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Abstract—We introduce XTRAPULP, a new distributed-
memory graph partitioner designed to process trillion-edge
graphs. XTRAPULP is based on the scalable label propagation
community detection technique, which has been demonstrated
as a viable means to produce high quality partitions with
minimal computation time. On a collection of large sparse graphs,
we show that XTRAPULP partitioning quality is comparable
to state-of-the-art partitioning methods. We also demonstrate
that XTRAPULP can produce partitions of real-world graphs
with billion+ vertices in minutes. Further, we show that using
XTRAPULP partitions for distributed-memory graph analytics
leads to significant end-to-end execution time reduction.

I. INTRODUCTION

XTRAPULP is our new graph partitioner exploiting
MPI+OpenMP parallelism to efficiently partition extreme-
scale real-world graphs. It can be considered a signifi-
cant extension to our prior shared-memory-only partitioner,
PULP [28]. Graph partitioning is an essential preprocessing
step to ensure load-balanced computation and to reduce inter-
node communication in parallel applications [7], [26]. With the
sizes of online social networks, web graphs, and other non-
traditional graph data (e.g., brain graphs) growing at an ex-
ponential pace, scalable and efficient algorithms are necessary
to partition and analyze them. These networks are typically
characterized by highly skewed vertex degree distributions
and low average path lengths. Some of these graphs can be
modeled using the “small-world” graph model [21], [35], and
others are referred to as “power-law” graphs [2], [14].

For highly parallel distributed-memory graph analytics on
billion+ vertex or trillion+ edge small-world graphs, any
computational and communication imbalance can result in
a significant performance loss. Thus, graph partitioning can
be used to improve balance. Traditional tools for partitioning
graphs (e.g., ParMETIS) are limited either in the size of the
graphs they can partition or the partitioning objective metrics
that they support. Further, as the analytics themselves are often
quite fast in comparison to scientific computing applications,
the time and scalability requirements for the effective use of
a graph partitioner with these applications is much stricter.
In essence, partitioning methods targeting emerging graph
analytics should be significantly faster than the current state-
of-the-art, support multiple objective metrics, and scale better
on large-scale irregularly structured inputs. We also desire
the method to (1) be more memory-efficient than traditional
partitioning methods (used in scientific computing); (2) have

good strong-scaling performance, since we may work with
fixed-size problems; (3) be relatively simple to implement, and
(4) require little tuning.

There has been some progress made in the recent past
towards such partitioning methods. There are methods using
random or edge-based distributions [6], label propagation-
based graph partitioning methods [29], [32], [34], adaptations
of traditional partitioning methodologies to small-world graph
instances [25], and methods using two-dimensional distribu-
tions [6]. Among these, label propagation-based techniques are
the most promising in terms of meeting our requirements [29].
We consider extending these techniques for graph inputs
several orders-of-magnitude larger than previously processed
by any other partitioner. Problems at the trillion edge scale
have been attempted only recently [11], [12], but not in the
context of a problem as computationally challenging as graph
partitioning.

The following are our key contributions:

• We describe XTRAPULP, a distributed-memory partitioning
method that can scale to graphs with billion+ vertices and
trillion+ edges. Implementing a partitioning algorithm at
this scale (relative to the billion-edge scale) requires careful
consideration to computation, communication, and memory
requirements of the partitioner itself. Significant changes
from our shared-memory partitioner PULP are required, in-
cluding development of entirely new routines for in-memory
graph storage, inter-node communication, and processing of
part assignment updates.

• We demonstrate the scalability of our MPI+OpenMP parallel
partitioner by running on up to 131,072 cores of the NCSA
Blue Waters supercomputer, using graph instances with up
to 17 billion vertices and 1.1 trillion edges.

• We demonstrate state-of-the-art partitioning quality for com-
puting partitions satisfying multiple constraints and optimiz-
ing for multiple objectives simultaneously. We show compa-
rable quality relative to PULP, ParMETIS, and Meyerhenke
et al. [25].

• We utilize partitions from XTRAPULP in two settings.
First, we demonstrate reduction in end-to-end time for six
graph analytics with various performance characteristics.
Second, we show reduction in time for parallel sparse matrix
vector multiplications with two dimensional matrix layouts
calculated from XTRAPULP’s vertex partitions.



Our XTRAPULP code is publicly available on GitHub
(https://github.com/HPCGraphAnalysis/PuLP). The repository
also contains an extended version of this paper (which we
will reference in subsequent sections), including additional
algorithm discussion and experimental results.

II. BACKGROUND

A. Graph Partitioning

Given an undirected graph G = (V,E) and vertex and
edge imbalance ratios Ratv and Rate and target max part
sizes Imbv and Imbe, the graph partitioning problem can be
formally described as partitioning V into p disjoint parts.
Let Π = {π1, . . . , πp} be a balanced partition, such that
∀ i = 1 . . . p,

|V (πi)| ≤ (1 + Ratv)Vt = Imbv (1)
|E(πi)| ≤ (1 + Rate)Ei = Imbe (2)

where Vi = |V |/p and Ei = |E|/p. V (πi) is the set
of vertices in part πi and E(πi) is the set of edges such
that both its endpoints are in part πi. We define the set
of cut edges as C(G,Π) = {{(u, v) ∈ E} | Π(u) 6= Π(v)},
and set of cut edges in any part as C(G, πk) =
{{(u, v) ∈ C(G,Π)} | (u ∈ πk ∨ v ∈ πk)}. Our partitioning
problem is then to minimize the two metrics |C(G,Π)| and
maxk |C(G, πk)|.

B. Related Work

The label propagation community detection algorithm [27]
is a fast and scalable method for detecting communities in
large networks. Since it is fairly easy to parallelize and its
output can be used for graph partitioning, label propagation
has seen widespread adoption as an effective means to find
high quality partitions of small-world and irregular networks,
such as social networks and web crawls. There are two primary
approaches for using label propagation in partitioners.

