eisenbrand, F. and F. Grandoni (2004) “On the complexity of fixed
parameter clique and dominating set,” Theoretical Computer Science, 326(1–
3), pp. 57–67.

[188] Buluç, A. and K. Madduri (2011) “Parallel breadth-first search on dis-
tributed memory systems,” in Proc. Conf. on High Performance Computing,
Networking, Storage and Analysis (SC).

243

[189] ——— (2013) “Graph Partitioning for Scalable Distributed Graph Computa-
tions,” in Graph Partitioning and Graph Clustering (D. Bader, H. Meyerhenke,
P. Sanders, and D. Wagner, eds.), chap. 6, AMS, pp. 81–100.

[190] Panitanarak, T. and K. Madduri (2014) “Performance Analysis of Single-
source Shortest Path Algorithms on Distributed-memory Systems,” in Proc.
SIAM Workshop on Combinatorial Scientific Computing.

[191] Meyer, U. and P. Sanders (2003) “∆-stepping: a parallelizable shortest
path algorithm,” J. Algs., 49(1), pp. 114–152.

[192] (2004), “RDF Primer, W3C Recommendation.” http://www.w3.org/TR/
rdf-primer.

[193] Cudré-Mauroux, P., I. Enchev, S. Fundatureanu, P. T. Groth,
A. Haque, A. Harth, F. L. Keppmann, D. P. Miranker, J. Sequeda,
and M. Wylot (2013) “NoSQL Databases for RDF: An Empirical Evalu-
ation,” in International Semantic Web Conference (2) (H. Alani, L. Kagal,
A. Fokoue, P. T. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. F. Noy,
C. Welty, and K. Janowicz, eds.), vol. 8219 of Lecture Notes in Computer
Science, Springer, pp. 310–325.

[194] Sakr, S., A. Liu, and A. G. Fayoumi (2013) “The family of mapreduce
and large-scale data processing systems,” ACM Comput. Surv., 46(1), p. 11.

[195] Chirravuri, S. K. (2014) RDF3X-MPI: A Partitioning RDF Engine for
Data-parallel SPARQL Querying, Master’s thesis, The Pennsylvania State
University.

[196] Huang, J., D. J. Abadi, and K. Ren (2011) “Scalable SPARQL Querying
of Large RDF Graphs,” PVLDB, 4(11), pp. 1123–1134.

[197] Bizer, C. and A. Schultz (2009) “The Berlin SPARQL Benchmark,” Int.
J. Semantic Web Inf. Syst., 5(2), pp. 1–24.

[198] Guo, Y., Z. Pan, and J. Heflin (2005) “LUBM: A benchmark for OWL
knowledge base systems,” Web Semantics: Science, Services and Agents on
the World Wide Web, 3(2-3), pp. 158–182.

[199] Morsey, M., J. Lehmann, S. Auer, and A.-C. N. Ngomo (2011)
“DBpedia SPARQL Benchmark - Performance Assessment with Real Queries
on Real Data,” in Proc. Int’l. Semantic Web Conf. (ISWC).

[200] Chierichetti, F., R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Pan-
conesi, and P. Raghavan (2009) “On compressing social networks,” in
Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, pp. 219–228.

244

[201] Hendrickson, B. and R. W. Leland (1995) “A Multi-Level Algorithm
For Partitioning Graphs.” in Supercomputng.

[202] Deveci, M., S. Rajamanickam, K. Devine, and Ü. Çatalyürek (2014)
“Multi-jagged: A scalable parallel spatial partitioning algorithm,” IEEE
Transactions on Parallel and Distributed Systems (In revision).

[203] Boman, E. G., K. D. Devine, V. J. Leung, S. Rajamanickam, L. A.
Riesen, M. Deveci, and U. Catalyurek (2012) Zoltan2: Next-Generation
Combinatorial Toolkit, Tech. rep., Sandia National Laboratories.

[204] Catalyürek, U. V. and C. Aykanat (1999) “PaToH: a multilevel hy-
pergraph partitioning tool, version 3.0,” Bilkent University, Department of
Computer Engineering, Ankara, 6533.

[205] Deveci, M., K. Kaya, B. Uçar, and U. V. Catalyurek (2015) “Fast
and high quality topology-aware task mapping,” in Parallel and Distributed
Processing Symposium (IPDPS), 2015 IEEE International, IEEE, pp. 197–
206.

[206] Singh, J. P., C. Holt, T. Totsuka, A. Gupta, and J. Hennessy (1995)
“Load balancing and data locality in adaptive hierarchical N-body methods:
Barnes-Hut, fast multipole, and radiosity,” Journal of Parallel and Distributed
Computing, 27(2), pp. 118–141.

