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Abstract. Random graphs play a central role in network analysis. The
Chung-Lu random graph model is one particularly popular model, which
connects nodes according to their desired degrees to form a specific de-
gree distribution in expectation. Despite its popularity, the standard
Chung-Lu graph generation algorithms are susceptible to significant de-
gree sequence errors when generating simple graphs. In this manuscript,
we suggest multiple methods for improving the accuracy of Chung-Lu
graph generation by computing node weights which better recreate the
desired output degree sequence. We show that each of our solutions offer
a significant improvement in degree sequence accuracy.
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1 Introduction

Random graph generation is an important task in several fields of study, such as
biology and the social sciences. Random graphs arising from graph generation
algorithms have uses as null models and as algorithmic benchmarks [14, 7, 10].
Stochastic block models are random graph models in which a number of nodes
is predefined and each possible edge is assigned a probability of existing [12].
A random graph can then be constructed by generating edges with respect to
these assigned probabilities. Conversely, the common configuration model [3, 15]
assigns to each vertex some number of stubs, equal to each vertex’s desired de-
gree, and then selects two stubs uniformly at random to create an edge. This
process is repeated until all stubs are attached, and a graph exactly matching
some input degree sequence can be output.

The expected pairwise degree probabilities (probability of a vertex of degree
x attaching to a vertex of degree y) arising from the configuration model may be
expressed as a stochastic block model via the Chung-Lu random graph model [6].
This model assigns a weight wv to each node v ∈ V in the graph, and then it
attaches nodes u, v ∈ V according to the probability puv = wuwv/

∑
a∈V wa. If

each weight is taken to be the desired degree of each given node, then this model
produces a desired degree distribution, but only in expectation. This model is
used as a subroutine in more complex graph generation algorithms [13, 8, 17, 18],
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and the given probabilities are also implicitly used to define network measures
such as modularity for graph clusters [16, 9].

Despite its popularity and theoretical importance, Chung-Lu random graph
generation often results in graphs with significant degree distribution errors [5,
13, 8, 10, 19]. While this can be resolved in many cases by using an explicit graph
configuration model instead of Chung-Lu, these approaches have limited room
for parallelism and are not scalable, particularly when a simple graph output is
desired. An appealing feature of Chung-Lu graph generation is that the method
is näıvely parallelized and is additionally expedited by techniques such as edge
skipping [1, 2], even when generating simple graphs. Because of the algorithm’s
high scalability and wide usage, some work has been done to correct and quan-
tify these errors. In Durak et al. [8], it is shown that Chung-Lu generation often
under-estimates the number of low degree nodes, and they perform an artificial
inflation in the number of nodes with unit weight to account for this. Other re-
lated work has used this specific approach [13] or a similar approach where unit
weight nodes are instead manually configured [17]. Alternatively, in our prior
work [5], we approximate the output degree distribution of Chung-Lu genera-
tion with a matrix equation, and we solve a linear system to determine an input
distribution that will best generate the desired output. We also show that the
inverse of many degree sequences with respect to this matrix yield vectors with
negative entries. These vectors do not have a useful interpretation with respect
to the Chung-Lu generation algorithm, and the method is greatly limited be-
cause of this. This manuscript aims to remedy the issues present in previous
work while utilizing the same matrix model as an important building block.

In the Chung-Lu model, each set of nodes with the same weight w may be
discussed as a block in a stochastic block model, and the degrees within that
block should be approximately Poisson distributed about the weight w. There-
fore, for degrees {w1 = 1, w2 = 2, · · · , wd = d}, one may generate a matrix P
given by Equation 1. Each column of the matrix represents the probability mass
function of degrees within each block. The inner product of any given row r of
this matrix with a degree sequence vector adds together the predicted number
of nodes with degree r produced by each block. By considering the entire matrix
simultaneously, the output vector predicts the output of Chung-Lu. That is, by
representing an input degree sequence as a vector x, one can approximate the
output degree sequence of Chung-Lu generation y as Px = y. As presented, P
is of infinite dimension and needs to be reduced to a finite dimension for com-
putational use. For this purpose, the matrix is truncated by removing all rows
beyond some maximum degree. This cut off can be chosen depending on the
desired output distribution y, and d may also be chosen to make P square, in
which case an explicit inverse is known. For details regarding this analysis, a
reader may consult the original citation [5].