The first approach uses label propagation as part of a
multilevel framework, where label propagation is used in the
coarsening stage. Partitioners that utilize these techniques in-
clude Meyerhenke et al. [25] and Wang et al. [34]. Wang et al.
demonstrated a case study of how label propagation might be
used as part of a multilevel partitioner, by first coarsening
the graph in parallel and then running METIS [18] at the
coarsest level. Meyerhenke et al. improved upon this approach
in terms of partition quality and execution time by running
an optimized implementation of distributed label propagation
and then parallel runs of the evolutionary algorithm-based
state-of-the-art KaFFPaE partitioner at the coarsest level. The
biggest drawbacks to multilevel methods are the high memory
requirements that result from having to store copies of the
graph at the multiple levels of coarsening, the coarsening and
uncoarsening processing overheads, and the scalability of the
partitioning methods at the coarsest level. These multilevel
methods have not been experimentally demonstrated to process
real-world irregular graphs larger than about 3 billion edges
in size or more regular synthetic networks larger than about
20 billion edges.

The second approach uses label propagation directly to com-
pute the partitions. Early efforts utilizing this approach include
Ugander et al. [32] and Vaquero et al. [33]. Wang et al. [34]
additionally used a variant of their coarsening scheme to
compute balanced partitions, although at a non-negligible cost
to cut quality. In general, this cost was observed in early
single level methods, which demonstrated good scalability
and performance, but often with a high cost in terms of
partition quality. In our recent prior work, we introduced
PULP [28], which uses weighted label propagation variants
for various stages of a multi-constraint and multi-objective
shared memory parallel partitioning algorithm. Buurlage [8]
extended our initial work with HYPER-PULP, which modified
the general PULP scheme to the distributed partitioning of
hypergraphs. Note that hypergraph partitioning requires a sig-
nificantly different approach than graph partitioning. We only
perform graph partitioning in our work due to considerably
lower overheads and higher scalability relative to hypergraph
partitioning. The graphs we consider are several orders of
magnitude larger than those partitioned with HYPER-PULP [8].

Our work extends these two recent efforts significantly, as
we strive to offer a highly performant label propagation-based
distributed parallel partitioner that also computes high quality
partitions of very large, irregular input graphs.

III. XTRAPULP

This section provides algorithmic and implementation de-
tails of XTRAPULP. We note explicitly that our primary con-
tribution is technical and not algorithmic, in that we provide a
discussion of the technical necessities to scale the prior PULP
algorithms to process graphs of several orders-of-magnitude
larger and on several orders-of-magnitude more cores than the
prior implementation is capable. The three main extensions
needed for the distributed implementation relative to PULP
are:

• The graph and its vertices’ part assignments and other
associated data must be distributed in a memory-scalable
way across processors. Only the necessary local per-task
information should be stored to reduce memory overhead.
Access to task-specific information should also be as ef-
ficient as possible for computational scalability in a large
cluster. We develop and optimize our implementation to
achieve these objectives.

• MPI-based communication is needed to update boundary
information and compute global quantities required by our
weighting functions. We implement optimized communica-
tion routines to achieve scaling to thousands of nodes.

• The update pattern of part assignments must be finely
controlled to prevent wild oscillations of part assignments
as processes independently label their vertices. We develop
a method for controlling part stability and demonstrate its
effects on partition quality and balance.

We build upon techniques and optimizations discussed in
other prior work [30]. Additionally, we offer a novel ini-
tialization strategy that is observed to substantially improve



final partition quality for certain graphs, while not negatively
impacting partition quality for other graphs.

A. XTRAPULP Overview

a) Graph Representation: We use a distributed one-
dimensional compressed sparse row-like representation, where
each task owns a subset of vertices and their incident edges
(representing a local graph G(V,E)). When distributing the
graph for the partitioner, we utilize either random or block
distributions of the vertices. We observe random distributions
are more scalable in practice for irregular networks. Each
vertex’s global identifier is mapped to a task-local one using
a hash map. Local to global translation uses values stored in
a flat array. Each task stores part labels for both its owned
vertices as well as its ghost vertices (vertices in its one
hop neighborhood that are owned by another task). When
computing the partition, a task will calculate updates only
for its owned vertices and communicate the updates so the
task’s neighbors update assignments for the ghosts. Each task’s
memory requirements are bounded by O(n

t + m
t ) using this

representation, where n and m are the number of vertices and
edges in the input graph and t is the number of processing
tasks.

b) XTRAPULP Algorithm: We implement all of the
original PULP algorithms (PULP, PULP-M, and PULP-MM
from [28]) but focus our discussion on the PULP-MM al-
gorithm for multiple objective (minimizing the global cut and
maximal cut edges of any part) and multiple constraint (vertex
and edge balanced) partitioning. There are three stages to
the algorithm. The first stage is a fast initialization strategy
which allows some imbalance among parts. The second stage
balances the number of vertices for each part while minimizing
the global number of cut edges. The third stage balances
vertices and edges, and minimizes the global edge cut and
maximal edges cut on any part. We have observed in practice
that minimizing the maximal per-part cut has the side affect
of also balancing the cut edges among all parts. We alternate
between balance and refinement for 3 iterations during each
of the latter two stages. The balance algorithms run for 5
iterations (Ibal below) and the refinement algorithms run for 10
iterations. These iteration counts were selected empirically to
provide a reasonable tradeoff between computation time and
partition quality. Label propagation is typically run for fixed
iteration counts as convergence is not quickly guaranteed and
convergence doesn’t necessarily guarantee a higher quality.

B. XTRAPULP Initialization

We introduce the XTRAPULP initialization algorithm (Al-
gorithm 1), a hybrid between the two shared-memory PULP
initialization strategies of unconstrained label propagation [28]
and breadth-first search-based graph growing [16], [19], [29].
We utilize a bulk synchronous parallel approach for all
the stages, while maximizing intra-task parallelism through
threading and minimizing communication load with a queuing
strategy for pushing updates among tasks.

