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Abstract—We present PULP, a parallel and memory-efficient
graph partitioning method specifically designed to partition low-
diameter networks with skewed degree distributions. Graph
partitioning is an important Big Data problem because it impacts
the execution time and energy efficiency of graph analytics
on distributed-memory platforms. Partitioning determines the
in-memory layout of a graph, which affects locality, inter-
task load balance, communication time, and overall memory
utilization of graph analytics. A novel feature of our method
PULP (Partitioning using Label Propagation) is that it optimizes
for multiple objective metrics simultaneously, while satisfying
multiple partitioning constraints. Using our method, we are able
to partition a web crawl with billions of edges on a single compute
server in under a minute. For a collection of test graphs, we
show that PULP uses 8–39× less memory than state-of-the-art
partitioners and is up to 14.5× faster, on average, than alternate
approaches (with 16-way parallelism). We also achieve better
partitioning quality results for the multi-objective scenario.

I. INTRODUCTION

Graph analytics deals with the computational analysis of
real-world graph abstractions. There are now several online
repositories that host representative real-world graphs with up
to billions of vertices and edges (e.g., [19], [8], [30]). Also,
new open-source and commercial distributed graph processing
frameworks (e.g., PowerGraph [12], Giraph [7], Trinity [28],
PEGASUS [14]) have emerged in the past few years. The
primary goal of these frameworks is to permit in-memory
or parallel analysis of massive web crawls and online social
networking data. These networks are characterized by a low
diameter and skewed vertex degree distributions, and are
informally referred to as small-world or power law graphs.
These graph processing frameworks use different I/O formats
and programming models [25], [13], but all of them require
an initial vertex and edge partitioning for scalability in a
distributed-memory setting.

A key motivating question for this work is, how must one
organize the data structures representing the graph on a cluster
of multicore nodes, with each node having 32-64 GB memory?
Fully replicating the data structures on each process is infeasi-
ble for massive graphs. A graph topology-agnostic partitioning
will lead to severe load imbalances when processing graphs
with skewed degree distributions. Two common topology-
aware approaches to generate load-balanced partitions are (i)
randomly permuting vertex and edge identifiers, and (ii) using

a specialized graph partitioning tool. Random permutations
ensure load balance, but hurt locality and inter-task com-
munication. Graph partitioning methods attempt to maximize
both locality and load balance, and optimize for aggregate
measures after partitioning, such as edge cut, communication
volume, and imbalance in partitions. There is a large collection
of partitioning methods [1] that perform extremely well in
practice for regular, structured networks. However, there are
three issues that hinder use of existing graph partitioners for
small-world network partitioning:

1) Traditional graph partitioners are heavyweight tools that
are designed for improving performance of linear solvers.
Most graph partitioning methods use multilevel approaches,
and these are memory-intensive. Partitioning time is not a
major consideration, as it is easy to amortize the cost of
partitioning over multiple linear system solves.

2) The collection of complex network analysis routines is
diverse and constantly evolving. There is no consensus on
partitioning objective measures. Partitioning with multiple
constraints and multiple objectives is not widely supported
in the current partitioners.

3) Small-world graphs lack good vertex and edge separa-
tors [20]. This results in problems that are hard to parti-
tion the traditional way, resulting in even high-performing
traditional partitioners taking hours to partition large small-
world graphs.

This paper takes a fresh look at the problem of distributed
graph layout and partitioning. We introduce a new partitioning
method called PULP (Partitioning using Label Propagation),
and explore trade-offs in quality and partitioning overhead for
a collection of real and synthetic small-world graphs. As the
name suggests, PULP is based on the label propagation com-
munity identification algorithm [26]. This algorithm belongs
to the class of agglomerative clustering algorithms, generates
reasonably good quality results for the community identifica-
tion problem [1], is simple to implement and parallelize, and
is extremely fast. One of the goals of any graph partitioning
scheme is to reduce the number of inter-partition edges (or
the edge cut), as it loosely correlates with the communication
costs. Since communities are tightly connected vertices, co-
locating vertices of a community in a partition will increase



the proportion of intra-partition edges. In typical graph analytic
algorithms, the number of vertices/edges in each partition rep-
resent the local work and the memory usage. In parallel graph
analytics utilizing a bulk synchronous parallel (BSP) model,
we also want to minimize the maximum communication (cut
edges) incurred by any single partition. As a consequence,
our approach also tries to impose vertex and edge balance
constraints, with the goal to minimize both total edge cut and
maximal per-partition edge cut.

To demonstrate the efficacy of our approach, we compare
the quality of results obtained using PULP to the multi-
level k-way partitioning method in METIS [16], [15] and
ParMETIS [17]. We use the multiple constraint version of
both the codes [18], [27]. We also compare our code against
the KaHIP [21] library, which uses label propagation within a
multilevel framework. Our contributions in the paper are:
1) A fast, scalable, partitioner that is practical for partitioning

small-world graphs.
2) A partitioner that handles the multiple objective and mul-

tiple constraints that are important for small-world graph
analytics.

3) A performance study for a collection of seven large-scale
small-world graphs (number of edges range from 42 million
to 1.8 billion).
For the large networks and commonly-used quality mea-

sures (edge cut), our partitioning scheme is comparable to
all the partitioners and better than them in additional ob-
jectives (maximum edge cut per partition) for a wide range
of partition counts (2-128) and with fixed edge and vertex
balance constraints. The main advantage of our approach is
the relative efficiency improvement: for instance, to partition
the 1.8 billion edge Slovakian domain (.sk) crawl [2], our
approach uses 7.5× less memory and is 16× faster than
METIS. PULP takes less than a minute on a single compute
node to generate 128 partitions of this graph, while satisfying
the vertex and edge balance constraints.

Note that graph partitioning is frequently used as a prepro-
cessing routine in distributed graph processing frameworks, so
PULP can be used to accelerate the execution time of graph
algorithms in software such as Giraph and PowerGraph.

