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Abstract. Random graph models play a central role in network analy-
sis. The Chung-Lu model, which connects nodes based on their expected
degrees, is of particular interest. It is widely used to generate null-graph
models with expected degree sequences. In addition, these attachment
probabilities implicitly define network measures such as modularity. De-
spite its popularity, practical methods for generating instances of Chung-
Lu model-based graphs do relatively poor jobs in terms of accurately re-
alizing many degree sequences. We perform a theoretical analysis of the
Chung-Lu random graph model in order to understand this discrepancy.
We approximate the expected output of a generated Chung-Lu random
graph model with a linear system and use properties of this system to
predict distribution errors. We provide bounds on the maximum propor-
tion of nodes with a given degree that can be reliably produced by the
model for both general and non-increasing distributions. We additionally
provide an explicit inverse of our linear system and in cases where the
inverse can provide a valid solution, we introduce a simple method for im-
proving the accuracy of Chung-Lu graph generation. Our analysis serves
as an analytic tool for determining the accuracy of Chung-Lu random
graph generation as well as correcting errors under certain conditions.
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1 Introduction

Say we wish to generate a random simple graph G = (V,E) with a degree distri-
bution y = {N1, N2, · · · , Nm} where Nk represents the numbers of nodes with
degree k. Here, simple means that there are no self-loops or multi-edges. This
is a problem that arises in many network science applications, most notably for
the generation of null-models used for basic graph analytics [12]. Generating
such simple networks exactly using the explicit configuration model, or erased
configuration model is computationally expensive for even moderately large net-
works [7]. This is in part because the explicit configuration model is difficult
to parallelize, and partly because correcting self-loops and multi-edges in the
erased configuration model can be cumbersome. As such, we rely on probabilis-
tic methods for large-scale graph generation that only match y in expectation.
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The Chung-Lu random graph model [4] is one such widely-used probabilistic
model. This model pre-assigns to each node vi ∈ V (G) a weight wi correspond-
ing the the degree we wish for the node to have. It then connects all nodes
vi, vj pairwise with the probability pij =

wiwj∑
wk

. It is known that the degree of

each node in the output graph will match its pre-assigned weight in expectation.
There are a number of ways that generating such graphs can be done computa-
tionally. Some methods generate loops and multi-graphs, while others generate
simple graphs. We focus on what is sometimes called the Bernoulli Method for
generating Chung-Lu graphs [16], as it is amenable to the edge-skipping tech-
nique [11] that allows linear work complexity and near-constant parallel time
for scalable implementations [1, 14, 8]. In this method, we implicitly consider all
possible pairs of edges between unique nodes and generate edge (vi, vj) with
i 6= j according to the probability pij . This generates a simple-graph with de-
gree sequence ỹ where E[ỹ] = y. While we focus our analysis on this specific
variation, as it is the one most likely to be used in practice, other methods that
generate multi-edges and/or loops have many of the same issues that we discuss
in this paper.

The Chung-Lu model, though popular and theoretically sound under the
tame condition that wiwj <

∑m
k=1 wk for all vi, vj ∈ V , can produce degree dis-

tributions drastically different from the desired expectation in practical settings.
This has been widely noted and addressed in the literature [16, 3, 8, 2, 9, 13, 5].
To theoretically motivate why this is the case, consider generating a graph that
has many nodes of degree two. While Chung-Lu guarantees that the expected
degree of each of these nodes will be two, it makes no other guarantees regard-
ing the probability mass function of these degrees. Indeed in practice, nodes
with expected degree two often have degree 0, 1, 3, and beyond. This is particu-
larly challenging when Chung-Lu generation is utilized as a subroutine for more
complex graph generation, such as when generating graphs that also match a
clustering coefficient distribution (e.g., the BTER model) [10] or a community
size distribution for community detection benchmarking [15, 14]. In these and
other instances, minimizing error in the degree distribution is critical, as this
error can propagate through the rest of the generation stages. In Figure 1 we see
an example of the observed error when generating some graphs. As can be seen,
the output of Chung-Lu in both cases underestimates the number of degree one
nodes, and accrues additional error from other low degree families as well. This
suggests that instead of strictly caring about the expected degree of each node
in Chung-Lu generation, as is generally done, we should additionally consider
deeper statistical properties of the model in application.