Algorithm 1 XTRAPULP Initialization:
parts ← XTRAPULP-Init(G(V,E))

procid ← localTaskNum()
if procid = 0 then

Roots(1 . . . p)← UniqueRand(1 . . . |Vglobal |)
Bcast(Roots)
parts(1 . . . |V |)← −1
for i = 1 . . . p do

if Roots(i) ∈ V then
parts(Roots(i))← i

updates ← p
while updates > 0 do

updates ← 0
for all v ∈ V do . across threads

if parts(v) = −1 then
isAssigned(1 . . . p)← false
for all 〈v, u〉 ∈ E do

if parts(u) 6= −1 then
isAssigned(parts(u))← true
updates ← updates + 1

w ← RandTrueIndex(isAssigned)
if w 6= −1 then

Qthread ← 〈v, w〉
Qtask ← Qthread . merge thread into task queue
Qrecv ← ExchangeUpdates(parts , Qtask , G)
for all 〈v, w〉 ∈ Qrecv do . across threads

parts(v)← w

for all v ∈ V do . across threads
if parts(v) = −1 then

parts(v)← Rand(1 . . . p)
Qthread ← 〈v, parts(v)〉

Qtask ← Qthread . merge thread into task queue
Qrecv ← ExchangeUpdates(G, parts , Qtask )
for all 〈v, w〉 ∈ Qrecv do . across threads

parts(v)← w

The master task (process 0) first randomly selects p unique
vertices from the global vertex set (array Roots) and broad-
casts the list to other tasks. Each task initializes its local part
assignments to −1, and then, if it owns one of the roots,
assigns to that root a part corresponding to the order in which
that root was randomly selected.

In each iteration of the primary loop of the initialization
algorithm, every task considers all of its local vertices that are
yet to be assigned a part using thread level parallelism. For
a given unassigned local vertex v, all neighbors’ part assign-
ments (if any) are examined. Similar to label propagation, we
track all parts that appear in the neighborhood (isAssigned );
however, unlike label propagation, we randomly select one
of these parts instead of assigning to v the part that has the
maximal count among v’s neighbors. In practice, doing so
tends to result in slightly more balanced partitions.

A thread-local queue Qthread is used to maintain any new
part assignment to thread-owned vertices. All threads update
a MPI task-level queue which is used in ExchangeUpdates().
ExchangeUpdates() also returns a queue of updates Qrecv for
the local task’s ghost vertices. We describe ExchangeUpdates()
in Algorithm 2. Algorithm 1 iterates as long as tasks have
updated part assignments. The number of iterations needed is
on the order of the graph diameter, which can be very large
for certain graph classes (e.g., road networks), leading to long
execution times for this initialization stage. However, for the
small-world networks that we are designing for, this issue is



minimal. For other graph classes, alternative strategies such as
random or block assignments can be used.

Algorithm 2 XTRAPULP Communication Routine:
Qrecv ← ExchangeUpdates(parts , Qtask , G(V,E))

Qrecv ← ExchangeUpdates(G(V,E), parts , Qtask )
procid ← localTaskNum()
nprocs ← numTasksMPI()
sendCounts(1 . . .nprocs)← 0
for all v ∈ Qtask do . across threads

toSend(1 . . .nprocs)← false
for all 〈v, u〉 ∈ E do

task ← getTask(u)
if task 6= procid and toSend(task) = false then

toSend(task) = true
sendCounts(task)← sendCounts(task) + 2

sendOffsets(1 . . .nprocs)← prefixSums(sendCounts)
tmpOffsets ← sendOffsets
for all v ∈ Qtask do . across threads

toSend(1 . . .nprocs)← false
for all 〈v, u〉 ∈ E do

task ← getTask(u)
if task 6= procid and toSend(task) = false then

toSend(task) = true
sendBuffer(tmpOffsets(task)) ← v
sendBuffer(tmpOffsets(task) + 1 )← parts(v)
tmpOffsets(task)← tmpOffsets(task) + 2

Alltoall(sendCounts , recvCounts)
recvOffsets(1 . . .nprocs)← prefixSums(recvCounts)
Alltoallv(sendBuffer , sendCounts , sendOffsets ,

Qrecv , recvCounts , recvOffsets)

a) ExchangeUpdates: This method does an Alltoallv
exchange into Qrecv . Each task creates an array (sendCounts)
for the number of items sent to other tasks and an array
(sendOffsets) that has start offsets for the items being sent
in the send buffer. sendCounts is updated by examining
all v in Qtask that have updated part assignments in the
current iteration. The vertex and new part assignment is sent
to any process in its neighborhood. We use the boolean array
toSend to avoid redundant communication. A prefix sum on
sendCounts yields sendOffsets .

A temporary copy of sendOffsets (tmpOffsets) is used to
loop through Qtask to fill the send buffer sendBuffer . Both
loops through Qtask can use thread-level parallelism. The
updates to the buffer, offsets, and counts arrays can either
be done atomically or with thread local arrays synchronized
at the end. Our implementation does the latter as it shows
better performance in practice. Once sendBuffer is ready, an
Alltoall exchange of sendCounts allows to find the number of
items each task will receive (recvCounts). We use recvCounts
to create an offsets array recvOffsets for the receiving buffer
Qrecv . With all six arrays initialized, an Alltoallv exchange can
be completed. We use Alltoallv exchanges for our communi-
cation methods as we expect every task to be communicating
with most other tasks during execution.