II. PRELIMINARIES: GRAPH DISTRIBUTION AND
PARTITIONING

We consider parallelizing analytics over large and sparse
graphs: the numbers of vertices (n) is greater than 10 million,
and the ratio of the number of edges (m) to number of
vertices is less than 1000. The graph organization/layout in
a distributed-memory system is characterized by the ‘distribu-
tion, partitioning, ordering’ triple. Given p processes or tasks,
the most common distribution strategy, called 1D distribution,
is to assign each task a p-way disjoint subset of vertices and
their incident edges. If the p-way vertex/edge partitioning is
load-balanced, the memory required per task would be (2m+n)

p
identifiers (integers). The advantages of the 1D scheme are its
simplicity, memory efficiency and ease of parallel implemen-
tation of most graph computations using an ‘owner computes’

model. A disadvantage of 1D methods is that some collective
communication routines could potentially require exchange of
messages between all pairs of tasks (p2), and this may become
a bottleneck for large p.

In contrast, a 2D distribution with p = pr× pc tasks results
in each task being the owner of a subgraph of size n

pr
× n

pc
with

disjoint edge assignments, but collective ownership of each
vertex (by pr or pc tasks). The advantage is better load balance
and collective communication phases with up to max(p2r, p

2
c)

pairwise exchanges. The disadvantages are increased complex-
ity in algorithm design, primarily the communication steps,
and increased memory usage for storing the graph (since both
the row and column dimensions may be sparse).

The interaction of graph partitioning methods and 1D distri-
butions is well-understood [1]. Recently, it has been shown that
1D graph partitioning used in a 2D distribution is effective for
small-world graphs [3]. However, computing the 1D partition
still remains expensive. Other 1D and 2D distributions, for
instance, vertex degree-based, are also possible [23]. The
current state-of-the-art in distributed-memory implementations
is to adopt a graph distribution scheme, a specific partitioning
method, and then organize inter-node communication around
these choices. In this paper, we focus on the partitioning
aspect of the aforementioned triple and use 1D distribution
and natural ordering.

The partitioning problem we are interested in for graph
analytic applications and is solved in PULP can be formally
described as below. Given an undirected graph G = (V,E),
partition V into p disjoint partitions. Let Π = {π1, . . . , πp}
be a balanced partition such that ∀i = 1 . . . p,

(1− εl)
|V |
p

≤ |V (πi)| ≤ (1 + εu)
|V |
p

(1)

|E(πi)| ≤ (1 + ηu)
|E|
p

(2)

where εl and εu are the lower and upper vertex imbalance
ratios, ηu is the upper edge imbalance ratio, V (πi) is the set
of vertices in part πi and E(πi) is the set of edges such that
both its endpoints are in part πi. We define the set of cut edges
as

C(G,Π) = {{(u, v) ∈ E} | Π(u) 6= Π(v)} (3)
C(G, πk) = {{(u, v) ∈ C(G,Π)} | (u ∈ πk ∨ v ∈ πk)} (4)

Our partitioning problem is then to minimize the two metrics

EC(G,Π) = |C(G,Π)| (5)
ECmax(G,Π) = max

k
|C(G, πk)| (6)

This can also be generalized for edge weights and vertex
weights. PULP can be extended to handle other metrics like
the total communication volume and the maximum communi-
cation volume. In the past, multi-constraint graph partitioning
with the EC objective has been implemented in METIS and
ParMETIS [18], [27]. We will compare against both these
methods in Section IV. Pinar et al. [24] suggested a framework
for partitioning with complex objectives (but with a single



constraint) that is similar to our iterative approach. More
recently, there are multi-objective partitionings [31] and multi-
constraint and multi-objective partitionings [4] for hypergraph
partitioning. However, hypergraph methods are often much
more compute-intensive than graph partitioning methods.

III. PULP: METHODOLOGY AND ALGORITHMS

This section introduces PULP, which is our methodology
for utilizing label propagation to partition large-scale small-
world graphs in a scalable manner. We will further detail how
it is possible to create and vary label propagation weighting
functions to create balanced partitions that minimize total edge
cut (EC) and/or maximal per-partition edge cut (ECmax).
This overall strategy can partition graphs under both single
and multiple constraints as well as under single and multiple
objectives. It is possible to extend this approach even further to
include other objectives, e.g. communication volume, beyond
those described below.

A. Label Propagation

Label propagation was originally proposed as a fast com-
munity detection algorithm. An overview of the baseline
algorithm is given in Algorithm 1. We begin by randomly
initializing the labels L for all vertices in the graph out of a
possible p distinct labels. p can be chosen experimentally or
based on some heuristic to maximize a community evaluation
metric, such as modularity or conductance. Then, for a given
vertex v in the set of all vertices V in a graph G, we
examine for all of its neighbors u each of their labels L(u).
We keep track of the counts for each distinct label in C.
After examining all neighbors, v updates its current label to
whichever label has the maximal count in C.

Algorithm 1 Baseline label propagation algorithm.
procedure LABEL-PROP(G(V,E), p, I)

for all v ∈ V do
L(v)←Rand(1 · · · p)

i← 0, r ← 1
while i < I and r 6= 0 do

r ← 0
for all v ∈ V do

C(1 · · · p)← 0
for all (v, u) ∈ E do

C(L(u))← C(L(u)) + 1

x← Max(C(1 · · · p))
if x 6= L(v) then

L(v)← x
r ← r + 1

i← i+ 1
return L

The algorithm proceeds to iterate over all V until some
stopping criteria is met. This stopping criteria is usually some
fixed number of iterations I , as we show, or until convergence
is reached and no new updates and performed during a single
iteration (number of updates r is zero). For large graphs, there
is no guarantee that convergence will be reached quickly, if at
all, so a fixed iteration count is usually preferred in practice.

