
GNN Node Classification Using Koopman
Operator Theory on GPU

Christopher Brissette1,2, William Hawkins1,3, and George M. Slota1,4

1 Rensselaer Polytechnic Institute, Troy NY
2 brissc@rpi.edu, 3 hawkiw2@rpi.edu, 4 slotag@rpi.edu

Abstract. Koopman operator theory provides a framework for approx-
imating nonlinear dynamical systems with linear operators. Some re-
search has suggested treating deep neural network (DNN) weights as a
dynamical system and utilizing discrete Koopman operators to accelerate
network training. We extend former work on this topic in two ways. First,
we apply this operation to its most promising use-case of graph neural
networks (GNN), demonstrating that the method may be generalized to
learning tasks beyond DNNs. Second, we implement Koopman approx-
imations on GPU, significantly accelerating previous CPU-based work.
We present an algorithm we call “Patchwork Koopman Approximation”
for accelerating GNN training, and we find that performing Koopman
approximation can provide a speedup of over three times that of Adam
for the same accuracy and loss on the Cora, Citeseer, and PubMed node
classification benchmark datasets.

1 Introduction

In recent years, Graph Neural Networks (GNNs) have become standard in the
toolkit of network scientists. GNNs are particularly adept at node label and net-
work classification problems, edge prediction, graph generation, and clustering,
among many other core network science problems (Wu et al. [2020]). Due to
this rising interest in GNNs and Graph Convolutional Networks (GCNs) specifi-
cally, many methods for accelerating training have been proposed (see Liu et al.
[2022], Zhang et al. [2019], Liang et al. [2021] for recent surveys). These methods
include graph sparsification, graph coarsening, and most notably graph pooling.
The concept behind each of these methods is to alter the graph topology during
training in order to resolve issues with the “neighborhood blow-up” associated
with many real world networks. While these methods are topological simplifica-
tions in nature, GNNs use the same standard backpropagation-based optimizers
as traditional neural network architectures (e.g., deep neural networks (DNNs),
convolutional neural networks (CNNs), recurrent neural networks (RNNs), etc.).
It then makes sense that acceleration in optimizers for traditional neural net-
works may lead to acceleration in GNNs. For this purpose, we introduce the
Koopman operator, first examined by Koopman [1931].

The Koopman operator is of historical importance in the field of functional
analysis. It provides a method for analyzing finite dimensional nonlinear dy-

2 C. Brissette, W. Hawkins, G. M. Slota

namics with an infinite dimensional linear system. While the study of this op-
erator was broadly relegated to the whiteboards of functional analysts for many
decades, it has experienced a renaissance in the applied community in the last
decade (e.g., Brunton et al. [2021], Kutz et al. [2016], Mezić [2013]). This is
largely due to the popularity of a method from computational fluid dynamics
known as the dynamic mode decomposition (DMD) being interpreted as a finite
dimensional approximation of the Koopman operator [Schmid, 2010].

The utility of the Koopman operator is multifaceted, but for the case of neu-
ral network training, it is important for one main reason. The discrete Koopman
operator allows for accurate predictions in the state evolution of a nonlinear
dynamical system at the cost of a single matrix-vector multiplication. Previous
work (Dogra and Redman [2020], Tano et al. [2020]) has made this connection
and shown that by treating the weights of a neural network as the state variables
in a nonlinear dynamical system, Koopman operator theory and DMD may be
used to train neural networks. The prior work has also shown that the weights
output by Koopman training approximate those of a network fully trained with
the underlying optimizer. Despite this, previous publications on the subject ei-
ther lack the speed to be useful to practitioners, are only shown to be useful near
the optimal solution of a DNN, or require incredibly high memory overheads.
Furthermore, prior work focuses solely on DNN architectures and do not test on
GNNs. We address all of these shortcomings in this manuscript.