C. XTRAPULP Vertex Balancing Phase

There can be considerable imbalance after the initialization
phase. The vertex balancing stage of XTRAPULP utilizes label
propagation with a weighting function Wv to achieve the

Algorithm 3 XTRAPULP Vertex Balancing Phase:
parts← XTRAPULP-VertBalance(G(V,E), parts, Ibal, Imbv)

nprocs ← numTasksMPI()
Sv(1 . . . p)← numVertsPerPart(1 . . . p)
Cv(1 . . . p)← 0
iter ← 0
while iter < Ibal do

Maxv ← Max(Sv(1 . . . p), Imbv)
mult ← nprocs × ((X − Y )( itertot

Itot
) + Y )

for i = 1 . . . p do
Wv(i)← Max(Imbv/(Sv(i) + mult × Cv(i))− 1, 0)

for all v ∈ V do . across threads
counts(1 . . . p)← 0
for all 〈v, u〉 ∈ E do

counts(parts(u))← counts(parts(u)) + degree(u)

for i = 1 . . . p do
if Sv(i) + mult × Cv(i) + 1 > Maxv then

counts(i)← 0
else

counts(i)← counts(i)×Wv(i)

x← parts(v)
w ← Max(counts(1 . . . p))
if x 6= w then

Update(Cv(x),Cv(w)) . atomic update
Update(Wv(x),Wv(w))
parts(v)← w
Qthread ← 〈v, w〉

Qtask ← Qthread . merge thread into task queue
Qrecv ← ExchangeUpdates(parts , Qtask , G)
for all 〈v, w〉 ∈ Qrecv do . across threads

parts(v)← w

Allreduce(Cv , SUM)
for i = 1 . . . p do

Sv(i)← Sv(i) + Cv(i)

iter ← iter + 1
iter tot ← iter tot + 1

balance objective. Wv is roughly proportional to the target part
size Imbv divided by the estimated current part size; its value
changes as vertices are assigned to parts. We highlight the
primary differences of our algorithm (Algorithm 3) from the
shared memory version [28] here. We omit details for brevity,
but the reasoning behind the calculation and updating the
baseline weighting function Wv was provided previously [28].

There are a few major differences between our work and
that of prior methods. We do not explicitly update the current
sizes of each part i (Sv(i)) in each iteration of the algorithm.
Instead, we calculate the number of vertices gained or lost
(Cv(i)) in each task i in the current iteration. When updating
the weights applied to each task i (Wv(i)), we find an
approximate size of each part based on its size at the end of the
previous iteration, the number of changes during this current
iteration, and a dynamic multiplier mult . The approximate size
for part i is calculated as:

Sv(i) + mult × Cv(i)

This multiplier allows fine-tuned control of imbalance when
running on thousands of processors in distributed-memory.
This was not an issue in previous shared-memory work. The
basic idea is to use the multiplier to limit how many new
vertices a single task can add to a part. This prevents all tasks
from calculating a high Wv value for a presently underweight
part and reassigning a large number of new vertices to that



part (as there is no communication before the assignment).
As the iterations progress, we linearly tighten the limit on
how many updates a task can do to each part, until a final
iteration, where each task can provide only up to a share
of 1

nprocs (Imbv − Sv(i)) additional new vertex assignments
to part i. This prevents the imbalance constraint from being
violated for any currently balanced part. The multiplier is
computed as

mult ← nprocs × ((X − Y )(
itertot

Itot
) + Y ),

where iter tot is a counter of iterations performed across the
outer loops during the balance-refinement stages, Itot is the
maximum number of iterations, and X and Y are input
parameters. The function mult is a linear function with y
intercept (iteration 0) of (nprocs × Y ) and a final value
(iteration Itot) of (nprocs × X). We use values of Y = 0.25
and X = 1.0, which correspond to each task being allowed
to add up to 4× its “share” of updates to a task at an initial
iteration and just its “share” at the final iteration. We discuss
the selection of these X and Y parameters in our results.

D. XTRAPULP Refinement Phase

The XTRAPULP refinement phase greedily minimizes the
global number of cut edges without exceeding the vertex
target part size Imbv (if the constraint has been satisfied
during the balancing phase) or without increasing the size of
any part greater than the current most imbalanced part. This
algorithm can be considered a variant of FM-refinement [15]
or a constrained variant of baseline label propagation. The
refinement algorithm is similar to the balancing algorithm,
except that the counts array is not weighted. Instead, the
part of vertex v will be the part assigned to most of its
neighbors (similar to label propagation), with the restriction
that moving v to that part won’t increase the parts size (or
estimated size with the multiplier) to larger than Max v . The
algorithm pseudocode is included in the extended version of
our paper.

E. XTRAPULP Edge Balancing Phase

After the 3 outer iterations of the vertex balance-refinement
stages, the edge balance-refinement stages begin. We don’t
show these algorithms for brevity, but instead will describe
their differences from the vertex balance and refinement phase.
For these algorithms, we use both the target number of edges
(Imbe) and vertices (Imbv) per task. The goal is to balance
the number of edges per task while not creating vertex im-
balance. The vertex weighting terms Wv(1 . . . p) are replaced
by edge and cut imbalance weighting terms We(1 . . . p) and
Wc(1 . . . p) using the current global maximum edge size per
part Max e and maximum cut size per part Max c. We and
Wc are then used to highly weight parts that are currently
underweight both in terms of the number of edges and cut
edges. We weight the counts of part i with the equation:

counts(i)← counts(i)× (ReWe(i) +RcWc(i))

Re and Rc initially create bias (by first linearly increasing Re

while holding Rc fixed) for parts that are underweight in the
number of edges. Once the edge balance constraint has been
achieved, Re becomes fixed and Rc correspondingly increases
the bias to both minimize the maximum per-part edge cut and
balance cut edges among parts.