As with p, the maximal iteration count is usually determined
experimentally. Since each iteration performs linear work, this
results in an overall linear and efficient algorithm.

B. PULP Overview

In general, label propagation methods are attractive for
community detection due to their low computational overhead,
low memory utilization, as well as the relative ease of paral-
lelizability. In PULP, we utilize weighted label propagation in
three separate stages to partition an input graph. The first stage
initializes data structures and creates an initial partitioning
of vertices into communities or clusters. The communities
serve as initial partitioning for our iterative approach in the
second and third stages. In the second and the third stage,
the algorithm iteratively alternates between a label-propagation
based balancing step to minimize one of the objectives and
a refinement step to further improve upon a given objective.
Both of these stages ensure that constraints satisfied in previ-
ous steps are not violated.

The input parameters to PULP are listed in Table I. Listed
in brackets are the default values we used for partitioning
the graphs for our experiments. The vertex and edge balance
constraints were selected based on what might be chosen in
practice for what a typical graph analytic code might use
on a small-world graph. All of the iteration counts we show
were determined experimentally, as they demonstrated the best
trade-off between computation time and partitioning quality
across our suite of test graphs for a wide range of tested
values. A more in-depth quantitative study of the effects on
partitioning quality with varying iteration counts for each of
the stages is undoubtedly interesting, but is reserved for future
work. Likewise, the sensitivity of PULP to varying balance
constraints is not examined in this paper, but will additionally
make for interesting future work.

TABLE I
PULP INPUTS, PARAMETERS, AND SUBROUTINES.

G(V,E) Input graph (undirected, unweighted)
n = |V | Number of vertices in graph
m = |E| Number of edges in graph
P (1 · · ·n) Per-vertex partition mappings
p Number of partitions
εl Vertex lower balance constraint [0.75]
εu Vertex upper balance constraint [0.1]
ηu Edge upper balance constraint [0.5]
Ip # of iterations in label propagation stage [3]
Il # of iterations in outer loop [3]
Ib # of iterations in balanced propagation stage [5]
Ir # of iterations in constrained refinement stage [10]
PULP-X PULP subroutine for various stages

Algorithm 2 gives the overview of the three stages to create
a vertex and edge-constrained partitioning that minimizes both
edge cut and maximal per-part edge cut. We refer to this algo-
rithm as PULP Multi-Constraint Multi-Objective partitioning,
or PULP-MM (Algorithm 2). After initializing a random
partitioning, PULP-MM does an initial label propagation in
PULP-p (Algorithm 3) to get the initial community assign-
ments. The communities are then used in an iterative stage
that first balances the number of vertices in each part through



weighted label propagation (PULP-vp listed in Algorithm 4)
while minimizing the edge cut and then improves the edge cut
on the balanced partition through FM-refinement [9]. The next
iterative stage further balances the number of edges per part
while minimizing per-part edge cut through weighted label
propagation (PULP-cp listed in Algorithm 5) and then refines
the achieved partitions through constrained FM-refinement
(PULP-cr as shown in Algorithm 6). More details of these
stages are in the following subsections.

Algorithm 2 PULP multi-constraint multi-objective algorithm.
procedure PULP-MM(G(V,E), p, Ip, Il, Ib, Ir)

for all v ∈ V do
P (v)←Rand(1 · · · p)

N(1 · · · p)← vertex counts in P (1 · · · p)
PULP-p(G(V,E), p, P,N, Ip)
for i = 1 · · · Il do

PULP-vp(G(V,E), p, P,N, Ib)
PULP-vr(G(V,E), p, P,N, Ir)

M(1 · · · p)← edge counts in P (1 · · · p)
T (1 · · · p)← edge cut in P (1 · · · p)
U ← current edge cut
for i = 1 · · · Il do

PULP-cp(G(V,E), p, P,N,M, T, U, Ib)
PULP-cr(G(V,E), p, P,N,M, T, U, Ir)

return P

C. PULP Initialization and Label Propagation

PULP-p (Algorithm 3) randomly initializes partition assign-
ments P for vertices and then uses this initial partitioning in
label propagation. Here, in lieu of doing the standard label
propagation approach of assigning to a given vertex v a label
based on the maximal label count, Max(C(1 · · · p)), of all
of its neighbors (v, u) ∈ E, we utilize an additional degree
weighting by considering the size of the neighborhood of u
(|E(u)| in the Algorithm). A vertex v is therefore more likely
to take u’s label if u has a very large degree. This approach
enables creation of dense clusters around the high degree
vertices that are common in small world graphs. This ends
up minimizing edge cut in practice by making it preferential
for boundary vertices to be of smaller degree, as larger degree
vertices will propagate their label to all of their neighbors in
the subsequent iterations.

We use an additional minimal size constraint Minv to
prevent the size of a given part |πi| from becoming too small.
Initial parts that are too small require a lot more iterations
in the later stages to rebalance themselves. We otherwise
allow clusters to naturally grow to any size and only perform
vertex/edge balancing in the subsequent stages. We chose a
small fixed iteration cutoff Ip in our current implementation,
as we are not explicitly optimizing for a community detection
measure such as modularity [10] and only want an initial
partitioning of reasonable quality .

D. PULP Vertex Balancing and Total Edge Cut Minimization

With the initial partitioning, the PULP-vp (Algorithm 4)
balances the vertex counts between parts to satisfy our orig-

Algorithm 3 PULP degree-weighted label propagation stage.
procedure PULP-P(G(V,E), p, P,N, Ip)

Minv ← (n/p)× (1− εl)
i← 0, r ← 1
while i < Ip and r 6= 0 do

r ← 0
for all v ∈ V do

C(1 · · · p)← 0
for all (v, u) ∈ E do

C(P (u))← C(P (u)) + |E(u)|
x← Max(C(1 · · · p))
if x 6= P (v) and N(P (v))− 1 > Minv then

P (v)← x
r ← r + 1

i← i+ 1
return P

inal balance constraint. It follows the same basic outline of
the initialization stage, in that it uses degree-weighted label
propagation. However, there are two important changes.

