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Abstract—Finding the strongly connected components
(SCCs) of a directed graph is a fundamental graph-theoretic
problem. Tarjan’s algorithm is an efficient serial algorithm
to find SCCs, but relies on the hard-to-parallelize depth-
first search (DFS). We observe that implementations of sev-
eral parallel SCC detection algorithms show poor parallel
performance on modern multicore platforms and large-scale
networks. This paper introduces the Multistep method, a new
approach that avoids work inefficiencies seen in prior SCC
approaches. It does not rely on DFS, but instead uses a
combination of breadth-first search (BFS) and a parallel graph
coloring routine. We show that the Multistep method scales
well on several real-world graphs, with performance fairly
independent of topological properties such as the size of the
largest SCC and the total number of SCCs. On a 16-core Intel
Xeon platform, our algorithm achieves a 20× speedup over the
serial approach on a 2 billion edge graph, fully decomposing
it in under two seconds. For our collection of test networks,
we observe that the Multistep method is 1.92× faster (mean
speedup) than the state-of-the-art Hong et al. SCC method. In
addition, we modify the Multistep method to find connected
and weakly connected components, as well as introduce a novel
algorithm for determining articulation vertices of biconnected
components. These approaches all utilize the same underlying
BFS and coloring routines.
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I. INTRODUCTION

The problem of strongly connected components (SCCs)
refers to detection of all maximal strongly connected sub-
graphs in a large directed graph. Informally, a strongly
connected subgraph is a subgraph in which there is a path
from every vertex to every other vertex. SCC decomposition
is a useful preprocessing and data reduction strategy when
analyzing large web graphs [1] and networks constructed
from online social network data [2]. SCC detection also has
several uses in formal verification tools, including model
checking in state space graphs [3]. Other application areas
include computer-aided design [4] and scientific comput-
ing [5].

Tarjan’s algorithm [6] is an efficient serial algorithm for
SCC detection. It uses a recursive depth first search (DFS)
to form a search tree of explored vertices. The roots of
subtrees of the search tree form roots of strongly connected
components. Although it is possible to extract parallelism
from DFS while retaining proper vertex ordering, this is

often met with limited success [7]. Therefore, most parallel
SCC algorithms have avoided its use.

The Forward-Backward (FW-BW) method [8] and
Orzan’s coloring method [3] are two SCC detection al-
gorithms that are amenable to both shared-memory and
distributed-memory implementation. These methods use
very different subroutines and were proposed in different
contexts, FW-BW for graphs arising in scientific computing
and coloring in the context of formal verification tool
design. We observe that shared-memory parallelization of
both methods perform poorly in comparison to the serial
algorithm for SCC decomposition in social networks and
web crawls.

In this work, we also present parallel algorithms for
problems related to SCC detection: connected components
(CC), weakly connected components (WCC), and bicon-
nected components (BiCC). Known efficient serial and par-
allel algorithms for these problems can be very different
from SCC detection algorithms. However, we observe that
the approach we present, the Multistep method, is easily
extended to solve these problems as well.

A. Contributions

Our new Multistep method is designed for SCC detection
in large real-world graphs, such as online social networks
and web crawls, using current shared-memory multicore
platforms. We utilize variants of FW-BW and Orzan’s col-
oring methods in subroutines. We minimize synchronization
and avoid use of fine-grained locking. Our BFS subrou-
tine incorporates several recently-identified optimizations for
low-diameter graphs and multicore platforms [9], [10], [11].
We perform an extensive experimental study on a 16-core
Intel Xeon server with Sandy Bridge processors, and the
following are our main observations:

• For low-diameter networks (e.g., Twitter, LiveJournal
crawls), the single-threaded Multistep approach is sig-
nificantly faster than the serial Tarjan algorithm.

• Multistep is faster and exhibits better scaling than our
implementations of the FW-BW and coloring algorithms.

• Multistep is up to 8.9× faster than the state-of-the-art
Hong et al. method [12] on ItWeb, a network with a
large number of SCCs (30 million).



• Multistep modified for CC is consistently faster than the
coloring-based algorithm implementation in Ligra [13].

• Our novel BiCC algorithm demonstrates up to an 8×
parallel speedup over a serial DFS-based approach.

• Our modified atomic-free and lock-free BFS averages a
traversal rate of 1.4 GTEPS (Giga traversed edges per
second) over all tested networks.

II. BACKGROUND

A. Strongly Connected Components

1) Serial Algorithms: Two common serial algorithms
used for SCC detection are Tarjan’s [6] and Kosaraju’s [14]
algorithms. Both of these algorithms perform linear O(n+
m) work in the RAM model of computation, where n is
the number of vertices and m is the number of edges in an
input graph. However, since Tarjan’s algorithm only requires
a single DFS as opposed to Kosaraju’s two, it is often faster
in practice.