Using our multiplier for distributed-memory updates, we
restrict the number of edges and cut edges transferred to any
part per iteration; we use the same X and Y constants as
before. However, in addition to tracking the vertex changes
per part with Cv , edges (Ce) and cut edges changed per
part (Cc) are also tracked and exchanged among tasks, as in
Algorithm 3. Part sizes are updated in terms of vertices (Sv),
edges (Se), and cut edges (Sc), and are used to update the We

and Wc weights (in addition to Re and Rc) as Sv updated
Wv . At the conclusion of Ibal = 5 edge balancing iterations,
a refinement phase similar to the one run during the vertex
balancing stage is used. The only change is that we calculate
Max v and Max e and Max c and restrict movement of a vertex
to any part that would increase the global maximum imbalance
in terms of vertices, edges, and cut size.

IV. EXPERIMENTAL SETUP

We evaluate XTRAPULP performance on several small-
world graphs. While XTRAPULP is not designed for regular
high-diameter graphs, we do evaluate performance on several
mesh and mesh-like graphs. We use graphs from the University
of Florida Sparse Matrix Collection [3]–[5], [13] (indochina,
arabic, it, sk, uk-2002, uk-2005, nlpkktXXX), the 10th DI-
MACS Implementation Challenge website [1] (uk-2007), the
Stanford Network Analysis Platform (SNAP) website [23],
[24], [36] (lj, orkut, friendster), the Koblenz Network Col-
lection [22] (wikilinks, dbpedia), Cha et al. [9] (twitter), and
meshes used internally in our group (InternalMeshX).

We perform large-scale evaluations on the 2012 Web Data
Commons hyperlink graph1, which is created from the Com-
mon Crawl web corpus2. This graph contains 3.56 billion
vertices and 128 billion edges, and is the largest publicly
available real-world graph known to us. We use the pay and
host level domain graphs from this crawl as well (wdc12-pay
and wdc12-host). For performance and scaling comparisons,
we also use R-MAT (labeled RMAT) [10] and Erdös-Rényi
(labeled RandER) random graphs. Additionally, we generate
random graphs with a high diameter (labeled RandHD) by
adding edges using the following procedure: for a vertex with
identifier k, 0 ≤ k < n, we add davg edges connecting
it to vertices chosen uniform randomly from the interval
(k − davg, k + davg).

We use two compute platforms for evaluations. Compton
is a 16 node cluster; each node has two eight-core 2.6 GHz
Intel Xeon E5-2670 (Sandy Bridge) CPUs and 64 GB main
memory. We also used the NCSA Blue Waters supercomputer
for large-scale runs. Blue Waters is a Cray XE6/XK7 sys-
tem with 22 640 XE6 compute nodes and 4228 XK7 compute

1http://webdatacommons.org/hyperlinkgraph/
2http://commoncrawl.org



nodes. We used only the XE6 nodes. Each node has two eight-
core 2.45 GHz AMD Opteron 6276 (Interlagos) CPUs and
64 GB memory. Our experiments used up to 8192 nodes of
Blue Waters, which is about 36% of the XE6 total capacity.
We compare XTRAPULP against ParMETIS version 4.0.3 [20]
and PULP version 0.1 [28]. We used the default settings of
ParMETIS and PULP for all experiments. The build settings
(C compiler, optimization flags, MPI library) for all the codes
were similar on Blue Waters and Compton. Unless otherwise
specified, we use one MPI task per compute node for multi-
node parallel runs of XTRAPULP, and set the number of
OpenMP threads to the number of shared-memory cores.

V. RESULTS

A. Performance and Scalability

1) Scaling on Blue Waters: We first analyze XTRAPULP
performance when running in a massively parallel setting
on the Blue Waters supercomputer. Figure 1 (left) gives the
execution time for partitioning the real-world Web Data Com-
mons hyperlink graph (WDC12) and three generated graphs
(RMAT, RandER, RandHD) of nearly the same size (3.56
billion vertices and 128 billion edges). We run on 256-2048
nodes of Blue Waters (4096-32768 cores), and compute 256
parts.
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Fig. 1. XTRAPULP parallel performance (strong scaling) results on Blue
Waters for computing 256 parts of various test graphs (left) and speedups on
Compton for computing 16 parts of various test graphs (right).

As shown in Figure 1, XTRAPULP exhibits good strong
scaling up to 2048 nodes on all tested graphs. The speedups
achieved are 2.9×, 8.4×, 6.8×, and 5.7× for WDC12, RMAT,
RandER, and RandHD graphs, respectively, when going from
256 to 2048 nodes (8× increase in parallelism). As expected,
we see better speedups for the synthetic graphs due to better
computational and communication load balance. The running
times depend on the initial vertex ordering. The partitioning
time for the RandHD network on 256 nodes is nearly 1

7 the
partitioning time for WDC12, even though the graphs are
the same size. This is due to significantly lower inter-node
communication time (which relates to the initial edge cut) in
both the vertex and edge balancing steps.

Next, we perform weak scaling experiments on Blue Waters,
using 8 to 2048 compute nodes. We generate RMAT, RandER,
and RandHD graphs of different sizes, and double the number
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Fig. 2. XTRAPULP parallel performance (weak scaling) results on Blue
Waters for various RMAT, RandER, and RandHD graphs. The number of
graph vertices per node is ≈ 222. The number of parts computed is set to
number of nodes.

of vertices as the node count doubles. The 8-node runs use
graphs with 225 vertices, whereas the 2048-node runs are for
graphs with 233 vertices. We also vary the average vertex
degree, using davg = 16, 32, and 64. The number of parts
computed is set to the number of nodes being used for the
run; thus, the computational cost changes as more parts are
computed when the number of nodes increases. Figure 2
shows these results. We see that partitioning time is lowest
for RandHD and highest for RMAT, similar to the strong
scaling results. RMAT graphs appear to be the most sensitive
to average degree (or edge count) variation. For 2048-node
runs, when increasing the average degree (and thereby, the
number of edges) by 4× (16 to 64), the running times of
RMAT, RandER, and RandHD graphs increase by 1.63×,
1.35×, and 1.18×, respectively. Finally, we note that overall
weak scaling performance is dependent on the graph structure.
For the regular RandHD graphs, we see almost flat running
times up to 1024 nodes, but for RMAT graphs, we observe
a rise in times beyond 256 nodes. As graph size increases
in RMAT graphs, so does the maximum degree, and vertices
with high degrees lead to computation imbalance with the one-
dimensional graph distribution used in XTRAPULP.