Algorithm 4 PULP single objective vertex-constrained label
propagation stage.

P ← PULP-vp(G(V,E), P, p,N, Ib)
i← 0, r ← 1
Maxv ← (n/p)× (1 + εu)
Wv(1 · · · p)← Max(Maxv/N(1 · · · p)− 1,0)
while i < Ib and r 6= 0 do

r ← 0
for all v ∈ V do

C(1 · · · p)← 0
for all (v, u) ∈ E do

C(P (u))← C(P (u)) + |E(u)|
for j = 1 · · · p do

if Moving v to Pj violates Maxv then
C(j)← 0

else
C(j)← C(j)×Wv(j)

x← Max(C(1 · · · p))
if x 6= P (v) then

Update(N(P (v)), N(x))
Update(Wv(P (v)),Wv(x))
P (v)← x
r ← r + 1

i← i+ 1

First, for any part that is overweight, i.e. the number of
vertices in that current part πq (N(q) in the algorithm) is
greater than our maximal Maxv , we do not allow that part to
accept new vertices. Second, there is an additional weighting
parameter Wv(1 · · · p) that is based on how underweight any
part currently is. For a given part q, Wv(q) will approach
infinity as the size of that part approaches zero and will
approach zero as the size of the part approaches Maxv . For
part sizes above Maxv , we will consider the weight to be
zero. This weighting forces larger parts to give vertices away
with a preference towards the current most underweight parts.
Due to the low diameter of small-world graphs, it is possible
for any given vertex to quickly move between multiple parts.
This stage is still degree-weighted and therefore minimizes



the edge cut in the aforementioned indirect way, preferring
small degree vertices on the boundary. When none of the
parts are overweight and there is little difference in Wv

values, this scheme will default to basic degree-weighted label
propagation.

We further explicitly minimize edge cut with FM-
refinement. The FM-refinement stage iteratively examines
boundary vertices and passes them to a new part if it results
in a lower edge cut without violating the vertex balance
constraint. We do not show PULP-vr for space considerations,
but it is essentially the same as Algorithm 6 (explained below).
Except for PULP-vr, we consider only Maxv as our single
constraint. We perform Il iterations of balancing and refining
before moving on to the stages for other constraints and mini-
mize other partitioning objectives. In order to create a vertex-
constrained partitioning with the total edge cut minimized,
the algorithm can stop after this stage. We call this PULP
Single-Constraint Single-Objective, or simply PULP. Also
note that very simple changes to Algorithm 4 would allow
us to constrain only edge balance instead of vertex balance.

E. PULP Edge Balancing and ECmax Minimization

Once we have a vertex balanced partitioning that minimizes
edge cuts, PULP balances edges per part and minimizes per-
part edge cut (Algorithm 5). The edge cut might increase
because of the new objective, hence the algorithm uses a com-
bination of both objectives with a dynamic weighting scheme
to achieve a balance between the two objectives. The algorithm
also ensures the vertex balance constraint will remain satisfied.
The approach still uses weighted label propagation under given
constraints. However, there are a number of nuances to make
note of.

Initially, we do not use the edge balance constraint as it is
given to us. Instead, a relaxed constraint based on the current
maximal edge count across all parts CurMaxe is used to com-
pute the edge balance weights (We(1 · · · p)). This results in the
possibility of all parts receiving more edges with the exception
of the current largest, but no part will receive enough edges
to become greater than CurMaxe

. As the largest part can only
give away vertices and edges, CurMaxe is iteratively tightened
until the given edge balance constraint is met. Once we pass
the threshold given by our input constraint, we fix CurMaxe

to be equal to Maxe. To minimize the maximum edges cut
per part, we employ a similar procedure with CurMaxc

and
the weightings for maximum cut edges (Wv(1 · · · p)). We
iteratively tighten this bound so that, although we have no
assurance that the sum edge cut will decrease, we will always
be decreasing the maximal edges cut per part.

We also introduce two additional dynamic weighting terms
Re and Rc that serve to shift the focus of the algorithm be-
tween hitting the Maxe constraint and minimizing CurMaxc

.
For every iteration of the algorithm that the Maxe constraint is
not satisfied, Re is increased by the ratio of which CurMaxe

is greater than Maxe. This shifts the weighting function to
give higher preference towards moving vertices to parts with
low edge counts instead of attempting to minimize the edge

Algorithm 5 PULP multi-objective vertex and edge-
constrained label propagation stage.

P ← PULP-cp(G(V,E), P, p,N,M, T, U, Ib)
i← 0, r ← 1
Maxv ← (n/p)× (1 + εu)
Maxe ← (m/p)× (1 + ηu)
CurMaxe ← Max(M(1 · · · p))
CurMaxc ← Max(T (1 · · · p))
We(1 · · · p)← CurMaxe/M(1 · · · p)− 1
Wc(1 · · · p)← CurMaxc/T (1 · · · p)− 1
Re ← 1, Rc ← 1
while i < Ip and r 6= 0 do

r ← 0
for all v ∈ V do

C(1 · · · p)← 0
for all (v, u) ∈ E do

C(P (u))← C(P (u)) + 1

for j = 1 · · · p do
if Moving v to Pj violates Maxv , CurMaxe ,

CurMaxc then
C(j)← 0

else
C(j)← C(j)× (We(j)×Re +Wv(j)×Rc)

x← Max(C(1 · · · p))
if x 6= P (v) then

P (v)← x
r ← r + 1
Update(N(P (v)), N(x))
Update(M(P (v)),M(x))
Update(T (P (v)), T (x))
Update(U )
Update(We(P (v)),We(x))
Update(Wc(P (v)),Wc(x))
Update(CurMaxe ,CurMaxc )

if CurMaxe < Maxe then
CurMaxe ←Maxe
Rc ← Rc × CurMaxc

Re ← 1
else

Re ← Re × (CurMaxe/Maxe)
Rc ← 1

i← i+ 1

cut balance. Likewise, when the edge balance constraint is
satisfied, we reset Re to one and iteratively increase Rc to now
focus the algorithm on minimizing maximal per-part edge cut.