2) Forward-Backward: The Forward-Backward (FW-
BW) algorithm [8] (see Algorithm 1) can be described as
follows. Let V denote the set of vertices in the graph, E(V )
the set of outgoing edges, and E′(V ) the set of incoming
edges. Given the graph G (V,E(V )), a pivot vertex u is
selected. This can be done either randomly or through
simple heuristics. A BFS (or DFS) search is conducted
starting from this vertex to determine all vertices which are
reachable from u (the forward sweep). These vertices form
the descendant set (D). Another BFS is performed from u,
but on G (V,E′(V )). This search (the backward sweep) will
find the set (P ) of all vertices than can reach u, called the
predecessor set. The intersection of these two sets forms
an SCC (S = D ∩ P ) that has the pivot u in it. If we
remove all vertices in S from the graph, we can have up
to three remaining disjoint vertex sets: (D \ S), (P \ S),
and the remainder R, which is the set of vertices that we
have not explored during either search from u. The FW-BW
algorithm can then be recursively called on each of these
three sets.

Algorithm 1 Forward-Backward Algorithm
1: procedure FW-BW(V )
2: if V = ∅ then
3: return ∅
4: Select a pivot u ∈ V
5: D ← BFS(G(V, E(V )), u)
6: P ← BFS(G(V, E′(V )), u)
7: R← (V \ (P ∪D)
8: S ← (P ∩D)
9: new task do FW-BW(D \ S)

10: new task do FW-BW(P \ S)
11: new task do FW-BW(R)

There is parallelism on two levels. As the three sets are
disjoint, they can each be explored in parallel. Also, note that
we do not require any vertex ordering within each set, just

reachability. Therefore, each of the forward and backward
searches can be easily parallelized or run concurrently. For
graphs with bounded constant vertex degree, FW-BW is
shown to perform O(n log n) expected case work.

A routine called trimming is commonly performed before
executing FW-BW. The trimming procedure was initially
proposed as an extension to FW-BW [15] to remove all
trivial SCCs. The procedure is quite simple: all vertices
that have an in-degree or out-degree of zero (excluding
self-loops) are removed. Trimming can also be performed
recursively, as removing a vertex will change the effective
degrees of its neighbors. In this paper, we refer to a single
iteration of trimming as just simple trimming and iterative
trimming as complete trimming. This procedure is very
effective in improving the performance of the FW-BW
algorithm, but can be beneficial for other approaches as well.

3) Coloring: The coloring algorithm for SCC decompo-
sition is given in Algorithm 2. This algorithm is similar to
FW-BW in that it uses forward and backward traversals.
However, the approach is also quite different, as it uses
multiple pivots in the forward phase and only looks at a
subset of edges for each pivot in the backward phase.

Algorithm 2 Coloring Algorithm
1: procedure COLORSCC(G(V, E))
2: while G 6= ∅ do
3: for all u ∈ V do Colors(u)← u

4: while at least one vertex has changed colors do
5: for all u ∈ V in parallel do
6: for all 〈u, v〉 ∈ E do
7: if Colors(u) > Colors(v) then
8: Colors(v)← Colors(u)

9: for all unique c ∈ Colors in parallel do
10: Vc ← {u ∈ V : Colors(u) = c}
11: SCVc ← BFS(G(Vc, E

′(Vc)), u)
12: V ← (V \ SCVc)

Assume that the graph vertices are numbered from 1
to n. The algorithm starts by initializing elements of the
array Colors to these vertex identifiers. The values are then
propagated outward from each vertex in the graph, until there
are no further changes to Colors. This effectively partitions
the graph into disjoint sets. As we initialized Colors to
vertex identifiers, there is a unique vertex corresponding
to every distinct c in Colors. We consider u = c as the
root of a new SCC, SCVc. The set of reachable vertices
in the backward sweep from u of vertices of the same
color(Vc) belong to this SCVc. We then remove all these
vertices from V and proceed to the next color/iteration. The
two subroutines amenable to parallelization are the color
propagation step and the backward sweep. In a graph with
a very large SCC and high diameter, the color of the root
vertex has to be propagated to all of the vertices in the SCC,
limiting the efficiency of the color propagation step.



4) Other Parallel SCC Approaches: There has been other
recent work aimed at improving FW-BW and coloring.
One example is the OBF algorithm [16] of Barnat et al.,
which, like coloring, aims to further decompose the graph
into multiple distinct partitions at every iteration. The OBF
decomposition step can be performed much quicker than
coloring. However, it does not necessarily result in as many
partitions. Barnat et al. implement OBF, FW-BW, and col-
oring on NVIDIA GPUs [17], and demonstrate considerable
speedup over equivalent CPU implementations.

More recently, Hong et al. [18], [12] present several
improvements to the FW-BW algorithm and trimming pro-
cedure by expanding trimming to find both 1-vertex and
2-vertex SCCs, decomposing the graph after the first SCC
is found by partitioning based on weakly connected com-
ponents, and implementing a dual-level task-based queue
for the recursive step of FW-BW to improve runtimes by
reducing overhead for the task-based parallelism. We present
detailed comparisons to their approach in Section VI.