2) Trillion Edge Runs: We ran additional experiments on
up to 8192 nodes, or 131,072 cores of Blue Waters with
synthetically generated graphs with up to 17 billion vertices
and 1.1 trillion edges. These tests use over a third of the
available compute nodes on Blue Waters. At this scale, com-
munication time tends to dominate the overall running time,
and network traffic can have a considerable impact on total
execution time. We were able to partition 17 billion (234)
vertex, 1.1 trillion (240) edge RandER and RandHD graphs
in 380 seconds and 357 seconds, respectively, on 8192 nodes.
The largest RMAT graph we could partition on 8192 nodes had
half as many edges (234 vertices and 239 edges); it took 608
seconds. XTRAPULP strong and weak scaling results on Blue
Waters demonstrate that there are no performance-crippling
bottlenecks at scale in our implementation.

3) Scaling on Compton: We extensively test XTRAPULP
at a smaller scale (16 nodes of Compton), for direct perfor-
mance comparisons to ParMETIS and PULP. For MPI-only
ParMETIS, we run 16, 8, 4, and 1 tasks per node and report
the best time in order to provide a conservative comparison.
OpenMP-only PULP results are with full threading on a



TABLE I
XTRAPULP, PULP, AND PARMETIS PARALLEL PERFORMANCE RESULTS

ON Compton FOR COMPUTING 16 PARTS OF VARIOUS TEST GRAPHS.
XTRAPULP AND PULP RESULTS INCLUDE 16-WAY MULTITHREADED

PARALLELISM, AND PARMETIS RESULTS ARE THE BEST ONES OBTAINED
WITH 16- TO 256-WAY MPI TASK CONCURRENCY. †/‡ SYMBOLS

INDICATES RELATIVE SPEEDUP WITH RESPECT TO 2/4-NODE XTRAPULP
RUNS. WE ALSO INCLUDE THE SCALE OF THE GRAPH IN MILLIONS OF

VERTICES (N) AND MILLIONS OF EDGES (M).

Partitioning Time (s) XTRAPULP Speedup

Graph XTRAPULP PULP ParMETIS Rel. to
n m (16 nodes) (1 node) (16 nodes)

vs PULP
1 node

lj 5.4 69 4.9 10 59 2.0× 8.9×
orkut 3.1 117 4.8 18 110 3.8× 8.6×
friendster 66 1806 232 1672 7.2× 11 ×
twitter 53 1963 1647 3611 2.2× 2.3†×
wikilinks 26 601 137 467 3.4× 5.9×
dbpedia 67 258 35 70 2.0× 14 ×

indochina 7.3 149 4.4 8.1 130 1.8× 11.3×
arabic 23 552 12 16 754 1.3× 8.2×
it 41 1151 22 32 1.4× 9.4×
sk 51 1949 33 67 2.1× 9.1×
uk-2002 1.8 298 5.1 9.2 85 1.8× 12.8×
uk-2005 39 781 18 34 1.9× 9.8×
uk-2007 106 3302 49 71 1.4× 3.9†×
wdc12-pay 39 623 241 1062 4.4× 6.2×
wdc12-host 89 2043 422 2443 5.7× 8.6×

rmat 22 4.2 67 6.7 14 126 2.1× 4.9×
rmat 24 17 268 30 147 923 4.9× 10.5×
rmat 26 67 1074 183 1022 5.6× 12.5×
rmat 28 268 4295 981 5454 5.6× 3.2‡×

InternalMesh1 0.3 3.5 0.1 0.1 0.6 1.6× 20.0×
InternalMesh2 2.2 28 0.5 0.9 0.7 2.0× 23.4×
InternalMesh3 18 220 2.9 6.8 1.2 2.3× 27.9×
InternalMesh4 140 1819 24 46 4.6 1.9× 26.7×
nlpkkt160 8.3 112 1.6 3.8 1.5 2.4× 11.5×
nlpkkt200 16 216 2.6 6.4 2.2 2.5× 13.6×
nlpkkt240 28 373 4.6 11 3.6 2.4× 13.5×

single node. Note that XTRAPULP is explicitly designed for
much larger-scale processing, so we perform this small-scale
analysis here only to give relative performance comparisons
to the current state-of-the-art.

We present 16-node performance results in Table I. Empty
cells in the table indicate cases where ParMETIS failed to
run to completion due to out-of-memory and related errors on
some MPI task. We indicate in bold font the best timing results
for each graph, and the best XTRAPULP absolute speedup
(with respect to single-node PULP) and relative speedup
results in each of the four graph classes (interaction, web
crawl, R-MAT, and mesh). The single-node shared-memory
PULP is consistently faster than distributed-memory parallel
ParMETIS for the first three classes of graphs. For the fourth
class of regular, high-diameter graphs, ParMETIS outperforms
PULP and XTRAPULP; ParMETIS is optimized to partition
these types of graphs.

For all of the small-world graphs, 16-node XTRAPULP
running times are better than single-node PULP running
times. XTRAPULP and PULP have several key algorithmic
differences, and single-node PULP is faster than single-node
XTRAPULP. We omit a direct comparison between single
node performance, but these values can be inferred through
the last two columns in the table. We created XTRAPULP
in order to scale to multi-node settings, and we see that the

16-node speedup (with respect to single-node XTRAPULP) is
quite good, being 14× for dbpedia 12.8× for uk-2002. This is
despite XTRAPULP being communication-intensive and Blue
Waters having only a 3D-torus network; we performed a subset
of additional runs on a 5D-torus Blue Gene/Q and observed
near perfect speedup for a majority of the graphs in Table I. We
consider the speedup relative to PULP to be also quite good,
considering the difficulties and overheads in reformulating an
asynchronous shared-memory algorithm into a synchronous
distributed-memory implementation. E.g., in the current (June
2016) version of the graph500.org benchmark, the per-core
performance ratio between the fastest shared-memory imple-
mentation and fastest distributed-memory implementation is
approximately 6.5×; our ratios are of a similar order, being
between 11× for it and uk-2007 and only 2.2× for friendster,
despite our implementation not being as finely optimized as
the Graph500 benchmark code.