As we will discuss, memory overheads of Koopman training, which are pro-
portional to the size of the neural network, can make its practical use limited for
modern massive-scale DNNs. However, for GNNs, where the scale of the neural
network can be small relative to the scale of the input graph itself, these over-
heads are relatively negligible. This makes GNNs an extremely promising target
for Koopman training. Additionally, as Koopman training is simply an optimizer
for neural network weights, it can be combined with any of the more specialized
acceleration techniques for GNNs such as coarsening, sparsification, and pooling,
without modification.

Our Contribution: We present a fast method for Koopman training entirely
on GPU which performs well in terms of performance acceleration and mem-
ory requirements. We apply this method to three standard node classification
problems using GCNs and show that Koopman training can produce accurate
results in this domain with much faster training times relative to using Adam
optimization (Kingma and Ba [2014]). We additionally discuss best practices for
hyperparameter selection to ensure performance and numerical stability.

2 Background

2.1 GNNs / GCNs

GNNs and GCNs rose to popularity in the machine learning community after
the publication of a popular paper by Kipf and Welling [2016], detailing a convo-
lutional architecture for learning on graphs. The Kipf and Welling architecture

GNN Node Classification 3

remains popular, and it will be the architecture referred to interchangeably by
the acronyms GNN and GCN for the remainder of this manuscript.

The fundamental idea behind GCNs, and specifically GCNs for node classifi-
cation, is to produce embeddings for each node based on aggregates of neighbor-
ing feature vectors. The difficulty in this technique is learning the aggregation
function for each neighborhood. For this purpose, Kipf and Welling suggested
the following architecture.

H l+1 = σ
(
D̂− 1

2 ÂD̂− 1
2H lW l

)
Here H l is the matrix of activation functions at the lth layer and Â = A+I|V |

is the adjacency matrix of the underlying graphG = (V,E) with added self-loops.
Additionally, D̂ is the diagonal degree matrix given by the sums of rows of Â,
σ is an element-wise activation function, and W l is a learnable matrix of weight
parameters for layer l. For a node u ∈ V , this function considers a weighted
sum of the activations H l of its neighbors v ∈ N (u), multiplies that by a weight
matrix W l, and applies an element-wise activation function. The goal of training
the GCN is to solve for all weights in each layer.

Without additional acceleration techniques, this method can be particularly
slow, due to the exponential increase in k-hop nieghborhood size (i.e., the “neigh-
borhood blow-up” problem). To deal with this, topological simplification meth-
ods such as graph pooling are utilized. There are many methods for graph pool-
ing; however, the common idea is to sample from a reduced graph for training
instead of using the entire graph topology. This is an active area of research, and
techniques range from explicit spectral methods to heuristics (see Gilmer et al.
[2017], Ying et al. [2018], Bianchi et al. [2020], Lee et al. [2019]).

2.2 Koopman operator

While there is a wealth of information about the Koopman operator available
in the literature, we present a specific definition for our application. Denote by
xt ∈ Rn, the state of a dynamical system at time t ∈ R. Additionally, take
F to define our dynamical system such that F (xt) = xt+1. Also consider any
observable g : Rn → R on the Hilbert space L2(Rn, µ). The Koopman operator
K is the infinite dimensional linear operator such that the following is true for
all such functionals g.

Kg(xt) = g(F (xt))

This means K is a linear operator which preserves all measurements of our
dynamical system at time t+1, given its state at time t. Because of this, it may
be used to predict future states. Since we do not have access to storage for infinite
dimensional matrices, practitioners who wish to use Koopman operator theory
must rely on finite rank approximations of K. These finite rank approximations
may take several forms, including the finite section method and the dynamic
mode decomposition. While the dynamic mode decomposition is noteworthy,

4 C. Brissette, W. Hawkins, G. M. Slota

and its variants have spawned a wealth of research, it requires the computation
of eigenpairs for potentially non-symmetric matrices. As such, it is not amenable
to fast parallelism on GPU. For this reason, we will be focusing on the finite
section method for Koopman approximation.