To better understand the output of Chung-Lu, consider grouping all nodes
by expected degree. That is, take degree families dk = {vi ∈ V : wi = k} and
consider connections between them. From the point of view of a single node
vj ∈ V with expected degree wj the number of connections it has to each degree

family dk is binomially distributed with mean
kwj∑

wi
|dk|. Therefore the degree

distribution of the nodes in dwj
is the sum of m independent binomial random

processes where m is the maximum expected degree of the graph. This allows us
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Fig. 1. Distribution error of Chung-Lu. We consider the degree classes between
one and nine for two different power law distributions. On the left is a power-law
distribution with exponent β = 1.0 and on the right is a power-law distribution with
exponent β = 2.0. In the top two plots, crosses represent the input distribution and x’s
represent the average distribution for 20 instances of Chung-Lu graphs given the power
law distribution distribution as input. We can see that the Chung-Lu generated graphs
drastically under-represent degree one nodes. This is a phenomenon that commonly
occurs in application and can greatly affect generation accuracy.

to go beyond simply guaranteeing the mean of each degree family, and instead
predict the probability mass function for the degrees of each of these families,
and by extension predict degree distribution errors.

Since the degree distribution of each degree family dk in our graph is bino-
mially distributed, we may apply a further approximation. Because the limiting
case of the binomial distribution is the Poisson distribution, we approximate the
number of connections between nodes in a given degree family with all other
nodes as a sum of Poisson distributions, which is again Poisson. We note that
often times a desired degree distribution will be such that certain degree classes
will not have the number of nodes required for this approximation to have guar-
anteed accuracy. In fact, power-law degree distributions will in general have
degree families dk where k ≈ m such that |dk| ≈ 1. However, we also note that
this additionally means the node-wise error contributed by those families is rel-
atively small, so we are willing to sacrifice some accuracy in lieu of a cleaner
description.

Say that Xij is the Poisson distribution representing the degree of each node
in di if di only connected to nodes in dj . Additionally, take the mean of this
Poisson distribution to be γij . Because the means of independent Poisson distri-
butions are additive, we have the following linear system, describing the means
of each distribution.


γ11 γ12 · · · γ1m
γ21 γ22 · · · γ2m
...

...
. . .

...
γm1 γm2 · · · γmm




1
1
...
1

 =


µ1

µ2

...
µm

 (1)
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This matrix provides additional rationale for our Poisson approximation. Since
we assumed the distributions were Poisson we may now add means of Poisson
distributions directly as opposed to computing with more complex independent
binomial distributions. In the case of the Chung-Lu model, each γij =

wiwj∑
wk

.

This, perhaps as expected, gives the right hand means of µk = k. This means
that the degrees within each degree family dk should be approximately Pois-
son distributed about k. Before moving on we note that a similar analysis can
be done for any connection probabilities. While we are focusing on Chung-Lu
probabilities, this model also describes the output degree sequence for any set of
chosen pij between degree families, albeit with potential changes to the means
µi.

Given the description offered by Equation 1 we now have the tools to estimate
the output of Chung-Lu through a simple linear system. Consider an input degree
distribution y = [N1, N2, · · · , Nm]T as a vector in Rm with the number of nodes
being, N =

∑m
i=1Ni. Additionally take poiss(k) to be the probability density

function of the Poisson distribution with mean k. We can calculate the expected
output ỹ of this as follows.

Qy =

 | | |
poiss(1) poiss(2) · · · poiss(m)
| | |



N1

N2

...
Nm

 = ỹ (2)

This construction works in the following way. Each column of our matrix repre-
sents the probability mass function of degrees within each degree family. Taking
the inner product of a row r of this matrix with a vector of degree family sizes
amounts to adding together the expected number of degree r nodes produced
by each degree family under the Chung-Lu algorithm. So, by considering the
action of the entire matrix, we are considering the action of Chung-Lu as a
whole. Note here we are assuming poiss(k) is the full, discrete version of the
Poisson distribution with mean k. This implies that the system in Equation 2
maps Rm to an infinite dimensional space. This is not computationally useful.
We therefore truncate the Poisson matrix Q to be square in Rm×m by removing
the first row corresponding to degree zero nodes, as well as everything below the
mth row. We will denote this matrix by P. Our justification for this truncation
is two-fold. One, we are inputting a degree distribution in Rm, and we mainly
only care about error with regards to those output degrees between one and m.
Two, making the matrix square allows for us to invert the matrix which will
be useful for generating Chung-Lu graphs with more accurate degree sequences.
Note that truncating Q to some dimension m amounts to ignoring nodes with
degree zero as well as nodes with degree higher than m. If we wish to obtain
error information for higher degrees as well we can easily append zeros to the
end of our input distribution and consider P∈Rn×n where n > m and m is the
maximum degree of our desired distribution. Then, for large enough n, our error
is only ignoring nodes of degree zero. In a practical setting, these nodes would
possibly be thrown out and ignored, anyways. The rest of this paper discusses
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properties of P, the limitations these properties suggest, and how the matrix
can be used to improve the accuracy of Chung-Lu outputs in some cases.