Figure 1 (right) shows XTRAPULP strong scaling for six
representative graphs. Note that graph sizes vary significantly,
ranging from the 69 million-edge lj graph to the 1.8 billion-
edge friendster graph. We observe a range of relative speedups,
attributable to the graph structure. There appear to be no
intrinsic scaling bottlenecks even at this smaller 16-node scale.

B. Partitioning Quality

We next evaluate XTRAPULP partitioning quality by com-
paring results to PULP and ParMETIS. We use the two
architecture-independent metrics for quality comparisons:
Edge cut ratio (number of edges cut divided by the number
of edges) and Scaled max edge cut ratio (maximum over all
parts of the ratio of the number of edges cut to the average
number of edges per part). For both metrics, lower values
are preferred. These two metrics correspond to the objectives
that the three partitioning methods optimize. In Figure 3, we
report these metrics, varying the number of parts from 2 to
256 as quality results can vary with number of parts. We use
the same six representative graphs that were used for strong
scaling experiments on Compton. Again note that we perform
analysis at this scale only for relative comparison. At the scale
for which XTRAPULP is designed, the only competing meth-
ods are random and block partitioning; random partitioning
produces an edge cut ratio that scales approximately as p−1

p ,
where p is the number of parts, while the quality of block
partitioning is highly variable and dependent on how the graph
is stored.

Our first observation is that both quality metrics – edge cut
ratio and scaled max cut ratio – can vary dramatically based
on the graph structure. The quality results for nlpkkt240 are
in stark contrast to the rest of the graphs. On increasing the
number of parts, the two metrics increase only slightly for
nlpkkt240, but at a much faster rate for the rest of the graphs.
The edge cut ratio quickly approaches 1.0 (all edges cut) with
increasing part count when partitioning rmat 24. For graphs
with intrinsically high edge cut ratios, any quality gains must
be assessed taking partitioning running times into considera-
tion. Ideally, the partitioning method should finish quickly for
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Fig. 3. Partition quality comparison when varying the number of parts computed. For both Edge Cut ratio and Scaled Max Cut ratio, lower values are better.

cases where quality metrics cannot be substantially improved.
Comparing PULP and XTRAPULP results, we observe that the
metrics are relatively close, despite the asynchronous intra-task
updates in XTRAPULP. We observe much better performance
for XTRAPULP on the wdc-pay graph, likely due to the novel
initialization strategy. ParMETIS fails to run for two of the
six graphs. XTRAPULP outperforms ParMETIS on lj, whereas
ParMetis does slightly better on orkut.

To numerically quantify quality gains/losses, we compute
“performance ratios” for all partitioners over all tested graphs
in Table I for computing 2-256 parts. Here, the performance
ratio is defined as the geometric mean over all tests of each
partitioner’s edge cut or max per-part cut, divided by the best
edge cut or max per-part cut for that test (graph and number
of parts). A lower value is better, with a ratio of exactly 1.0
indicating that the partitioner produced the best quality for
every single test. We calculate performance ratios for edge
cut to be 1.18, 1.33, and 1.37 and max per-part cut to be
1.19, 1.40, and 1.41 for ParMETIS, PULP, and XTRAPULP,
respectively. When we consider only the irregular graphs for
which ParMETIS completes, the values are much closer, with
edge cut ratios of 1.36, 1.36, and 1.46 and max per-part
cut ratios of 1.39, 1.43, and 1.49 for ParMETIS, PULP,
and XTRAPULP, respectively. We thus claim that partitioning
quality is not compromised for small-world graphs when using
XTRAPULP. XTRAPULP also provides users the ability to
partition large graphs that do not fit on a single node, and
achieves good strong and weak scaling.

Our final quality experiment on Blue Waters measures
how partition quality varies with large-scale parallelism. We
examine how the edge cut ratio and partition edge imbalance
vary when partitioning WDC12 into 256 parts using 256-2048
nodes. We observe the edge cut ratio produced from XTRA-
PULP to vary between 0.04 and 0.07, which is considerably
lower than the values of 0.16 for vertex block partitioning and
almost 1.0 for random partitioning. Note that the relatively low

edge cut here for block partitioning is a result of the crawling
method, but it comes at a high cost: the edge imbalance ratio
is 1.85. Our edge imbalance ratio stays under 10% for all node
counts. We plot the full results in the extended version of our
paper.

C. Additional Comparisons

Here we provide additional comparisons to the recent state-
of-the-art partitioner of Meyerhenke et al. [25] (KaHIP),
which uses size-constrained label propagation during the graph
coarsening phase. This partitioner solves the single-constraint
and single-objective graph partitioning problem, optimizing for
edge cut and balancing vertices per part. Therefore, we modify
our XTRAPULP code by eliminating the edge balancing and
max per-part cut phase to provide a direct comparison. We
also run shared-memory PULP and ParMETIS. All codes are
run using 16-way parallelism to allow a direct comparison
to shared-memory PULP. We partition 2-256 parts of the
lj, rmat 22, and uk-2002 graphs with a 3% load imbalance
constraint. In Figure 4, we compare edge cut (top) and
execution time (bottom).