The finite section method is relatively straightforward. Given a set of ob-
servations of the dynamical system as a matrix x = [x0, x1, · · · , xT], this ma-
trix may be broken into two further matrices X = [x0, x1, · · · , xT−1] and Y =
[x1, x2, · · · , xT]. These matrices define the “before and after” states, where we
know xt+1 = F (xt). Then, the finite section approximation U of K is given by
the following, where † denotes the pseudo-inverse of a matrix.

U = Y X†

From this, future states may be predicted using the equation Usxt ≈ xt+s.
The intuition behind this method is that, by properties of the pseudo-inverse,
∥Uxt − xt+1∥2 is minimized for all (xt, xt+1) in x. This means that on our
observed subspace we match the nonlinear dynamics as closely as possible with
respect to the L2-norm.

2.3 Koopman training

The concept of Koopman training is simple: treat the weights (parameters) in
a neural network as the variables in a dynamical system and apply a Koopman
operator at some time step to avoid back-propagation. Functionally, this amounts
to tracking the weights of the neural network for some number of time steps m,
then solving for a finite dimensional Koopman operator approximation U , and
finally predicting p steps ahead using Up. The advantage to this method is that
matrix-vector multiplication is much faster than back-propagation.

We discuss both of the former works studying Koopman training of neural
networks by Dogra and Redman [2020] as well as the work by Tano et al. [2020].
These papers present very different approaches to Koopman training. In the
paper by Dogra and Redman, Koopman training is applied near the end of
optimization when weight evolution is slow. Starting at some time t1, they begin
tracking weights until another time t2. These weights are then used to obtain
U via the finite section method. U is then used to approximate the final state
of the network after many steps. In the paper, they predict an impressive 2500
steps ahead and show that their final network weights are very close to those of
the traditionally trained network.

Tano et al. take a very different approach. Primarily, their method utilizes
the dynamic mode decomposition as opposed to finite sections. This has two
effects. First, it makes their method slower than the work of Dogra and Redman,
since now an eigen-decomposition must be computed on top of the pseudo-
inverse. Second, however, it can provide improved accuracy, since DMD allows
for the pruning of spurious modes which may create instabilities in predictions.
Beyond that, the authors do not wait to use their Koopman operator as Dogra
and Redman do. Instead, they alternate during training, performing m steps of

GNN Node Classification 5

standard optimization before predicting p steps forward in time and returning to
standard training for another m steps. This allows for acceleration throughout
the entire training process, not just near a minimum.

Both methods are shown to train their test networks well; however, there are
gaps for further research. As noted by both groups, these implementations are
CPU only, but they require a GPU implementation to be useful to practitioners.
In fact, Tano et al. note that their DMD-based method is ultimately slower in
terms of clock time than standard optimization. Furthermore, all test instances
in both papers were on DNN architectures, and it is yet to be shown how similar
methods may generalize to learning tasks such as GCNs.

3 Methods

3.1 Algorithm

Our Koopman training algorithm is similar to Tano et al., in that it alternates
between standard optimization and Koopman prediction. See Algorithm 1. In
one phase (Line 8), training is performed using a standard optimization tech-
nique, such as stochastic gradient descent (Bottou et al. [1991]), or adaptive
moment estimation (Adam) (Kingma and Ba [2014]). This training is performed
on some input network M for some number of pre-determined steps m, and the
weights of the network are stored as a column Wi ∈ Rω in the weight history ma-
trix W ∈ Rω×m, where ω is the number of learnable parameters in the network.
We additionally use hyperparameters r and p, which are the finite dimension
for SVD truncation and number of steps predicted forward, respectively. We
summarize these variables in Table 1.

Table 1: Variables for Koopman training (Alg. 1) and prediction (Alg. 2).

Variable Definition

m Number of standard training steps
p Number of steps predicted forward
r Finite dimension for SVD truncation
M Input neural network
ω Number of learnable parameters in the network
W Weight history matrix for prior steps

In the second phase of Koopman training, seen in Algorithm 2 (and called
from Line 6 in Algorithm 1), the weight history matrix is used to form the ma-
trices X = [W0,W1, · · · ,Wm−1] and Y = [W1,W2, · · · ,Wm]. Then the singular
value decomposition (SVD) is computed forX = ZΣV ∗ and its pseudo-inverse is
computed from that decomposition. This yields our finite section approximation
of the Koopman operator U as the following.