B. Connected and Weakly Connected Components

The approaches for determining connected components
and weakly connected components in graphs are similar.
There are two primary parallel methods, using techniques
similar to those described in the preceding sections. First,
a parallel BFS can be used for connected components. Any
vertices reachable by the BFS traversal will be in the same
component. We continue selecting new unvisited vertices
as BFS roots until all vertices have been visited and all
connected components identified. The procedure is the same
for weakly connected components, but it is required to
examine both in and out edges.

We can also use a coloring approach. Each vertex is
initialized with a unique color, and the maximal colors are
propagated throughout the network. Once the colors reach a
stable point, all vertices contained in each discrete compo-
nent will have the same color. The number of propagation
iterations is bounded by O(log n) when using the pointer-
jumping technique.

C. Biconnected Components

The optimal linear-time sequential algorithm for determin-
ing the biconnected components of a graph is the Hopcroft-
Tarjan algorithm, which is based on DFS [19]. The Tarjan-
Vishkin parallel algorithm [20] avoids DFS. It constructs
an auxiliary graph such that the connected components of
the auxiliary graph form biconnected components in the
original graph. Several improvements have since been made
to the Tarjan-Vishkin approach to reduce work and improve
parallelism [21], [7].

III. MULTISTEP METHOD FOR SCC DECOMPOSITION

In this section, we introduce our algorithm for graph SCC
decomposition, the Multistep method. The name comes from

the fact that it is a combination of some of the previously
described parallel algorithms, with algorithmic changes to
each one of them, stepped through in a certain order. This
section gives some of the details of our algorithm and
justifies the algorithmic choices we have made.

A. Observations

The FW-BW algorithm can be quite efficient if a graph
has relatively small number of large and equally-sized SCCs,
as the leftover partitions in each step would, on average,
result in similar amounts of task-parallel work. The FW and
BW searches could also be efficiently parallelized in this
instance.

However, the structure of most real-world graphs is very
different. Most real-world graphs have one giant SCC con-
taining a large fraction of the total vertices and a large
number of small SCCs [2]. The small SCCs are often
disconnected once the large SCC is removed. Running a
naı̈ve implementation of FW-BW would result in a large
work imbalance after the large SCC is found, as most
vertices will be in the remainder set when discovering the
small SCCs. In addition, using a naı̈ve task-parallel model
would add considerable overhead, as each new task will be
finding a SCC with only a few vertices. As a result, the
overall runtime of the FW-BW algorithm is dominated by the
total number of SCCs in the initial graph. As we will show,
even implementations that use a smarter tasking model [18],
[12] can still suffer when the graph and number of SCCs get
large enough.

Conversely, the coloring algorithm is quite efficient when
the graph has a large number of small and disconnected
SCCs. The runtime of each coloring step is proportional
to the diameter of the largest connected component in the
graph. This leads to poor initial performance on real-world
graphs, as the time for each step can be very high when the
largest SCCs remain, and there is no guarantee that these
SCCs will be removed in any of the first few iterations.

It is also important to note that when the number of ver-
tices in the graph is less than a certain threshold, all parallel
algorithms perform poorly over Tarjan’s or Kosaraju’s serial
algorithms due to parallel overhead.

B. Description of Method

Based on the above observations, we have developed the
Multistep method that aims at maximizing the advantages
and minimizing the drawbacks of prior algorithms. The
four primary phases are shown in Algorithm 3. We apply
simple trimming (MS-SimpleTrim), a FW-BW stage (steps
4-7 of Algorithm 3), coloring (MS-Coloring, steps 8-10),
and Tarjan’s algorithm in sequence to decompose large real-
world graphs into their SCCs.

We only use simple trimming during the first phase, as
experiments have shown that vertices trimmed in second or



Algorithm 3 Multistep Algorithm
1: procedure MULTISTEP(G(V, E))
2: T ← MS-SimpleTrim(G)
3: V ← V \ T
4: Select v ∈ V for which din(v) ∗ dout(v) is maximal
5: D ← BFS(G(V, E(V )), v)
6: S ← D ∩ BFS(G(D, E′(D)), v)
7: V ← V \ S
8: while NumVerts(V ) > ncutoff do
9: C ← MS-Coloring(G(V, E(V )))

10: V ← V \ C

11: Tarjan(G(V, E(V )))

subsequent iterations during complete trimming can be better
handled by the coloring or serial phases.

In the second phase, we try to increase the chance that
our initial pivot is in the largest SCC by selecting as pivot
the vertex that has the largest product of its in degree and
out degree. Although there is no guarantee that this will
be the case, the heuristic works very well in practice with
real-world graphs.