This iterative approach with different stages works much
better in practice for multiple constraints, as employing two
explicit constraints at the beginning is a very tough problem.
The label propagation will often get stuck, unable to find any
vertices that can be moved without violating either constraint.
Note that we can very easily turn the problem in a multi-
constraint single-objective problem by not including CurMaxc

and Wc in our weighting function or constraint checks. We
demonstrate this later in Section IV by running PULP Multi-
Constraint Single-Objective, or PULP-M. Additionally, we
can instead turn the problem into a single-constraint three-
objective problem by ignoring Maxe altogether and instead
just attempt to further minimize both CurMaxe

and CurMaxc

along with total edge cut.



Algorithm 6 PULP multi-objective vertex and edge-
constrained refinement stage.

P ← PULP-cr(G(V,E), P,N,M, T, U, p)
i← 0, r ← 1
Maxv ← (n/p)× (1 + εu)
Maxe ← (m/p)× (1 + ηu)
CurMaxe ← Max(Max(M(1 · · · p)),Maxe)
CurMaxc ← Max(T (1 · · · p))
while i < Ir and r 6= 0 do

r ← 0
for all v ∈ V do

C(1 · · · p)← 0
for all (v, u) ∈ E do

C(P (u))← C(P (u)) + 1

x← Max(C(1 · · · p))
if Moving v to Px does not violate Maxv , CurMaxe ,

CurMaxc then
P (v)← x
r ← r + 1
Update(N(P (v)), N(x))
Update(M(P (v)),M(x))
Update(T (P (v)), T (x))
Update(U )

i← i+ 1

After the completion of Algorithm 5, we again perform
a constrained FM-refinement, given by Algorithm 6. This
algorithm uses the current maximal balance sizes of Maxv ,
CurMaxe , and CurMaxc , and we attempt to minimize the total
edge cut without violating any of these current balances.

F. Algorithm Parallelization and Optimization

One of the strengths of using label propagation for par-
titioning is that its vertex-centric nature lends itself towards
very straightforward and efficient parallelization. For all of
our listed label propagation-based and refinement algorithms,
we implement shared-memory parallelization over the primary
outer loop of all v ∈ V . Maxv , CurMaxe

, CurMaxc
, Re, and

Rc as well as N , M , and T are all global values and arrays
and are updated in a thread-safe manner. Each thread creates
and updates its own C, Wv , We, and Wc arrays.

The algorithm also uses global and thread-owned queues as
well as boolean in queue arrays to speed up label propagation
through employing a queue-based approach similar to what
can be used for color propagation [29]. This technique avoids
having to examine all v ∈ V in every iteration. Although
it is possible, because of the dynamic weighting functions,
that a vertex doesn’t end up enqueued when it is desirable
for it to change parts on a subsequent iteration, the effects
of this are observed to be minimal in practice. We observe
near identical quality between both our queue and non-queue
implementations as well as our serial and parallel code.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

We evaluate performance of our new PULP partitioning
strategies on a collection of seven large-scale small-world
graphs, listed in Table II. LiveJournal, Orkut, and Twitter

(follower network) are crawls of online social networks from
the SNAP Database and the Max Planck Institute for Soft-
ware Systems [30], [5], [35]. sk-2005 is a crawl of the
Slovakian (.sk) domain using UbiCrawler and was retrieved
from the University of Florida Sparse Matrix Collection [2],
[8]. WikiLinks is a crawl of links between articles within
Wikipedia [19]. The DBpedia graph is a structured RDF
graph generated from Wikipedia data [22]. The R-MAT graph
is a randomly generated scale 24 R-MAT graph [6]. The
Orkut graph is undirected and the remaining six graphs are
directed. We preprocessed the graphs before running PULP
by removing directivity in edges, deleting all degree-0 ver-
tices and multi-edges, and extracted the largest connected
component. Ignoring I/O, this preprocessing required minimal
computational time, only on the order of a few seconds in
serial for our datasets. Table II lists the sizes and properties
of these seven graphs after preprocessing.

TABLE II
TEST GRAPH CHARACTERISTICS after PREPROCESSING. GRAPHS BELONG
TO FOUR CATEGORIES, OSN: ONLINE SOCIAL NETWORKS, WWW: WEB

CRAWL, RDF: GRAPHS CONSTRUCTED FROM RDF DATA, SYN:
GENERATED SYNTHETIC NETWORK. # VERTICES (n), # EDGES (m),

AVERAGE (davg) AND MAX (dmax) VERTEX DEGREES, AND
APPROXIMATE DIAMETER (D̃) ARE LISTED. B = ×109 , M = ×106 ,

K = ×103 .

Network Category n m davg dmax D̃ Source

LiveJournal OSN 4.8 M 43 M 18 20 K 16 [20]
Orkut OSN 3.1 M 117 M 76 33 K 9 [35]
R-MAT SYN 7.7 M 133 M 35 260 K 8 [6]
DBpedia RDF 62 M 190 M 6.1 7.3 M 8 [22]
WikiLinks WWW 26 M 504 M 42 4.3 M 170 [19]
sk-2005 WWW 51 M 1.8 B 72 8.6 M 308 [2]
Twitter OSN 53 M 1.6 B 61 3.5 M 19 [5]

Scalability and performance studies were done on three
clusters: Compton, Shannon, and Stampede. Each node of
Compton and Shannon is a dual-socket system with 64 GB
or 128 GB main memory and Intel Xeon E5-2670 (Sandy
Bridge) CPUs at 2.60 GHz and 20 MB last-level cache running
RHEL 6.1. Stampede has two Intel Xeon E5-2680 CPUs and
1024 GB DDR3 on the large memory compute nodes running
CentOS 6.3. In addition, we used Carver at the National
Energy Research Scientific Computing Center for generating
some partitions used in quality evaluations. The programs were
built with the Intel C++ compiler (version 13) using OpenMP
for multithreading and the -O3 option, and we used Intel MPI
(version 4.1) for MPI codes.