U = Y V Σ−1Z∗

It should be noted that computing the SVD is an incredibly expensive opera-
tion with a work complexity of O

(
ω(m− 1)2

)
. One may notice that Algorithm 2

6 C. Brissette, W. Hawkins, G. M. Slota

Algorithm 1 : Koopman training (M,m, p, r, epochs)

1: ω ← param num(M)
2: W ← zeros(Rω×m)
3: W ← pad(W,ω mod 32)
4: for i ∈ [1..epochs] do
5: if i mod m = 0 then
6: weights(M)← koopman prediction(W,m, p, r)
7: else
8: weights(M)← train epoch(M)

9: W(i mod m) ← weights(M)
10: return M

reshapes the data before performing SVD. This is because we subdivide both
X and Y into small matrices for efficient batched computations on GPU. This
yields a piece-wise approximation of U across subsets of weights in the network.
In the language of Dogra and Redman, this is a type of sub-node level Koop-
man operator. We call this “Patchwork Koopman Approximation” (PKA). Using
Patchwork Koopman Approximation for training is discussed in further detail
in the “Implementation” section that follows.

Algorithm 2 : Koopman prediction (W,m, p, r)

1: X ← reshape ([W0,W1, · · · ,Wm−1])
2: Y ← reshape ([W1,W2, · · · ,Wm])
3: (Z,Σ, V ∗)← batched svd(X)
4: Z ← trunc(Z, r)
5: Σ ← trunc(Σ, r)
6: V ∗ ← trunc(V ∗, r)
7: U ← Y V Σ−1Z∗

8: v ← reshape(Wm)
9: for j ∈ [1..p] do
10: v ← Uv
11: return v

After U is computed, training is projected forward a pre-determined number
of steps p by the equation UpWm = Wm+p. Afterwards, the weight history
matrix is cleared, Wm+p replaces the old vector W0, and we return to standard
optimization for another m steps before repeating the process again. This is
repeated for some number of epochs, or some early stopping criteria.

3.2 Implementation

A number of optimizations are made to the baseline Algorithm 1 in order to im-
prove its performance on GPU. For starters, the expensive O

(
ω(m− 1)2

)
SVD

is broken into many subproblems. In Figure 1, it can be seen that Algorithm 2
reshapes the first m − 1 columns of W into matrices of size 32 × (m − 1). This

GNN Node Classification 7

p

X trunc(SVD(X)) U (UW) m
p Wm+p

m-1

32

1

32

Y

(m-1)xr
rxr rx32

Fig. 1: Visualization of Algorithm 2.

is done in order to make use of the batched SVD operation available via CUDA’s
gesvdjBatched function. This function allows for multiple singular value de-
compositions to be performed at once, so long as the shape of each individual
matrix is smaller than or equal to 32×32 and all sub-matrices are the same size.
Because of this, U , in our case, does not stand for the Koopman operator of the
entire model. Instead, U can be thought of as a Patchwork Koopman operator
of smaller matrices U = {Ui}, where each matrix is an approximation of the full
Koopman operator on a subspace with maximum dimension 32. In order to meet
these requirements, zeros may need to be added to pad the size of W such that
its column number is divisible by 32 (see the function pad(·) in Algorithm 1).

We further optimize our method selecting a finite dimension r ≤ m and use
it to truncate the SVD (Z,Σ, V ∗). This is akin to using principal component
analysis (PCA) to reduce the dimensionality of X before computing the pseudo-
inverse. This has two benefits. First, for r < m, this can drastically reduce both
the total work required as well as the per-thread work. Additionally, for small r,
this prunes minuscule singular values from Σ. If not pruned, these values may
cause instabilities in the method. After the truncation step, U = Y V Σ−1Z∗

is computed. The influence of r on our patchwork Koopman implementation is
discussed later. Unfortunately, there are no readily available methods for batched
eigen-pair computations of non-symmetric matrices on GPU. This relegates us
to using the finite section method, and it means that fast implementations of
more robust Koopman approximations such as Exact DMD (Tu et al. [2014])
and ResDMD (Colbrook and Townsend [2021]) are currently infeasible.