With the chosen pivot, we perform a forward and back-
ward traversal to find one SCC. Unlike FW-BW, we do
not explicitly compute the three sets D, P , and R. We
modify the backward search from BFS(G(V,E′(V ), v) to
BFS(G(D,E′(D)), v). If we encounter a vertex that is not
in the descendent set D, we can safely ignore it and avoid
exploring its predecessors, as they will not be part of the
current SCC. For a simple proof by contradiction, given a
pivot v and its predecessor pi that is not a descendant of v
(as pi was not encountered in forward search) assume pi has
a predecessor pj that is part of the SCC with v in it. If pj

is part of the SCC, then pj is a descendant of v, and in turn
pi will be a descendant of v as pj is its predecessor. This
allows us to safely ignore pi and all of its predecessors in
this phase. For certain graphs, this optimization considerably
reduces the vertices we inspect during the backward phase.

In the third phase, we pass all remaining vertices to MS-
Coloring. We use coloring until the number of remaining
vertices goes below a certain threshold. In our final phase,
we use Tarjan’s serial algorithm to compute the rest of the
SCCs.

C. Work Complexity

The execution time of Multistep is dependent on the
performance of its constituent subroutines. The upper bound
for FW-BW is known to be O(mn) [8], since each recursive
step will remove at least one of the n vertices (after
potentially examining all n vertices), and there can be at
most n recursive invocations of FW-BW. In the best case,
the graph is fully strongly connected and only two complete
searches are performed for an overall O(n + m) work. In
Multistep, we perform two searches in the FW-BW stage to
find one SCC and do not recurse. Hence the work bound for

this stage will be O(n+m).
Consider the trimming subroutine. For the worst case

graph instance of a chain, naı̈ve complete trimming will
trim one vertex over each of n iterations while examining
n vertices, resulting in an upper bound of O(n2) work.
Multistep instead uses simple trimming, or performing only
a single pass, resulting in O(n) work regardless of input
structure. As trimming does not need to explicitly examine
edges, the m term is omitted.

The upper bound for coloring is O(n2), and this occurs
when only a single vertex is removed per iteration. The best
case instance only requires a single color propagation step
and a single search over n vertices and m edges, resulting
in a O(n + m) bound. In general, the work performed
is dependent on the number of coloring iterations and the
number of edges touched in each iteration. Multistep uses
a predefined cutoff to switch to the serial algorithm, and so
this further reduces the total number of iterations. Also, note
that the performance of the coloring step is dependent on
the integer values assigned to the colors. Since we initialize
colors to the vertex identifiers, the ordering of vertices has
an impact on the performance of the algorithm.

The final stage of Tarjan’s algorithm has a well-known
linear O(n + m) work bound. Thus, for Multistep, the
best network instance would be a fully disconnected graph,
incurring O(n) work during simple trimming. The worst
case instance for Multistep will be a mostly acyclic graph,
and this would require O(n2) work for the coloring stage.
We will demonstrate in Section VI that the performance of
Multistep is better than FW-BW and simple Coloring on all
the real-world and most of the tested synthetic graphs.

IV. APPLYING THE MULTISTEP METHOD

This section provides more implementation details about
various phases, and also discusses extensions for WCC, CC,
and articulation point detection. All our algorithms were
implemented in C++, using OpenMP for multithreading.
We use the compressed sparse row (CSR) representation for
graph storage, and use additional arrays for storing incoming
edges. To avoid modifying the graph, we have a boolean
array termed valid which signifies if a vertex is yet to be
placed in an SCC. We also have an additional integer array
which gives a numeric identifier of the SCC to which each
vertex belongs. We avoid locking or atomic operations when
possible through thread-owned queues, mitigation of race
conditions, and by utilizing various techniques to reduce
work.

A. Trim Step

We consider two different approaches for parallel trim-
ming. We use a boolean array to mark vertices that are
trimmed. Simple trimming requires the degrees of vertices
in the original graph. Therefore, it requires a single pass



through all vertices to find their in/out degrees, and flip their
valid boolean if either degree is zero.

Complete trimming is a bit more complex. To speed
up parallel complete trimming, in addition to the boolean
trimmed array, we create current and future queues and an
additional boolean array of values (mark) to signify if a
vertex is currently placed in the future queue. All vertices
are in the current queue to begin with. We then determine the
effective in- and out-degrees for all vertices in the current
queue and mark trimmed vertices as such. In addition, any
untrimmed child or parent of the trimmed vertex is placed in
the future queue and marked as such. Once the current queue
is empty, the queues are swapped with the marks reset.

This process is repeated for as many iterations as neces-
sary. The queues avoid having to look through all vertices
at each iteration, as it has been observed that long tendrils
of vertices in several real-world graphs [1] tend to result in
numerous iterations where only a few vertices are removed
at a time. The marking is done to prevent a vertex from
being placed in the future queue multiple times. To avoid
the synchronization overhead that would be required with a
parallel queue, we maintain separate queues for each thread
and combine them into the next level queue at the end of
each iteration of complete trimming.

Although complete trimming is easily parallelizable and
can be quite fast, with the queues and marking being done
similar to our BFS and coloring steps (described below), it
does not offset the additional cost. We note that the simple
trimming step removes the vast majority of vertices that can
be removed by trimming, and the additional iterative steps
have a high overhead.