B. Performance Evaluation

We evaluate our PULP partitioning methodology against
both single and multi-constraint METIS and ParMETIS as well
as KaFFPa from KaHIP. METIS runs used k-way partitioning
with sorted heavy-edge matching and minimized edge cut.
KaFFPa results use the fastsocial option (KaFFPa-FS), which
does constrained label propagation during the initial graph
contraction phase. We attempted the ecosocial and strong-
social variants, but partitioning was unable to complete for
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Fig. 1. Partitioning times with PULP, METIS, and KaFFPa. Top: Comparison of serial running times. Bottom: Parallel and Serial running times.

TABLE III
COMPARISON OF EXECUTION TIME OF SERIAL AND PARALLEL (16 CORES)
PULP-MM ALGORITHM WITH SERIAL METIS-M, KAFFPA, PARMETIS
(BEST OF 1 TO 256 CORES), COMPUTING 32 PARTS. THE “ALL” SPEEDUP

COMPARES PARALLEL PULP-MM TO THE BEST OF THE REST.

Execution time (s) PuLP-MM Speedup
Serial Parallel vs Best AllNetwork

PuLP METIS-M KaFFPa PuLP ParMETIS Serial Parallel

LiveJournal 91 75 182 7 44 0.8× 6.1×
Orkut 135 170 413 12 73 1.2× 5.8×

R-MAT 200 778 1000 34 414 3.9× 12.2×
DBpedia 723 947 - 167 - 1.3× 5.6×

WikiLinks 1205 1104 1120 164 - 0.9× 6.7×
sk-2005 351 1237 - 42 - 3.5× 29.4×
Twitter 5296 13428 - 530 - 2.5× 25.3×

most test cases. DBpedia was not able to be partitioned in
under 12 hours with any option. KaFFPa was also unable to
process the sk-2005 or Twitter graphs due to a 32-bit int
limitation. ParMETIS was only able to successfully complete
on LiveJournal, Orkut, and the R-MAT graph.

We use the three aforementioned variants of PULP
for comparison, which are single-constraint single-objective
(PULP), multi-constraint single-objective (PULP-M), and
multi-constraint multi-objective (PULP-MM). We do compar-
isons on the basis of edge cut, maximal per-part edge cut,
execution time, and memory utilization. For all experiments,
vertex imbalance ratio is set to 10%. For multi-constraint
experiments, edge imbalance ratio is 50%. Due to the existance
of a very high-degree vertex in DBpedia, we relax this
constraint to 100% at 64 parts and 200% at 128 parts on this
graph.

C. Execution Time and Memory Utilization

We first compare PULP to METIS, ParMETIS, and KaFFPa
in terms of partitioning times and memory utilizations. We
compare all seven test graphs and from 2 to 128 parts. The top
plots of Figure 1 give the serial execution times for all of the
tested variants of PULP, METIS, and KaFFPa on our Sandy

Bridge test systems. We observe that the single-constraint
single-objective variant of PULP runs fastest in almost all test
instances. We note that the serial running times of PULP-M
and PULP-MM to also be faster than METIS and METIS with
multi-constraints (METIS-M) in majority of tests.

The bottom plots of Figure 1 give the parallel execution
times of the PULP variants across 16 cores and 32 threads on
our Compton system. We did multiple runs of ParMETIS using
1 task to 256 tasks (16 nodes) and present the lowest runtime
over all the successful runs on LiveJournal, Orkut, and R-
MAT. As a result, the speedups reported are very conservative.
ParMETIS didn’t complete for any of the other graphs. We
also include the serial versions of PULP-M and METIS-M
for comparison. From Figure 1, we can see that the parallel
execution times of all PULP variants are minimal compared
to the other partitioners. In order to better demonstrate the
speedup, Table III shows the running time to compute 32 parts,
comparing serial PULP-MM with METIS-M and parallel
PULP-MM against ParMETIS, when possible, or the best of
the serial methods otherwise. The parallel speedups range from
about 6× to 29×.

We additionally note that the increase in running times ver-
sus number of parts increases for PULP because it correspond-
ingly increases the total number of vertex swaps between parts.
For parallel runs, this also increases the number of required
atomic updates to the global values and arrays. However, we
also see a relative increase in parallel speedup for increasing
part counts because, although the total number of updates
increases, the contention between threads to atomically update
any given value decreases when the number of threads is much
less than the number of parts.

Table IV compares the maximal memory utilization of
PULP-MM, METIS and KaFFPa for computing 128 parts.
Memory savings for PULP versus the best of either METIS
or KaFFPa are significant(39× for Twitter and 7.5× for sk-
2005). These memory savings are primarily due to avoiding
a multilevel approach. The only structures PULP needs (in



LiveJournal Orkut R−MAT DBpedia WikiLinks sk−2005 Twitter

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.5

0.00

0.02

0.04

0.06

0.2

0.4

0.6

0.8

2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128

Number of Partitions

E
d

g
e

 C
u

t 
R

a
ti
o

Partitioner  PULP−M  PULP−MM  METIS−M

LiveJournal Orkut R−MAT DBpedia WikiLinks sk−2005 Twitter

0.02

0.04

0.06

0.08

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.4

0.03

0.06

0.09

0.12

0.15

0.00

0.05

0.10

0.15

0.0050

0.0075

0.0100

0.0

0.1

0.2

0.3

2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128 2 4 8 16 32 64128

Number of Partitions

M
a

x
 P

e
r−

P
a

rt
 R

a
ti
o

Fig. 2. Quality metrics of total cut edge ratio (top) and maximum per-part edge cut ratio (bottom) for PULP-M, PULP-MM and METIS-M.