P =

 | | |
poiss(w1) poiss(w2) · · · poiss(wd)
| | |

 (1)
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Fig. 1. Visualization of degree sequences: Comparisons of degree sequences for
the as20, GrQc, HepTh, and lastfm graphs. The dotted lines denote the predicted
output using standard Chung-Lu weights, the solid grey region denotes the output
sequence using optimized Chung-Lu weights, and the solid line denotes the desired
output sequence. Each optimization here was performed using our polynomial update
method which is discussed in Section 2.

We note that this matrix can be easily generalized. By choosing a set of
arbitrary positive weights w = {w1, w2, · · · , wd}, instead of simply the nodal de-
grees, one obtains a matrix P(w) where the means of each Poisson distribution
correspond to the given weights. This produces a new stochastic block model.

Our Contribution: This paper focuses on determining, for a given number of
weight parameters d, the set of weights such that the error between the desired
output and actual output of Chung-Lu graph generation will be minimized. We
develop and optimize several novel methods to minimize this error. Visualized in
Figure 1 for several graphs in the Stanford Large Network Dataset Collection5

are their degree sequences, the unoptimized output from Chung-Lu generation
using these degree sequences, and the generation output after applying one of
our methods. We will discuss our varying methods in Section 2 and analyze their
results in Sections 3 and 4.

5 https://snap.stanford.edu/data/
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2 Methods

As we note in our prior work [5], there are numerous sequences that can not be
reliably generated using näıve Chung-Lu weights. To remedy this short coming,
there are two algorithm parameters which may be adjusted to alter the output.
One parameter is the input sequence. This is the specific parameter studied in
prior work. The other parameter is the set of weights w = {w1, w2, · · · , wd}.
Conceptually, both methods are trying to approximate a distribution as a linear
combination of Poisson distributions. In the former method, the Poisson distri-
butions have means equal to the target degree classes, and the approximation is
improved by altering the coefficients applied to each distribution. Alternatively,
changing the weights equates to changing these means, effectively moving the
Poisson distributions along the x-axis.

We present two methods incorporating weight alteration. Our first method
relies on several greedy updates, where weights are chosen such that ‖P(w)x−y‖
is minimized at each step. The latter method uses maximum likelihood estima-
tion [20] to solve for weights.

Before discussing either method, let us first formalize goals and definitions.
Take P(w) to be the square matrix given by weights w = {w1, · · · , wd} and
removing both the first row and everything beyond row d + 1 in Equation 1.
The first row is removed because it corresponds to the number of zero-degree
nodes. These nodes may be ignored after generation, so removing the first row of
P(w) mathematically represents this. We call our input degree sequence vector
x = [x1, · · · , xd] and our desired output degree sequence vector y = [y1, · · · , yd].
Additionally, call the output of the Chung-Lu algorithm with weight set w and
input vector x, CL(w, x). Then, our goal is to find a combination w, x such that
‖CL(w, x) − y‖1 is minimized. The 1-norm is specifically considered because
it can be directly interpreted as the number of nodes with incorrect degrees.
A log2-binned version of this error will additionally be considered later and is
discussed in the Section 3.

2.1 Greedy updates

We first discuss the greedy update method. This is based off of a simple approx-
imation and update loop. The basic idea is as follows. Given an input degree
sequence x, determine the first k derivatives of each column of P(w) with re-
spect to their means and use these derivatives to approximate ‖P(w + ε)x− y‖
for small perturbations in the elements of the mean-set w+ ε. Then, update the
means in the optimal direction according to some minimization algorithm and
repeat this process for some number of iterations.

Two update objectives are discussed in this section, which we call linear
updates and polynomial updates. These objectives only differ in the number
of derivatives considered. Linear updates approximate error based on the first
derivative of each column in P(w) . Alternatively, polynomial updates use an
arbitrary number of k derivatives and the Taylor series to approximate error.
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As is shown later, both of these methods reduce the per-node degree error sig-
nificantly; however, they require different numbers of iterations. All instances of
the polynomial-update variant use k = 2 in this manuscript. In Algorithm 1,
we show a general template of the greedy method. The main difference in each
of these methods comes from how our objective changes the opt E(·) function.
The objectives are discussed in more detail in the following subsections.