B. Breadth-First Search

The main subroutine in the FW-BW step is the parallel
breadth-first search. We utilize a level-synchronous parallel
approach, with threads concurrently exploring the vertices in
the current frontier. Further, each thread maintains a queue
of visited vertices to represent the frontier, and these queues
are merged at the end of each iteration. Using thread-local
queues instead of a shared queue avoids the synchronization
overhead of insertions.

A key data structure required in BFS is a lookup array
of size n, to check if a vertex has been visited or not.
A typical BFS optimization is to use a bitmap (1 bit per
vertex) to avoid further exploring visited vertices. A bitmap
will fit completely in the last-level cache of modern server-
grade CPUs for graphs of up to tens of millions of vertices.
However, as we observed, a boolean visited array (one
byte per vertex) actually outperforms a bitmap in our test
environment. The likely reason for this is three-fold: less
arithmetic to figure out the vertex index within the bitmap,
the additional accesses needed for a SCC algorithm as
opposed to running a pure BFS, and guaranteed atomic
reads/writes at the byte level on our test system [22]. A

much more complicated read/write function is required to
guarantee atomic updates for a bitmap [11]. We note that
the effectiveness of a bitmap, in practice, will depend on
last-level cache utilization, which is dependent on the size
and structure of the network being explored.

Recent results show that for certain levels of a BFS in low-
diameter graphs, it is more efficient to look in the reverse
direction [10]. In this direction-optimizing approach to BFS,
all unvisited vertices attempt to find a parent that is in the
frontier, instead of the typical way of inspecting adjacencies
of frontier vertices. We used this optimization with similar
settings as the original paper (α = 15, β = 25) and
notice considerable speedup. However, we had to maintain
the thread queues in the bottom-up hybrid as opposed to
explicitly rebuilding the queue from scratch when we turn
the hybrid mode off. This is due to the fact that we do not
maintain the BFS tree and lack the ability to track BFS level
on a per-vertex basis, as we only maintain the visited array
for determining the SCC.

We also investigated a per-socket graph partitioning and
exploration scheme similar to the ones described in Agarwal
et al. [9] and Chhugani et al. [11]. Although these partition-
ing approaches improved parallel scaling, it was only in a
limited number of instances that actual runtimes improved
due to the additional overhead. We do not include it in our
final results. Overall, our BFS implementation achieves an
mean traversal rate of 1.4 GTEPS (billion traversed edges
per second) on the graphs given in Table I.

C. Coloring

The pseudocode for the parallel vertex coloring step MS-
Coloring is given in Algorithm 4. Initially, all active vertices
are assigned a color which is the same as their vertex
identifier and placed into a frontier queue Q. The adjacencies
of all vertices in Q are inspected in parallel, and we check
to see if an adjacency’s color is lower than the color of v,
the current vertex. If it is, the color is passed to the child,
and both the parent and child are placed in the thread’s next
level queue and globally marked as such.

We place the parent in the queue to avoid explicit locking.
It is possible that two parents will have higher colors than
a shared child, creating a race condition. Both parents will
once again examine their children in the next iteration to
make sure that either the color that was given by them,
or a higher one, has been placed. Additionally, since only
a higher color can be assigned, we can ignore the race
condition created if a parent has their own color overwritten
before they assign their previous one to the child.

We also tried to avoid locks by trying a bottom-up
scheme: having children look at their parents’ and own color
and take the largest, avoiding the race condition entirely.
However, this is much slower in practice, because either
all vertices need to be examined at each iteration, or the
out vertices of the child need to be examined to create the



Algorithm 4 Pseudocode for MS-Coloring
1: for all v ∈ V do
2: Color(v)← v
3: Add v to Q
4: V isited(v)← false

5: while Q 6= ∅ do
6: for all v ∈ Q do in parallel on thread t
7: for 〈v, u〉 ∈ E(V ) do
8: if Color(v) > Color(u) then
9: Color(u)← Color(v)

10: if V isited(u) = false then
11: V isited(u)← true
12: Add u to Qt

13: if any u changed color then
14: if V isited(v) = false then
15: V isited(v)← true
16: Add v to Qt

17: for all v ∈ Qt do in parallel on thread t
18: V isited(v)← false

19: Barrier synchronization
20: Q← ∪tQt . Master thread performs merge

queue, effectively doubling the amount of memory transfers
for each iteration.

D. Serial Step

We use the recursive Tarjan’s algorithm for the serial step.
Previous work has demonstrated little difference in runtime
between recursive and non-recursive implementations [23].
Additionally, Tarjan’s runtime should ideally be within a
small factor of the runtime of a plain DFS, and our imple-
mentation runs within a factor of 1.65× on average across
our test graphs in Table I.