TABLE IV
PULP EFFICIENCY: MAXIMUM MEMORY UTILIZATION COMPARISONS FOR

GENERATING 128 PARTS.

Memory Utilization Improv.Network
METIS-M KaFFPa PULP-MM Graph Size

LiveJournal 7.2 GB 5.0 GB 0.44 GB 0.33 GB 11×
Orkut 21 GB 13 GB 0.99 GB 0.88 GB 13×
R-MAT 42 GB 64 GB 1.2 GB 1.02 GB 35×
DBpedia 46 GB - 2.8 GB 1.6 GB 16×
WikiLinks 103 GB 42 GB 5.3 GB 4.1 GB 8×
sk-2005 121 GB - 16 GB 13.7 GB 8×
Twitter 487 GB - 14 GB 12.2 GB 39×

addition to graph storage) are the global array of length n to
store the partition mappings; the vertex, edge count, and cut
count arrays each of length p; and the thread-owned weight
arrays also each of length p. The storage cost for all p length
arrays is insignificant with a modest thread and part count. We
additionally utilize a few more n length integer and boolean
arrays as well as smaller thread-owned queues and arrays to
speed up label propagation, as mentioned in Section III.

D. Edge Cut and Maximal Per-Part Edge Cut

Figure 2 compares the quality of the partitionings from
PULP and METIS with the seven test graph for 2 to 128
parts using multiple constraints for both programs and both the
single and multiple objectives for PULP. We report the median
value obtained over 5 experiments for each part count and
method. We report on partitions obtained by running PULP in
parallel, but report on partitions obtained by METIS running
in serial, as ParMETIS could successfully run just three of
the problems. We don’t report results from KaFFPa, since the
code does not currently support multiple constraints.

The top plots show the edge cuts (EC) obtained for multi-
constraint METIS (METIS-M) as well as both multi-constraint
(PULP-M) and multi-constraint multi-objective PULP (PULP-
MM). The bottom plots give the maximal per-part edge cut
(ECmax) as a ratio of total edges. Taken together, these two
plots demonstrate the tradeoff offered by PULP to minimize

TABLE V
COMPARISON OF THE TWO QUALITY METRICS, EC AND ECmax FOR

PULP-MM AND METIS-M WHEN COMPUTING 32 PARTS. THE %
IMPROVEMENT SHOWS RELATIVE IMPROVEMENT IN QUALITY FOR

PULP-MM WITH RESPECT TO METIS-M QUALITY.

PULP-MM METIS-M % ImprovementNetwork
EC ECmax EC ECmax EC ECmax

LiveJournal 14.0M 1.2M 13.3M 1.9M −5% 34%
Orkut 56.8M 4.3M 44.8M 5.9M −26% 26%
RMAT 118.7M 7.5M 119.3M 11.7M 1/2% 56%

DBpedia 65.2M 8.0M 57.3M 9.7M −13% 17%
WikiLinks 196.3M 16.3M 216.1M 30.1M 9% 45%

sk-2005 58.0M 10.9M 70.2M 12.4M 17% 12%
Twitter 1250.0M 86.1M 1142.0M 129.1M −9% 33%

either the total edge cut at a cost of maximal per-part edge
cut or to minimize the maximal per-part edge cut at a cost of
total edge cut.

We observe PULP-M does better than METIS-M for Twitter
and sk-2005; as good as METIS-M for WikiLinks, Livejour-
nal, R-MAT, and Orkut; and worse on DBpedia in terms of
total edge cuts. PULP-MM does slightly worse than METIS
for three graphs and comparable for four graphs, but results
in much better partitions in terms of the maximal per-part
edge cut. A likely reason as to why PULP does not work as
well as METIS on DBpedia is because DBpedia is a generated
RDF graph, not having the same community structure inherent
to the other test graphs. Therefore, it does not derive the
same degree of benefit from utilizing a label-propagation-
based approach. We also observe that our multi-objective
PULP occasionally out-performs our single-objective PULP
on some test instances. This can be explained by the additional
dynamic weighting parameters which can more fully explore
the search space and are therefore more likely to avoid local
minima.

As mentioned, the bottom plots of Figure 2 demonstrate that
multi-objective PULP can be relatively effective at minimizing
the maximal per-part edge cut on partitions derived from these
graphs at a small cost to total edge cut. Table V shows
this tradeoff for 32 parts. We compare the quality of both



the metrics, EC and ECmax, and observe that PULP-MM
improves ECmax substantially (12% – 56%) when compared
with METIS-M at modest expense of the edge cut in some
graphs.

Note that while we include METIS-M for comparison, it
does not explicitly attempt to minimize edge cut balance. Also
note that other experiments showed that tightening the edge
balance in METIS will also inherently improve the maximal
per-part edge cut. However, PULP-MM still demonstrated
overall better performance in these experiments. The results
of these tests are not shown for space considerations. In in-
stances where PULP-M outperforms PULP-MM, examination
of results show that while the overall edge cut balance has
been improved by the approach, the higher total edge cut that
results can offset the derived benefits for smaller part counts.
The jump seen on select graphs between two and four parts
can be explained by the fact that the bipartitioning problem on
those instances is a relatively much easier problem than the
4-way partitioning.