Algorithm 1 Greedy-Update (x,y,{w1, · · · , wd}, δ,t)
1: P ← fill P( {w1, · · · , wd} )
2: for iters ∈ [1. . . t] do
3: U = {U1, · · · ,Uk} ← compute U set({w1, · · · , wd})
4: E ← opt E( P, U, x, y, δ )
5: P ← fill P( {w1 + E11, · · · , wd + Edd} )
6: return {w1, · · · , wd}

Algorithm 1 is initialized with an input degree sequence vector x, a desired
output degree sequence vector y, a set of initial weights {w1, · · · , wd}, a maxi-
mum update step-size δ, and an iteration number t. For this paper, initial degree
sequences are taken to be x = cy for some positive constant c ∈ R+. Addition-
ally, initial weights are taken to be {w1 = 1, · · · , wd = d}. The iteration number
and step size will vary depending on desired accuracy and whether linear, or
polynomial updates are being used. The algorithm proceeds as follows. P(w)
is initialized with the input weights. Then, within the loop, a set of matrices
U = {U1, · · · ,Uk} is computed within the compute U set(·) function. Each
matrix Ui corresponds to the ith derivative of each column. These matrices are
then used in the opt E(·) function to determine how much each mean in w should
change. For the purposes of this manuscript, opt E(·) uses the sequential least
squares minimization [4] implementation from scipy.optimize.minimize(·) in
Python. Then new weights are computed and P(w) is updated.

Linear Updates: Linear updates are the simpler of the two greedy update
methods. In the linear update method, k = 1 and only a single U matrix is com-
puted in compute U set(·). This matrix has the same form given in Equation 2
and the columns take the form of the derivatives of the columns in P(w) as given
in Equation 3 with respect to their means. In Equation 2, µj corresponds to the
mean of the Poisson distribution.

U =

 | | |
∂
∂µ1

poiss(µ1, x) ∂
∂µ2

poiss(µ2, x) · · · ∂
∂µm

poiss(µm, x)

| | |

 (2)

∂

∂µi
poiss(µi, x) =

(x− µi)e−µiµx−1i

x!
(3)
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The linear update objective function used in opt E(·) takes the form of mini-
mizing γ = ‖(P(w) +UE)x− y‖2 with respect to the diagonal matrix E, where
each entry is bounded by δ, |Ejj | ≤ δ. Unfortunately, linear approximations
lack significant accuracy, and as such, the step size δ needs to be rather small
to maintain stability within each optimization step opt E(·). This ultimately
leads to a method which requires many updates. This can be prohibitive for
graphs with high maximum degree, since the dimensionality of our optimization
problem depends on this. This issue is discussed in Section 4 at the end of the
manuscript.

Polynomial Updates: The polynomial update method is very similar to the
linear update method. In this method, higher order derivatives are considered in
the Taylor series. This higher order error approximation is then used to predict
degree sequence errors. The Taylor series approximation of the Poisson distribu-
tion is given by Equation 4.

poiss(z, x) =
e−µµx

x!
+

∞∑
j=1

(
∂j

∂µj
poiss(µ, z)

)
(z − µ)

j
(4)

For a given number of derivatives k, a truncated series is used to make ap-
proximations. Note that the term on the left of the sum is an entry of the
matrix P(w) . Additionally, the right hand sum consists of two components, the
jth derivative, and a difference term. This allows us to rewrite this expression in
terms of matrices as in Equation 5.

P(w′) ≈ P(w) +

k∑
j=1

UjEj (5)

In Equation 5, Uj is the matrix corresponding to the jth derivative of each
column, similar to equation 2. Ej is a diagonal matrix with entries Ej(a, a) = eja,
corresponding to the step size in each dimension. In the polynomial update
function, the error to be minimized is of the form γ = ‖(P(w)+

∑k
j=1 UjEj)x−

y‖2. Because of the increased accuracy of the polynomial method, a larger bound
δ may be used for the step size. While we do not present bounds for this here,
the size of δ can be chosen to be larger for larger instances of the number of
derivatives k.