Overall, we observe XTRAPULP to be within a small
fraction of the Meyerhenke et al. and ParMETIS codes in
terms of part quality, while running only slightly slower than
shared-memory PULP. This is despite XTRAPULP being de-
signed and optimized for the multi-objective multi-constraint
problem. Performance ratios for cut quality on this limited
test set are 1.05 for Meyerhenke et al., 1.23 for ParMETIS,
1.51 for PULP, and 1.61 for XTRAPULP. Performance ratios
for execution time are 1.27 for PULP, 1.73 for XTRAPULP,
11.81 for ParMETIS, and 26.5 for Meyerhenke et al. Although
we only report the results for 16-way parallelism, testing at a
larger scale between XTRAPULP, ParMETIS, and Meyerhenke
et al. reveal similar relative performance. These results in
general demonstrate the efficiency tradeoff between quality
and time to solution, the choice for which to optimize being
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Fig. 4. Partitioning quality (top) and execution time (bottom) for multiple
partitioners solving the single objective single constraint partitioning problem.

application-dependent. However, we emphasize again that we
provide these results only to establish a relative baseline
for comparison of the performance of XTRAPULP, as the
engineering decisions driving its design were made to en-
able scalability to partition graphs several orders-of-magnitude
larger than the graphs presented here.

D. Multiplier Parameters

We also analyze the effect that varying the X and Y
parameters have on the final partition quality. Using lj, uk-
2002, rmat 22, and nlpkkt160 as representative examples for
each graph class, we computed from 2-128 parts each on 2-16
compute nodes of Compton (all powers of 2 in between). We
examine the effect of varying both X and Y between 0 and 4
on edge cut, max cut, vertex balance, and edge balance. We
observe multiple trends. A lower X and Y indicates a higher
quality cut. This is because lower values allow the highest
number of part reassignments and therefore the greatest overall
refinement. We also note that a higher X value relative to Y
will, on average, also result in a better cut. This is due to how a
higher initial limit on part reassignments (Y ) and a lower final
limit (X) enables considerable refinement during the initial it-
erations while limiting the potential imbalance possible on the
final iterations. In general, the degree of balance is inversely
proportional with the quality of cut. The optimal X,Y pair
of values should therefore be selected along some threshold
where high quality and balance are concurrently achieved. We
selected our test values of X = 1.0 and Y = 0.25 empirically,
as they gave us the overall best quality in terms of cut and
balance on our test suite. Plots demonstrating overall trends
for cut quality and balance relative to varying X and Y are
shown in the extended version of our paper.

E. Applications

We next demonstrate that XTRAPULP can significantly im-
prove performance of real-world analytics. Consider analytics
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Fig. 5. The parallel performance results of various parallel graph analytics
(HC, KC, LP, PR, SCC, WCC) on 256 nodes of Blue Waters, executed on
the WDC12 graph with different graph partitioning strategies.

optimized to run on the 128 billion edge WDC12 [31]. Without
a partitioner that can process graphs of this size, the common
approaches to running analytics are to use simple balanced
vertex and edge assignment strategies that do not optimize
for edge cut. In Figure 5, we give the execution times of
six analytics on WDC12 with four partitioning strategies.
EdgeBlock partitioning stores a contiguous set of vertices and
all their adjacencies on each task such that each task has
approximately the same number of edges. VertexBlock parti-
tioning stores roughly the same number of vertices and all their
adjacencies on each task. Random partitioning assigns vertices
to tasks randomly. XTRAPULP assigns vertices based on the
computed partition. The six analytics considered (algorithms
presented in [30]) are Harmonic Centrality (HC) computation
of 100 vertices, approximate K-core decomposition (KC), La-
bel Propagation-based community detection (LP), PageRank
(PR), strongly connected component decomposition (SCC),
and weakly connected components decomposition (WCC). For
XTRAPULP, we include the partitioning time in comparisons.

Using balanced XTRAPULP partitions reduces end-to-end
execution time by 30%, from 1229 seconds with an edge block
partitioning to 867 seconds with XTRAPULP. We see a sub-
stantial reduction in analytics where inter-node communication
time is directly proportional to total edge cut (e.g PR, LP,
and WCC) even when including the XTRAPULP partitioning
time. Not all analytic execution times appear to improve with
XTRAPULP (e.g. K-core, SCC), but this can be explained:
We suspect that the way vertex block and edge block retain
the original vertex ordering of the WDC12 graph, which is
highly clustered as a result of the crawling methodology, has
a beneficial impact on the number of iterations and total time
required to complete these algorithms.

We also examine partitioning impact on sparse matrix vector
multiplication (SpMV) by using the Epetra package of the
Trilinos scientific computing library [17] to perform 100
SpMV operations on the six graphs used in Figure 3. We
use several partitioning strategies, including one dimensional
vertex block, random, ParMETIS, and XTRAPULP. We also
utilize 2D distributions with vertex block and random parti-
tions. Additionally, using a strategy for mapping 1D partitions
into 2D distributions [6], we run with 2D distributions pro-
duced from our 1D ParMETIS and XTRAPULP partitions. We



run these tests on 1, 8 and 16 nodes of Compton with 16,
128, and 256 MPI ranks, respectively. We observe a 2.77×
(geometric mean) reduction in execution time when using 2D-
XTRAPULP relative to 1D-Rand for 256-way parallel code,
and 2D-XTRAPULP results in the best performance in 60%
of the total tests. A table of the full results is shown in the
extended version of our paper.

VI. CONCLUSION

We demonstrate how XTRAPULP can scale to graphs sev-
eral orders-of-magnitude larger than prior work. This work
significantly extended our prior shared-memory-only parti-
tioner, PULP. We show comparable partition quality to prior
methods at the small scale, and, at the large scale, we
significantly improve upon the existing competing methods,
block and random partitioning. We also demonstrate faster
execution times and comparable parallel efficiency relative to
the state-of-the-art. Using partitions computed by XTRAPULP,
we also improve performance on highly tuned matrix-vector
multiplication kernels and several graph analytics running on
the current largest publicly available web crawl.
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