All of our algorithms were implemented using the PyTorch (Paszke et al.
[2019]) and CuPy (Nishino and Loomis [2017]) libraries in Python. CuPy is GPU-
optimized implementation of the functionality contained within NumPy and SciPy.
While both of these libraries have access to functions utilizing gesvdjBatched,
we used the PyTorch batched SVD function and torch.linalg.svd(·). CuPy
was used for all other linear algebraic operations.

4 Experiments

We consider the PyTorch Geometric Planetoid datasets of Cora, PubMed, and
Citeseer (Bollacker et al. [1998], McCallum et al. [2000], Yang et al. [2016]) for
GCN node classification tasks. We run our experiments using a NVIDIA 40 GB

8 C. Brissette, W. Hawkins, G. M. Slota

A100 GPU on the zepy server in RPI’s High Performance Combinatorics and
Graph Analytics Laboratory. We consider a GNN architecture with two convo-
lutions. The outputs of all convolution layers are 64, their activation function
is ReLu, and the output is put through a softmax layer. Standard training it-
erations were performed with the Adam optimizer in PyTorch with the default
learning rate of 0.001. The network architecture was selected because the weight
numbers would be easily divisible for patchwork Koopman, and in testing they
were expressive enough to train well for our classification problems.

For the results that we will show, we have selected m = 4, p = 8, and r = 2
as the PKA hyperparameters to balance stability and time-to-solution. We will
discuss the selection of these values later. We primarily compare our method
against the baseline Adam optimization without any PKA prediction. All results
we will show are the average of 100 training runs with 400 maximum epochs.

4.1 Results

We first run both Adam and PKA training across all datasets to observe the
average highpoint for test accuracy and lowpoint for test loss. We give these
results in Table 2. We make several observations. Primarily, we note that PKA
on average equals or outperforms Adam in all tests with respect to loss and
accuracy. Further, we note that PKA performs training 2-3× faster than Adam,
with respect to the maximum accuracy or minimum loss achieved.

Table 2: The maximum accuracy achieved and minimum loss achieved by Adam
and PKA for the three test instances, along with the elapsed time required to
achieve those values.

Cora Citeseer PubMed

Adam PKA Adam PKA Adam PKA

Accuracy Highpoint 0.874 0.875 0.681 0.687 0.774 0.774
Highpoint time (s) 0.291 0.140 0.143 0.078 1.007 0.365
Loss Lowpoint 0.419 0.399 1.053 1.020 0.583 0.579
Lowpoint Time (s) 0.553 0.210 0.236 0.098 1.182 0.353

Accuracy Speedup 2.08× 1.83× 2.76×
Loss Speedup 2.63× 2.41× 3.35×

In Figure 2, we visualize the training behavior of Adam and PKA with respect
to accuracy and loss over time. The figure gives the averaged accuracy and loss
over 100 training runs with respect to elapsed time. We also give the variance
across runs via the shaded envelopes for each line. We note that PKA generally
trains slower than Adam initially, but PKA surpasses Adam once a (presumed)
threshold is passed where the dynamics of the network weights becomes more
reliably predictable.

GNN Node Classification 9

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

test accuracy
train accuracy
adam test accuracy

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

test loss
train loss
adam test loss

(a) Cora

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

test accuracy
train accuracy
adam test accuracy

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

test loss
train loss
adam test loss

(b) Citeseer

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

test accuracy
train accuracy
adam test accuracy

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

test loss
train loss
adam test loss

(c) PubMed

Fig. 2: Visualization of accuracy (top) and loss (bottom) for the three test in-
stances during training. Plotted is the interpolated average training and test
accuracy/loss versus time for all test instances relative to Adam. Averages are
calculated across 100 total runs, with the variance among runs visualized via the
shaded region for each line.