2.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) based clustering is a popular statisti-
cal method for determining probabilistic clusters for a data set [20]. Given a
pre-defined type of statistical distribution (e.g. normal, binomial, Poisson, etc.
) and a number of distributions m, MLE clustering determines the parameters
and coefficients for those distributions such that their mixture distribution has
the highest likelihood of generating the data set. While MLE is most commonly
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used for clustering data, we instead use it here for function approximation. Con-
sider the desired degree sequence y as a realization of a mixture distribution
and the underlying statistical distributions as Poisson distributions. Then, the
coefficients and means which are output as a mixture model from MLE may be
interpreted as the input vector x and the µ values in P(w) , respectively.

Algorithm 2 MLE-Update (m,y,d,iters)

1: x ← [ 1
m
, · · · , 1

m
]

2: py ← y
‖y‖1

3: µ ← [ d
m
, 2d
m
, · · · , d]

4: (x,µ) ← poiss EM(x,µ,py,iters)
5: x ← ‖y‖1x
6: return (x,µ)

Our MLE based method proceeds as follows, and is demonstrated in pseu-
docode in Algorithm 2. Begin by considering a desired output sequence y, a
number of means m, and an interval [0, d]. Initialize a vector x = [ 1

m , · · · ,
1
m ]

and a vector of means µ = [µ1 = d
m , µ2 = 2d

m , · · · , µm = d]. Note that these
means may be initialized randomly within the interval [0, d], if desired. Then,
normalize y to obtain a probability distribution py = y

‖y‖1 , from which points are

sampled for maximum likelihood estimation. Maximum likelihood estimation is
then run on these inputs, updating the entries of x and µ at each iteration. Once
this has concluded, x is scaled by ‖y‖1 and each entry is rounded to the nearest
natural number. This ensures that x now corresponds to the number of nodes
instead of a proportion of all nodes.

As discussed earlier, there are two parameters which may be tuned when im-
proving Chung-Lu graph generation. While our earlier work focused on chang-
ing the input sequence, and both the linear and polynomial methods focus on
changing the means of Poisson distributions, Algorithm 2 simultaneously solves
for both. Additionally, expectation maximization has a tune-able dimensional-
ity. This means that one may take small samples from py, and consider fewer
Poisson distributions to improve compute time. This is not an option that is
readily available in the case of greedy linear and polynomial updates.

3 Results

In Figure 2, the three methods discussed in the previous section are compared
against näıve Chung-Lu generation on a set of degree sequences from the Stan-
ford Large Network Dataset Collection. Graph generation is performed using the
expected degree graph(·) function from the NetworkX [11] package in Python.

As can be seen, each method outperforms näıve Chung-Lu by a consider-
able margin. However, our different methods perform better on different degree
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Fig. 2. Proportional errors: Degree error plots for all methods on a number of
graphs. Both the proportional error (top), and log2-binned proportional error (bottom)
metrics are as described in the Results section. As is seen, every method drastically
reduces the proportional L1 error of the degree sequence when compared with näıve
Chung Lu. However, different methods perform better on differing degree sequences.

sequences. The exact reason for this requires further analysis. Figure 2 consid-
ers two different proportional error functions. The first one is L1 proportional
error which is computed as the ratio ‖CL(w, x) − y‖1/‖y‖1. This can be di-
rectly interpreted as the proportion of nodes which have the correct degree.
Additionally, one can interpret this error function as a normalized version of the
total variation distance. The log2-binned proportional error is also considered.
In this case the sequences CL(w, x) and y are partitioned into b = dlog2(d)e
bins, forming the sequences β(CL(w, x)) and β(y), both of which are in Rb.
The entries of β(CL(w, x)) are β(CL(w, x))i =

∑2(i−1)+2i

j=2(i−1) CL(w, x)j , and the

entries of β(y) follow similarly. The proportional binned error is then computed
as ‖β(CL(w, x)) − β(y)‖1/‖β(y)‖1. The reason for defining this error function
is that there are many applications where the exact degrees are less important
than simply having the correct number of “low-degree”, or “high-degree” nodes.
For this purpose, the log2-binned proportional error provides a quantitative un-
derstanding of how many nodes are being generated for different “sections” of
the sequence.