We experimentally determined that a cutoff of about
100,000 remaining vertices is a relatively good heuristic for
switching to the serial algorithm, although this is hardware-
specific. Some graphs benefit from running coloring all
the way to completion, while some others would benefit
more from switching to serial sooner. However, determining
this cutoff without prior knowledge of the graph may be
quite difficult. The cutoff threshold can be set based on the
number of steps needed to fully color the graph, and we will
investigate this in future work.

E. Connected Components and Weakly Connected Compo-
nents

Our Multistep method can be easily extended to detect
weakly connected components in directed graphs, and con-
nected components in undirected graphs. We initially deter-
mine the massive (weakly) connected component through a
single parallel BFS from the pivot (instead of two in case
of SCC), and then subsequently perform coloring on the
remaining vertices.

F. Biconnected Components

We now introduce a new parallel approach for BiCC
decomposition by identifying articulation vertices in the
graph. An articulation vertex u can be identified by the fact
that it has at least one child vertex that does not have a
simple path in G(V \ {u}, E(V \ {u})) to another vertex
with the same BFS level as u. A simple proof is as follows:
if there was some path from the child vertex to another
vertex on the same level as its parent, this other vertex and
the parent would have to share one common ancestor at
a lower level up the BFS tree, which would by definition
imply that all edges connecting these vertices are in the same
biconnected component.

Algorithm 5 BFS-based algorithm to identify articulation
points in BiCC decomposition.

1: procedure MULTISTEP-BICC(G(V, E))
2: for all v ∈ V do Art(v)← false

3: Select a root vertex s
4: Determine P and Levels from BFS(G, s)
5: for all u( 6= s) ∈ G in parallel do
6: if Art(v) 6= true then
7: for all 〈u, v〉 ∈ E(V ) and P [v] = u do
8: ml← BFS-ML(G(V \ {u}, E(V \ {u})), v)
9: if ml = Levels[u] then

10: Art(u)← true
11: break
12: Check if s is an articulation point

The pseudocode for our algorithm is listed in Algorithm 5
and relies purely on multiple BFSes. We first perform a BFS
from a source vertex s and track the BFS tree by maintaining
parents of visited vertices and levels of each vertex from the
source. Our goal is to examine every vertex u ∈ G to check
if it is an articulation vertex. We take every child that u has,
as indicated by the BFS tree, and run a new search from it
(called BFS-ML in Algorithm 5) on the graph induced by
V \ {u}. If we are not able to identify any vertex during
that search which is on the same level as u, then we can
mark u as an articulation vertex. This algorithm is efficiently
parallelized across all u ∈ G.

Although the vast number of searches in the inner loops
may seem like a lot of work, it is minimized by the fact
that only a very small fraction of vertices actually have any
children in the BFS tree for real-world graphs. Most vertices
are leaf nodes in the BFS tree. Additionally, ruling out a
vertex which does have a child is quite fast, since a vertex
with a higher level is typically encountered after only one
or two frontier expansions in BFS-ML, and we do not need
to fully execute the entire BFS in BFS-ML before we return
ml.

To explicitly check whether the root of the BFS tree is
an articulation vertex or not, we need to examine whether
one of its children can reach all of the others. This can be
a costly procedure. However, it is also easily mitigated. For



almost all real-world graphs, there are vertices with a degree
of one. A vertex that is the sole neighbor of one of these
vertices is then easily identified as an articulation point. All
we then need to do is begin our BFS traversal from a known
articulation point so we are not required to explicitly check
if it is one. Another option is simply to rerun a new BFS
from scratch using new roots and only check our original
roots for being articulation points. Because the initial parallel
BFS search is the fastest part of the procedure, this can be
a valid option as well.

V. EXPERIMENTAL SETUP

Experiments were performed on Compton, a dual-socket
system with 64 GB main memory and Intel Xeon E5-2670
(Sandy Bridge) CPUs at 2.60 GHz, each having 20 MB last-
level cache. Compton was running RHEL 6.1 and all pro-
grams were compiled with the Intel C++ compiler, version
13.1.2. The -03 optimization parameter was used with the
-openmp flag. The environment variable KMP_AFFINITY
was used to control thread locality when needed.

For comparison to recent work, we also run SCC code
provided by Hong et al. [18], [12] and CC code from
the Ligra framework, released by Shun and Blelloch [13].
We used the same compilation procedures and runtime
environment when possible, with the exception of using Cilk
Plus for parallelizing Ligra code instead of OpenMP. This
was observed to be faster in practice.

Several large real-world and synthetic graphs were used
in the course of this work (see Table I). The first twelve
graphs listed in the table are undirected while the rest
are directed. These graphs were retrieved from a number
of sources, namely the SNAP database [24], the Koblenz
Network Collection [25], the 10th DIMACS Implementation
Challenge [26], and the University of Florida Sparse Matrix
Collection [27]. The R-MAT [28] and G(n, p) networks
were generated with the GTGraph [29] suite using the
default parameters.