1.1 Our Contributions

As noted, while Chung-Lu graph generation is a useful tool for many theoretical
purposes and is used widely in fields such as social network analysis, it often
does a poor job of approximating distributions at the ends. The specific issue
considered in this paper is that Chung-Lu generated networks will often under-
represent low degree nodes. In Figure 1, we can clearly see that actual Chung-Lu
realizations may easily contain less than 60 percent of the desired number of de-
gree one nodes. This can lead to a great deal of inaccuracy for distributions with
particularly large numbers of low degree nodes, such as power-law distributions.
In practice, this generally means that generated graphs will have many vertices
of degree zero, so one way of resolving this issue is to connect these nodes to the
graph in order to inflate the number of degree one nodes. Depending on the de-
gree distribution, this can easily skew other degree classes without careful choice
of where these nodes are connected. This may also require considerable compu-
tation. For this reason, it is far simpler for applications to throw away degree
zero nodes. Other proposed methods might artificially inflate the input distri-
bution in terms of degree one nodes so the output better matches the desired
input [10], but this also presents similar challenges.

For this reason, we suggest the matrix model referenced in the introduction.
The standard input distribution for Chung-Lu is simply the desired output dis-
tribution y. We suggest a “shifted” Chung-Lu algorithm where, given a matrix
model P for the output of the Chung-Lu algorithm, we take our desired output
distribution y and solve for x = P−1y. Then the input to a Chung-Lu graph
generator is x as opposed to the desired output. This is particularly compelling
since the matrix P−1 only depends on the maximum degree of our desired out-
put distribution and once computed allows for drastic accuracy improvement at
negligible algorithmic cost. While useful in certain special cases, we find that
such an algorithm is not possible in general. We prove several the matrix P is
invertable and show that many distributions do not have non-negative inverses.
We investigate these cases and classify some instances in which an inverse dis-
tribution is guaranteed to have negative entries. Most interestingly, we provide
tight bounds on the expected maximum number of nodes that may belong in
each degree family for both non-increasing as well as general distributions. These
bounds suggest that there exists a vast number of graphs that Chung-Lu gener-
ation is ill-equipped to generate.

2 Properties of the matrix model

From the introduction, we use the assumption that the degree distribution of
each family is approximately Poisson distributed to form a matrix that will trans-
form input distributions into approximate output distributions from the Chung-
Lu model. Assume that our input distribution has degrees in Nm = {1, · · · ,m}
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and is represented by x = [N1, N2, · · · , Nm]T where Nk represents the number of
nodes with expected degree k and N =

∑m
k=1Nk. We can represent our matrix

P in terms of the following factorization.

P =


1 0 · · · 0
0 1

2! · · · 0
...

...
. . .

...
0 0 · · · 1

m!




1 1 · · · 1
1 2 · · · m
...

...
. . .

...
1 2m−1 · · · mm−1



e−1 0 · · · 0
0 2e−2 · · · 0
...

...
. . .

...
0 0 · · · me−m


= AVB

(3)

When this factorization is multiplied out, we obtain exactly the P matrix dis-
cussed in the introduction. Note that realizing a Chung-Lu graph model amounts
to computing Px for some pre-defined x. We instead look at the inverse problem
of determining x∈R+m given P∈Rm×m and desired output y∈R+m. Here R+m

is the element-wise positive region of Rm. This amounts to solving the linear
system Px = y. One may be tempted to simply invert this matrix using any
number of computational methods, and this is reasonable for small m. How-
ever, given the factorization in Equation 3, we have that P = AVB with V a
Vandermonde matrix. Due to the extremely poor conditioning of both A and
V, using a computational method for inverting P is not advised. Fortunately
A and B are diagonal, meaning they are easy to invert, so finding the inverse
of P only requires finding an inverse to V. Again, we do not want to compute
this using standard computational methods, since Vandermonde matrices are
the textbook examples of nearly uninvertible matrices. Fortunately, our Vander-
monde matrix is such that it has a special structure yielding a somewhat simple
closed-form inverse given in [6]. It relates each entry in the matrix to associated
binomial coefficients and Stirling numbers of the first kind. Explicitly, each entry
is expressed as follows.