As is seen in Figure 3, the polynomial update method outperforms the other
optimization methods in proportional error. Additionally, the MLE optimization
method outperforms the others for log2-binned proportional error. Conceptually,
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this implies that the polynomial update method may be the best at matching
the degrees of nodes exactly, while the MLE method is superior for approximate
reproduction of sequences.

Fig. 3. Average proportional errors of methods: The proportional (left) and
log2-binned proportional (right) errors are compared over all test graphs for each op-
timization method as well as näıve Chung-Lu. Both the proportional error, and log2-
binned proportional error metrics are as described in the Results section. As is seen,
on average the polynomial update method results in the more significant reduction
of proportional error, however the MLE method results in the largest reduction in
log2-binned proportional error.

4 Discussion

4.1 Parameters

When choosing parameters for Algorithm 1, a reader may be rightfully curious
as to what constitutes a “good” choice. In Figure 4, a parameter search over
several choices of iteration number t and constant c, such that x = cy are shown
for two example graphs from the Stanford Large Network Dataset Collection.
As is seen, the error reaches similar levels for both the polynomial and linear
update methods for different parameters. We note that 1.05 < c < 1.15 appears
to work best for both graphs. While not shown, this behavior is also seen a across
many other degree sequences. Furthermore, the number of iterations required to
achieve a similar error reduction with polynomial updates versus linear updates
is seen to be considerably smaller. In fact, for these two graphs, a similar error
reduction is seen with an order of magnitude fewer update steps.

There is significant work to be done deciding parameters. While Figure 4
suggests some best practices, it is far from definitive. Furthermore, the choice of
step-size δ is currently somewhat arbitrary. In this paper, it is taken to be 0.05 ≤
δ ≤ 0.2 for linear updates, and 0.2 ≤ δ ≤ 0.5 for polynomial updates. Different
step sizes drastically alter the stability and number of requisite iterations of the
method. This requires further experimental and theoretical results for varying
degree sequences.
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Fig. 4. A parameter search of error, varying the coefficient c ∈ R+ for x = cy, and the
number of iterations for both the polynomial and linear update methods respectively.
The polynomial update method in this case has k = 2. The colors indicate the pro-
portional L1 error ‖CL(w, x)− y‖1/‖CL(y)− y‖1. As can be seen for the two sample
graphs, the polynomial update method converges to a smaller proportional L1 error
than the linear method does in the same number of iterations.

4.2 Timing considerations

The methods presented in this manuscript require varying times to run. The
linear update method uses a miniscule step size, and as such requires many it-
erations to terminate. This is a significant concern when the maximum degree
of the desired output is large. This is because the maximum degree controls the
dimensionality of the optimization step, which must be performed at every it-
eration. To this end, the polynomial update method can iterate with a larger
step size, requiring less iterations. However, in the case of a significantly large
maximum degree, the optimization step may still not be practical. The MLE-
method does not suffer from these same drawbacks, because the sample number
and number of distributions may be tuned. This means the MLE method should
not perform slower on larger degree sequences, given constant sample and dis-
tribution numbers.

In the case of the greedy update methods, a simple change can be made
which drastically speeds up compute time. This is the method of truncation.
Note that, for most real world degree sequences the vast majority of the weight
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lies in the lowest degrees of the graph. Because of this, one may ignore a portion
of the sequence when using either greedy update method. This drastically re-
duces compute time, but may introduce additional error. In our limited testing,
removing the final 1% of the sequence by node count greatly improves run times
and minimally affects error. Despite this, the best practice for truncation is an
open problem.

5 Conclusion

In this manuscript, we presented two methods for improving the accuracy of
Chung-Lu random graph generation. These methods consist of an iterative al-
gorithm (Algorithm 1), which greedily updates the weights of nodes, and an
algorithm (Algorithm 2) relying on maximum likelihood estimation. Both meth-
ods were shown to dramatically reduce degree sequence error in comparison to
näıve Chung-Lu; however, they require different considerations. The greedy up-
date methods suffer from long compute times in the case of sequences with high
maximum degree, while the maximum likelihood method is significantly faster.
While parameter choices for these algorithms are presented, a systematic study
of their affect on resulting error is an avenue for further research.
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