Friendster, LiveJournal, Orkut, and Twitter are crawls of
social networks [30], [31], [32]. Italy Web is a web crawl
of the .it domain [33]. WikiLinks is the cross-link network
between articles on Wikipedia [25]. XyceTest is a Sandia
National Labs electrical simulation network and Cube is
3D coupled consolidation problem of a cube discretized
with tetrahedral finite elements. R-MAT 20/22/24 are R-
MAT graphs of scale 20, 22, and 24, respectively. RDF Data
is constructed from RDF triples in a data.gov data set
(# 1527), and RDF linkedct is a semantic data set from
clinical trials. Note that these RDF datasets contain no non-
trivial SCCs because they are mostly bipartite and acyclic.
WCC detection is a useful preprocessing step for partitioning
these data sets. The Kron 21 graph is a SCALE 21 graph
created from the Kronecker generator of the Graph500
benchmark [34], [35]. Finally, GNP 1 and GNP 10 refer

deg (S)CCsNetwork n m
avg max

D̃
count max

Twitter 53M 2000M 37 780K 19 12M 41M
ItWeb 41M 1200M 28 10K 830 30M 6.8M

WikiLinks 26M 600M 23 39K 170 6.6M 19M
LiveJournal 4.8M 69M 14 20K 18 970K 3.8M
XyceTest 1.9M 8.3M 4.2 246 93 400K 1.5M

RDF Data 1.9M 130M 70 10K 7 1.9M 1
RDF linkedct 15M 34M 2.3 72K 13 15M 1

R-MAT 20 0.56M 8.4M 15 24K 9 210K 360K
R-MAT 22 2.1M 34M 16 60K 9 790K 1.3M
R-MAT 24 7.7M 130M 17 150K 9 3.0M 4.7M

GNP 1 10M 200M 20 49 7 1 10M
GNP 10 10M 200M 20 49 7 10 5.0M

Friendster 66M 1800M 53 5.2K 34 70 66M
Orkut 3.1M 117M 76 33K 11 1 3.1M
Cube 2.1M 62M 56 69 157 47K 2.1M

Kron 21 1.5M 91M 118 213K 8 94 1.5M

Table I
INFORMATION ABOUT TEST NETWORKS. COLUMNS ARE # VERTICES, #
EDGES, AVERAGE AND MAX. DEGREE, APPROXIMATE DIAMETER, # OF

(S)CCS, AND SIZE OF THE LARGEST (S)CC.

to Erdős-Rényi random graphs with 1 and 10 large SCCs,
respectively.

These graphs were selected to represent a wide mix of
graph sizes and topologies. The number of SCCs/CCs and
max SCC/CC both play an important role in the general
performance of decomposition algorithms, while the average
degree and graph diameter can have a large effect on the BFS
subroutine that is necessarily used for these algorithms.

VI. EXPERIMENTAL RESULTS

In this section, we compare our Multistep SCC algorithm
execution time and scaling to our implementations of the
baseline FW-BW and coloring algorithms, as well as the
Hong et al. SCC algorithm. Furthermore, we compare our
Multistep CC algorithm to baseline coloring and the coloring
approach implemented in the Ligra graph processing frame-
work. We then compare our weakly connected components
algorithm to the coloring-based parallel approach, and our
biconnected components algorithm to the optimal serial
algorithm. We justify algorithmic choices and measure their
influence on parallel performance for different graphs.

A. Strongly Connected Component Decomposition

Table II gives the absolute execution time on 16 cores
for baseline coloring, FW-BW with complete trimming,
Multistep with simple trimming and the Hong et al. Method
2 on several directed graphs. The fastest method for each
network in highlighted in bold. We also give the speedup
achieved by Multistep over the serial approach and the
fastest approach for that network.



Execution time (s) MS SpeedupNetwork
Serial MS Hong FW-BW Color Serial All

Twitter 33.0 1.60 2.6 120.00 40.0 20.0× 1.6×
ItWeb 6.7 1.80 16.0 1400.00 7.1 3.6× 3.6×

WikiLinks 4.9 0.90 0.98 270.00 9.3 5.5× 1.1×
LiveJournal 1.3 0.11 0.20 4.10 1.6 12.0× 1.9×
XyceTest 0.2 0.04 0.08 0.07 0.37 4.7× 1.9×

R-MAT 24 2.4 0.25 0.25 0.62 2.4 9.5× 1.0×
GNP 1 7.2 0.15 0.30 1.60 6.5 47.0× 1.9×
GNP 10 5.5 2.90 5.10 1.20 3.5 1.9× 0.6×

Table II
COMPARISON OF SERIAL TARJAN’S ALGORITHM WITH PARALLEL

MULTISTEP, HONG ET AL. , NAÏVE FW-BW, AND COLORING, RUNNING
ON 16 CORES.