V. RELATED WORK

There are three other works known to us that use label
propagation for the task of partitioning large-scale graphs.
We compare our results with their published results as the
codes are not available publicly. Vaquero et al. [33] implement
vertex-balanced label propagation to partition dynamically
changing graphs. Ugander and Backstrom [32] implement
label propagation for vertex-balanced partitioning as an op-
timization problem. They report performance on a similarly
pre-processed LiveJournal graph for generating 100 parts, with
a serial running time of 88 minutes and resultant edge cut
ratio of 0.49. By comparison, our multi-constraint and multi-
objective serial code creates 128 parts of the LiveJournal
graph in about two minutes and produces an edge cut ratio
of about 0.41. Wang et al. [34] utilize label propagation in
a manner similar to KaFFPa, which is a multilevel approach
with label propagation during graph coarsening. At the coars-
est level, METIS is used to partition the graph. They also
implement non-multilevel partitioning via a label propagation
step followed by a greedy balancing phase. Their multilevel
single-constraint and single-objective approach to partition
pre-processed LiveJournal has a serial running time of about
75 seconds, consumes about 1.5 GB memory, and has an edge
cut about 25% greater than that produced by METIS alone.
By comparison, our code consumes only 440 MB memory and
produces cut quality comparable to or better than METIS on
the same graph. Their non-multilevel approach runs in about
half the time, but at a considerable cost to cut quality.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present PULP, a new fast multi-objective
multi-constraint partitioner for scalable partitioning of small-
world networks. The partitioning method in PULP is based
on the label propagation community detection method. In a
fraction of the execution time, while consuming an order
of magnitude less memory, PULP can produce partitions

comparable or better in terms of total edge cut to the k-way
multilevel partitioning scheme in METIS. In addition, PULP
produces partitions that are better in terms of maximal cut
edges per-part. In future work, we will apply partitionings
from PULP to a larger set of graph computations, as well
as fully explore the input parameters and weighting functions
governing PULP’s partitioning phases. Additionally, exploring
other community detection methods (e.g. [11]) for complex
objective partitioning might make for promising future work.
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objective, multi-level partitioner for communication minimization,” Con-
temporary Mathematics, vol. 588, 2013.

[5] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi, “Measuring
user influence in Twitter: The million follower fallacy,” in Proc. Int’l.
Conf. on Weblogs and Social Media (ICWSM), 2010.

[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proc. Int’l. Conf. on Data Mining (SDM), 2004.

[7] A. Ching and C. Kunz, “Giraph: Large-scale graph processing infras-
tructure on Hadoop,” Hadoop Summit, vol. 6, no. 29, p. 2011, 2011.

[8] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software, vol. 38, no. 1,
pp. 1–25, 2011.

[9] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. Conf. on Design Automation,
1982.

[10] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3, pp. 75–174, 2010.

[11] D. F. Gleich and C. Seshadhri, “Vertex neighborhoods, low conductance
cuts, and good seeds for local community methods,” in KDD, 2012.

[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
erGraph: Distributed graph-parallel computation on natural graphs,” in
Proc. USENIX Conf. on Operating Systems Design and Implementation
(OSDI), 2012.

[13] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L.
Willke, “Towards benchmarking graph-processing platforms,” in Proc.
Supercomputing (SC), poster, 2013.

[14] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A peta-scale
graph mining system implementation and observations,” in Proc. IEEE
Int’l. Conf. on Data Mining (ICDM), 2009.



[15] G. Karypis and V. Kumar, “MeTis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. version 5.1.0,” http://glaros.dtc.umn.edu/
gkhome/metis/metis/download, last accessed July 2014.

[16] ——, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 359–392, 1998.

[17] ——, “Parallel multilevel K-way partitioning scheme for irregular
graphs,” in Proc. ACM/IEEE Conference on Supercomputing (SC), 1996.

[18] ——, “Multilevel algorithms for multi-constraint graph partitioning,” in
Proc. ACM/IEEE Conference on Supercomputing (SC), 1998.

[19] J. Kunegis, “KONECT - the Koblenz network collection,” konect.
uni-koblenz.de, last accessed July 2014.

[20] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–
123, 2009.

[21] H. Meyerhenke, P. Sanders, and C. Schulz, “Partitioning complex
networks via size-constrained clustering,” CoRR, vol. abs/1402.3281,
2014.

[22] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “DBpedia
SPARQL benchmark - performance assessment with real queries on real
data,” in Proc. Int’l. Semantic Web Conf. (ISWC), 2011.

[23] R. Pearce, M. Gokhale, and N. M. Amato, “Scaling techniques for
massive scale-free graphs in distributed (external) memory,” in Proc.
IEEE Int’l. Parallel and Distributed Proc. Symp. (IPDPS), 2013.

[24] A. Pinar and B. Hendrickson, “Partitioning for complex objectives,” in
Proceedings of the 15th International Parallel & Distributed Processing
Symposium, ser. IPDPS ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 121–.

[25] L. Quick, P. Wilkinson, and D. Hardcastle, “Using Pregel-like large scale
graph processing frameworks for social network analysis,” in Proc. Int’l.
Conf. on Advances in Social Networks Analysis and Mining (ASONAM),
2012.

[26] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical Review
E, vol. 76, no. 3, p. 036106, 2007.

[27] K. Schloegel, G. Karypis, and V. Kumar, “Parallel multilevel algorithms
for multi-constraint graph partitioning,” in Proc. Euro-Par 2000 Parallel
Processing, 2000.

[28] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on
a memory cloud,” in Proc. ACM Int’l. Conf. on Management of Data
(SIGMOD), 2013.

[29] G. M. Slota, S. Rajamanickam, and K. Madduri, “BFS and coloring-
based parallel algorithms for strongly connected components and related
problems,” in Proc. IEEE Int’l. Parallel and Distributed Proc. Symp.
(IPDPS), 2014.

[30] “Stanford large network dataset collection,” http://snap.stanford.edu/
data/index.html, last accessed July 2014.
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