V−1ij = (−1)i+j
n∑

k=max(i,j)

1

(k − 1)!

(
k − 1

i− 1

)[
k

j

]
(4)

For distributions with entry-wise positive inverses we can now compute the input
of Chung-Lu that will best approximate the desired output according to P−1y =
x. The actual implementation of this would look like the pseudocode given in
Algorithm 1 where b·c represents element-wise rounding down to the nearest
integer.

2.1 Not all solutions are positive

We now concern ourselves with cases where Algorithm 1 will fail. These cases
will occur exactly when P−1y has negative entries. To understand why this is
the case, consider that P−1y represents a degree distribution. Negative entries
in this vector therefore represent a meaningless value as an input to the Chung-
Lu algorithm. Matrix P has only positive real entries. This implies that for any
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Algorithm 1 ShiftedChungLu (y,dmax)

1: S ← ComputeStirlingMatrix(dmax)
2: A−1 ← ComputeDiagInverse(A)
3: B−1 ← ComputeDiagInverse(B)
4: V −1 ← ComputeVandermondeInverse(S,dmax)
5: x̃ ← bB−1V −1A−1yc
6: G ← GenerateChungLu(x̃)
7: return G

element-wise positive vector x, Px is also positive. While this implies that any
positive input will yield an approximately valid result, it does not exclude the
possibility of vectors with negative entries also mapping into the positive region
of Rm under the action of P. This means that we may not be able to use the
output of P−1y = x as the input of Px since x has the possibility of containing
negative elements. In Figure 2, we can see what the action of P looks like on a
sample of random vectors for P∈R4. Notice how, as expected, it “squishes” the
positive region into a small sliver.
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Fig. 2. Action of P on the positive hypercube. Here we can see plots of projections
of random vectors under the action of P as a heat map. The sample consists of 100,000
random vectors with random integer entries selected to be within {0, · · · , 100} under
the action of P ∈ R4×4. The output vectors are then projected onto each canonical unit
vector ej ∈ R4 and plotted pairwise. These vectors are referred to as Xi in the axis
labels. Intuitively this shows all feasible output from a Poisson random graph model
with node degrees limited to those in {1, 2, 3, 4}. We can see that all positive vectors
remain inside the positive region as expected, and we also see how sharply limiting this
is for finding positive solutions of P−1y for y positive.

Given a number of nodes N we look to bound how many nodes of each
degree are feasible. That is, if we have some degree distribution x with L1-norm
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‖x‖1 = N we wish to find lower and upper bounds, li and ui respectively on
|(Px)i| such that li ≤ |(Px)i| ≤ ui. We want to do this for every degree family.
Take the projector ρi = eTi ei where ei is the ith canonical unit vector in Rm.
Then we know |(Px)i| = ‖ρiPx‖1. This directly implies from the structure of P
that we have,

Nmin
k
|Pik| ≤ ‖ρiPx‖1 ≤ NPii ∀x∈Rm : ‖x‖1 = N (5)

Under the necessary, but reasonable, assumption that N > m, Equation 5 gives
us a tight upper bound on the number of nodes we can reliably generate of
a given degree based on only the number of nodes in our distribution. This
bound is realized precisely when all of the nodes in our distribution have input
degree N

i . We may be interested in what outputs a more narrow space of input
distributions can reliably generate. Consider bounding the number of nodes with
given degrees in a special case. Namely we pick degree family sizes such that the
following is true.

N1 ≥ N2 ≥ · · · ≥ Nm (6)

That is, the size of the families are non-increasing with respect to input degree.
This classifies a wide variety of networks ranging from those with identical family
sizes, to power-law distributions. We wish to upper bound the number of nodes
we can generate in a given degree family j with a distribution following the
Property 6. This problem can be expressed in terms of finding coefficients sat-
isfying Equation 7. Here we may take coefficients ‖a‖1 = 1 and then generalize
by taking x = Na = [N1, N2, · · · , Nm]T .

max
a

m∑
k=1

kj
e−k

j!
ak (7)

We can see the maximum occurs when aj has a maximal population. This means
that, perhaps as expected, the way to achieve the maximum number of nodes
with degree j is to maximize the number of input nodes with degree j. Since
our function is nonincreasing this means this maximum occurs when a1 = a2 =
· · · = aj and aj+1 = aj+2 = · · · = am = 0. This directly implies that we will get
the most nodes of degree j when the following is true for ‖a‖1 = 1.

a1 = a2 = · · · = aj =
1

j
(8)

Therefore the maximum number of nodes we should expect in a given degree
class can be approximated as follows.