[207] Ou, C.-W., M. Gunwani, and S. Ranka (1995) “Architecture-independent
locality-improving transformations of computational graphs embedded in
k-dimensions,” in Proceedings of the 9th international conference on Super-
computing, ACM, pp. 289–298.

[208] Strout, M. M. and P. D. Hovland (2004) “Metrics and models for
reordering transformations,” in Proceedings of the 2004 workshop on Memory
system performance, ACM, pp. 23–34.

[209] Mueller, C., B. Martin, and A. Lumsdaine (2007) “A comparison of
vertex ordering algorithms for large graph visualization,” in Visualization,
2007. APVIS’07. 2007 6th International Asia-Pacific Symposium on, IEEE,
pp. 141–148.

[210] Safro, I. and B. Temkin (2011) “Multiscale approach for the network
compression-friendly ordering,” Journal of Discrete Algorithms, 9(2), pp.
190–202.

[211] Pingali, K., D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Has-
saan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-
Lojo, et al. (2011) “The tao of parallelism in algorithms,” ACM Sigplan
Notices, 46(6), pp. 12–25.

245

[212] Ediger, D., R. McColl, J. Riedy, and D. A. Bader (2012) “Stinger:
High performance data structure for streaming graphs,” in Proc. HPEC.

[213] Rochat, Y. (2009) “Closeness centrality extended to unconnected graphs:
The harmonic centrality index,” in ASNA, EPFL-CONF-200525.

[214] Meusel, R., S. Vigna, O. Lehmberg, and C. Bizer (2015) “The Graph
Structure in the Web - Analyzed on Different Aggregation Levels,” J. Web
Sci., 1(1), pp. 33–47.

[215] Satish, N., N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A.
Hassaan, S. Sengupta, Z. Yin, and P. Dubey (2014) “Navigating the
maze of graph analytics frameworks using massive graph datasets,” in Proc.
SIGMOD.

[216] Meusel, R., S. Vigna, O. Lehmberg, and C. Bizer (2014) “Graph
Structure in the Web - Revisited: A Trick of the Heavy Tail,” in Proc.
WWW.

[217] Gleich, D. F. and C. Seshadhri (2012) “Vertex neighborhoods, low
conductance cuts, and good seeds for local community methods,” in KDD.

[218] Que, X., F. Checconi, F. Petrini, T. Wang, and W. Yu (2013)
Lightning-fast Community Detection in Social Media: A Scalable Implemen-
tation of the Louvain Algorithm, Tech. Rep. AU-CSSE-P ASL/13-TR01,
Auburn University.

[219] Girvan, M. and M. E. Newman (2002) “Community structure in social
and biological networks,” Proceedings of the National Academy of Sciences,
99(12), pp. 7821–7826.

[220] Lu, H., M. Halappanavar, A. Kalyanaraman, and S. Choudhury
(2014) “Parallel heuristics for scalable community detection,” in IEEE
IPDPSW14.

[221] Fortunato, S. (2010) “Community detection in graphs,” Physics Reports,
486(3), pp. 75–174.

[222] Mandala, S., S. Kumara, and T. Yao (2012) “Detecting alternative
graph clusterings,” Physical Review E, 86(1), p. 016111.

[223] Gharaibeh, A., L. B. Costa, E. Santos-Neto, and M. Ripeanu (2013)
“On Graphs, GPUs, and Blind Dating: AWorkload to Processor Matchmaking
Quest,” in Proc. IEEE Int’l. Parallel and Distributed Proc. Symp. (IPDPS).

246

Vita
George M. Slota

George grew up in Pittsburgh, Pennsylvania and received a B.S. with honors
in 2009 from Penn State, where he studied computer engineering, math, physics,
and materials science. After graduation, George spent two years working for
the Navy at the Naval Undersea Warfare Center in Newport, RI. In 2012, George
returned to Penn State to complete his PhD. Under advisement of Kamesh Madduri,
George has performed research into parallel graph algorithms on HPC systems,
with an emphasis on social and biological graph mining applications. In addition,
George has been working at Sandia National Labs since 2013, where he has been
developing scalable graph and matrix algorithms in support of scientific computing
applications. George was supported during the 2014-2015 academic year by a Blue
Waters Graduate Fellowship. His research efforts have been awarded Best Paper at
the 2013 International Conference on Parallel Processing and a Graduate Research
Assistant Award from Penn State. The dissertation research contained in this thesis
was also selected for presentation at the doctoral colloquia of the 2015 International
Parallel and Distributed Processing Symposium and the 2015 The International
Conference for High Performance Computing, Networking, Storage and Analysis.