4.2 Discussion

Performance: We note that our method offers notable speedup relative to
Adam over the considered test instances, while equaling or improving on gener-
alization performance. The ability of PKA to accurately capture the dynamics
of the network weights and usefully predict the weights of future epochs is sur-
prisingly impressive, particularly when combined with the observed speedups.
We are the first work that actually demonstrates such speedups in practice.

Beyond speedups, our method requires minimal memory relative to prior
work. Any Koopman training method will require a minimum of O(mω) floats
for tracking weights and O((m − 1)ω + 2(m − 1)2) for computing the SVD. In
Dogra and Redman [2020], a very large m is required, as they only use Koopman
approximation for the final steps of training near convergence and tracking the
state for a long time horizon is needed to ensure accuracy. Largem values quickly
become unfeasible on GPU. As mentioned, we use a method similar to Tano
et al. [2020] which alternates between Koopman training and standard training
techniques. This requires a much smaller m value that is more amendable to use
in limited GPU memory.
Hyperparameter Selection: We performed a preliminary parametric study
over PKA hyperparameters m, p, and r, varied over {4, 8, 16, 32}, {4, 8, 16, 32},
and {1, 2, 3, 4, 5}, respectively. The values for m had to be less than 32 to allow
use of batched SVD with CUDA. We observed similar performance to those
shown in Table 2 and Figure 2 across a wide breadth of the parameter space.
We unfortunately cannot show the full set of results due to space, but we can
discuss our primary observations.

Generally, we found that larger values of p or r can result in instability of
PKA. Because we are iterating matrices on vectors in Algorithm 2, we can loosely
analyze this method in terms of power iteration. As p increases, Upv approaches
the eigenvector associated with ∥U∥2 for a random vector v. Because of this,

10 C. Brissette, W. Hawkins, G. M. Slota

one avenue for improving stability is to reduce p. This means that it is generally
best practice to not “over-predict” when using patchwork Koopman. We found
p values of 8 or less to reliably resulted in convergence for our experiments.

Alternatively, when ∥U∥2 is comparatively large, it will require fewer itera-
tions p to achieve a similar loss increase. This suggests one may reduce ∥U∥2 in
order to improve stability. In our implementation this is done through increasing
the parameter r. Recalling that Ui = YiX

†
i , we know ∥Ui∥2 ≤ ∥Yi∥2∥X†

i ∥2, there-
fore, ∥Ui∥2 can be controlled by reducing ∥Yi∥2 or ∥X†

i ∥2, respectively. Because
r prunes the smallest singular values from Xi, that means it also prunes the
largest singular values from X†

i , thus minimizing ∥X†
i ∥2. It should additionally

be noted that r should not be too low as to not lose out on crucial information
for prediction. For our test instances, the suggested minimum r value is 2, which
is also what we used for our experiments.

Parameter m controls how many prior sets of weights are stored for predic-
tion. A larger m therefore increases memory usage and the cost of the batched
SVD. However, a larger m, especially relative to p, is also observed to increase
convergence stability. The recommended value of of m should be only as large
as is necessary to guarantee convergence, to get the best performance. For our
datasets, the value fitting this threshold was m = 4.
Future Work: Since patchwork Koopman training can be used in conjunction
with any optimizer, it is a compelling avenue for further research, and there are
many open problems. Perhaps the most important open problem for practical
usage of PKA is a dynamic selection of hyperparameters, to avoid manual tuning
efforts. Though we note that this is a general and long-standing issue plaguing
most optimizers used in neural network training. Another avenue of future work
is implementing batched Exact DMD or ResDMD on GPU. This is akin to
removing the noise from the approximation, though at a computational cost. In
lieu of that, we expect that there are more clever ways to divide the network
weights, such that each Koopman sub-operator Ui yields a better approximation
of its underlying nonlinear dynamics. Additionally, this manuscript focused on
GNN training for node classification, and prior work has written about training
DNNs, but other relevant architectures and applications have yet to be explored.