1

j!j

j∑
k=1

kje−k ≈ 1

j!j

∫ j

1

xje−xdx (9)

≈ 1

j!j
γ(j + 1, j) (10)
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Equation 9 gives us both the exact upper bound and continuous approximation.
Equation 10 can be used as a quick approximation of this value in terms of the
incomplete gamma function from 0 to j. This gives a far tighter bound than is
provided by Equation 5 when we have a non-increasing degree distribution. It
should be noted that one may improve upon the accuracy of these bounds for
even more restrictive families of distributions by including a lower bound as well
as a tighter upper bound on the size of each degree family.

We can glean useful information from these bounds. For instance, if one
desires an output distribution where more than a tenth of the nodes have degree
five, there are no non-increasing inputs for which we should expect that property
in output. In terms of the inverse matrix P−1, inputting such a vector will yield
negative family sizes in some indices. This is incredibly limiting since this is
independent of node number.

3 Results

We wish to determine how well P models the output of the Chung-Lu algorithm
for a given input distribution. In Figure 3 we compare the näıve output distri-
bution to the outputs of both Chung-Lu generation and our model taking that
distribution as input. For this simple example we find that our model predicts
the output node degree frequency remarkably well.
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Fig. 3. Model distribution versus Chung-Lu outputs. We consider the degree
classes between one and nine for two different power law distributions. On the left
is a power-law distribution with exponent β = 1.0 and on the right is a power-law
distribution with exponent β = 2.0. In the top two plots, black crosses represent the
näıve input 1000× k−β , red circles represent the distribution our model estimates will
be the output of Chung-Lu generation, and blue x’s represent the average distribution
for 20 instances of Chung-Lu graphs given the black crosses as input. We can see that
the Chung-Lu generated graphs match our model output remarkably closely.

Additionally we aim to determine how much proportional L1 accuracy is
gained by using the vector x = P−1y as opposed to y itself as an input to Chung-
Lu. Specifically, we consider generating a set of graphs {yi} using the Chung-Lu
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algorithm with the näıve inputs {yi}, and the shifted inputs {xi = P−1yi}.
We plot the proportional L1 errors ‖yi−ỹi‖1

‖yi‖1 and ‖yi−x̃i‖1
‖yi‖1 in Figure 4 where

ỹi and x̃i are the output distributions of Chung-Lu for the näıve input and
shifted input respectively. we choose our set {yi} such that these are guaranteed
to be invertible distributions in the sense that x∈R+m. For this we use the
variable precision toolbox in matlab with the digits of precision set to 100. The
results of this can be seen in Figure 4. We find that our shifted input drastically
decreases the proportional L1 error between the output of Chung-Lu and the
desired output.
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Fig. 4. Error of näıve Chung-Lu input versus shifted Chung-Lu input. We
consider 100 input distributions yi such that P−1yi = xi where the distribution xi is

the power-law distribution 1000× k−
6i
100 with k ranging between 1 and 40. For each of

the 100 inputs, 30 graphs were generated and their degree distributions were averaged
using the input yi for Chung-Lu. The proportional L1 error between this output and
the desired output yi is shown as the solid blue line. Additionally 30 graphs were
generated and their degree distributions were averaged using the input xi for Chung-
Lu. The proportional L1 error between this output and the desired output yi is shown
as the dashed red line. We can see that the “shifted” input we get using our model
drastically reduces error for the sample.

4 Conclusion

We have provided a simple method for estimating the output of Chung-Lu ran-
dom graph generators with far lower proportional L1 error than that given by
the traditional assumption that output distributions will resemble input distri-
butions. Our method utilized a Poisson estimate for the number of nodes of
given degrees and we used this to define an invertible matrix P that models the
expected output from Chung-Lu generators. This allowed us to “solve the prob-
lem in reverse” and take a desired output y and solve for the Chung-Lu input
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x that will result in y. We called this the shifted Chung-Lu input. We showed
P predicts that many degree distributions simply are not feasible for Chung-Lu
generators, however we provide conditions for classifying a large portion of these
distributions.

There are several avenues for further research. For instance, this work lends
itself to analysis and improvement of graph generation. Methods which use näıve
Chung-Lu generation as a subroutine may gain both accuracy and insight into
possible distribution errors through the kind of analysis done in this paper.
Further work may also be done on how altering connection probabilities between
degree classes may be used to fine tune the matrix P in order to produce graphs
which are inadvisable for näıve Chung-Lu generation.
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