5 Conclusions

We presented an algorithm on GPU which uses a Koopman operator approxima-
tion to accelerate optimizers for GCN node classification. Our implementation
is the first to present on-GPU speedups for Koopman training methods over
the entire training window. We found that our operator, which we call “Patch-
work Koopman Approximation”, can be computed efficiently with the use of
popular libraries such as PyTorch and CUDA’s gesvdjBatched functionality. We
performed a study over the Cora, Citeseer, and PubMed becnhmark datasets,
and we found that our method boasts a speedup of over two times that of Adam
in most cases, while achieving the same or better test accuracy and loss.

Bibliography

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral cluster-
ing with graph neural networks for graph pooling. In International conference
on machine learning, pages 874–883. PMLR, 2020.

Kurt D Bollacker, Steve Lawrence, and C Lee Giles. Citeseer: An autonomous
web agent for automatic retrieval and identification of interesting publications.
In Proceedings of the second international conference on Autonomous agents,
pages 116–123, 1998.

Léon Bottou et al. Stochastic gradient learning in neural networks. Proceedings
of Neuro-Nımes, 91(8):12, 1991.

Steven L Brunton, Marko Budǐsić, Eurika Kaiser, and J Nathan Kutz. Modern
koopman theory for dynamical systems. arXiv preprint arXiv:2102.12086,
2021.

Matthew J Colbrook and Alex Townsend. Rigorous data-driven computation
of spectral properties of koopman operators for dynamical systems. arXiv
preprint arXiv:2111.14889, 2021.

Akshunna S Dogra and William Redman. Optimizing neural networks via koop-
man operator theory. Advances in Neural Information Processing Systems,
33:2087–2097, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. In Inter-
national conference on machine learning, pages 1263–1272. PMLR, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space.
Proceedings of the National Academy of Sciences, 17(5):315–318, 1931.

J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proc-
tor. Dynamic mode decomposition: data-driven modeling of complex systems.
SIAM, 2016.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In
International conference on machine learning, pages 3734–3743. PMLR, 2019.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Prun-
ing and quantization for deep neural network acceleration: A survey. Neuro-
computing, 461:370–403, 2021.

Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, Dongrui Fan, Shirui
Pan, and Yuan Xie. Survey on graph neural network acceleration: An algo-
rithmic perspective. arXiv preprint arXiv:2202.04822, 2022.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
Automating the construction of internet portals with machine learning. In-
formation Retrieval, 3:127–163, 2000.

12 C. Brissette, W. Hawkins, G. M. Slota

Igor Mezić. Analysis of fluid flows via spectral properties of the koopman oper-
ator. Annual Review of Fluid Mechanics, 45:357–378, 2013.

ROYUD Nishino and Shohei Hido Crissman Loomis. Cupy: A numpy-compatible
library for nvidia gpu calculations. 31st confernce on neural information pro-
cessing systems, 151(7), 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32, 2019.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental
data. Journal of fluid mechanics, 656:5–28, 2010.

Mauricio E Tano, Gavin D Portwood, and Jean C Ragusa. Accelerating training
in artificial neural networks with dynamic mode decomposition. arXiv preprint
arXiv:2006.14371, 2020.

Jonathan H Tu, Clarence W Rowley, Dirk M Luchtenburg, Steven L Brunton,
and J Nathan Kutz. On dynamic mode decomposition: Theory and applica-
tions. Journal of Computational Dynamics, 1(2):391–421, 2014.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. A comprehensive survey on graph neural networks. IEEE trans-
actions on neural networks and learning systems, 32(1):4–24, 2020.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-
supervised learning with graph embeddings. In International conference on
machine learning, pages 40–48. PMLR, 2016.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and
Jure Leskovec. Hierarchical graph representation learning with differentiable
pooling. Advances in neural information processing systems, 31, 2018.

Qianru Zhang, Meng Zhang, Tinghuan Chen, Zhifei Sun, Yuzhe Ma, and Bei
Yu. Recent advances in convolutional neural network acceleration. Neurocom-
puting, 323:37–51, 2019.