Both Multistep and Hong et al. are considerably faster
than the parallel FW-BW and Coloring approaches. The per-
formance of the baseline approaches is also very dependent
on graph structure. The graphs with a large proportion of
their vertices in the massive SCC, such as the G(n, p), R-
MAT, and Xyce graphs, show very poor performance with
Coloring, due to the long time needed to fully propagate
the colors. Further, networks with a large absolute number
of SCCs show poor performance with FW-BW, due to
the recursive and tasking overhead. FW-BW demonstrates
the strongest performance on GNP 10, as this graph was
designed to result in very even partitions for each recursive
call.
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Figure 1. Finding SCCs: Parallel scaling of Multistep and Hong et al.
relative to Tarjan’s serial algorithm.

Although the Hong et al. method attempts to minimize
the impact of the recursive and tasking overhead with a
partitioning step based on WCCs and a smart tasking queue,
on graphs with a very high number of small but non-trivial
SCCs, such as ItWeb, the overhead inherent in the FW-
BW algorithm can still dominate the running time. It can
also be noted that our coloring step will, at each iteration,
partition the graph into at least as many discrete partitions
that their WCC decomposition will. Overall, for 16-core
runs, Multistep gives a geometric mean speedup of 1.92×
over Hong et al. on these graphs.
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Figure 2. Top: Proportion of time spent in each subroutine of the Multistep
algorithm. Bottom: Comparing possible trimming procedures (S: Simple,
N: None, C: Complete) in Multistep for several networks.

Figure 1 gives the scaling of Multistep and Hong et al.
for parallel runs, relative to the serial Tarjan implementation.
Both Multistep and Hong et al. demonstrate good scaling on
most test instances, and the overall speedup on 16 cores is
dependent on the single-threaded performance. The Hong et
al. running time on ItWeb is greatly affected by the number
of SCCs. Additionally, on ItWeb, there are long strings of
trivial and non-trivial SCCs, which results in a relatively
long time spent in the multiple trimming iterations that are
in the Hong et al. approach, as well as longer time spent in
their WCC decomposition step.

Figure 2 gives the breakdown for each stage of Multistep
as a proportion of total parallel running time. We observe
that the execution time proportion for the FW-BW and
coloring steps is mostly dependent on graph structure, with
coloring taking a larger proportion of time for graphs for
graphs with a higher diameter (e.g., ItWeb vs Twitter). In
case of GNP 10, most of the time is spent in the serial step
due to the fixed cutoff employed in our case.



Figure 2 also gives further justification for our choice
of doing simple trimming versus complete trimming with
Multistep. In general, the time spent doing iterative trimming
does not sufficiently decrease the execution times of the FW-
BW or coloring steps for the overall running time to be
lower. As is shown on LiveJournal and Twitter, doing no
trimming at all can end up being faster than fully trimming
the graph with our Multistep approach. ItWeb shows that no
trimming can even be faster than simple trimming, although
this appears to be an exception. While running Multistep
across a wide variety of graphs, fully trimming the graph
never improved execution times versus only doing a single
iteration. However, complete trimming is important for naı̈ve
FW-BW.
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Figure 3. Approximate weak scaling of Multistep compared to coloring
and naı̈ve FW-BW on R-MAT graphs.

Figure 3 gives approximate weak scaling for three R-MAT
test graphs (R-MAT 20/22/24). The test graphs’ number of
vertices, edges, number of SCCs, and size of largest SCC all
increase by approximately a factor of 4×. From Figure 3,
we see that Multistep scales better than simple FW-BW or
Coloring, and Hong et al. performance is comparable to
Multistep for this instance.

B. Connected and Weakly Connected Component Decompo-
sition
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Figure 4. Finding CCs: Parallel scaling of Multistep CC, Ligra, and MS-
Coloring relative to the serial DFS approach.

We also compare our approach to Ligra for the problem of
determining connected components, for the four undirected
networks in our collection. Ligra implements a parallel
coloring-based algorithm. We show scaling relative to a
serial DFS. From Figure 4, we observe that Multistep greatly
outperforms the other approaches on all tested graphs.

Figure 5 gives the speedup of the Multistep method and
our coloring approach for determining the weakly connected
components of several graphs. We give speedup relative
to the serial DFS approach. Once again, we observe good
scaling of Multistep relative to both Coloring and the serial
code.
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Figure 5. Finding WCCs: Comparison of WCC-Multistep and Coloring
scaling relative to the serial DFS approach.

C. Biconnected Component Decomposition
Figure 6 gives the parallel scaling of our new BFS-based

BiCC articulation point detection algorithm compared to
the serial Hopcroft-Tarjan approach. On the three largest
non-fully biconnected graphs, we achieve up to an 8×
speedup and good scaling across 16 cores. However, our
approach does not scale well with the fully-biconnected
Cube graph. This is likely due to its regular and simple
structure, which limit the inner-loop searches to a single
iteration on most instances. While the approach is faster than
the serial algorithm on a single thread, there is no parallel
speedup.
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Figure 6. Finding BiCCs: Parallel scaling of BiCC-BFS relative to the
serial approach.

VII. CONCLUSION

We present the new Multistep method for SCC detection,
and its extensions for solving related problems (CC, WCC,
and BiCC). We demonstrate significant speedup over the
current state-of-the-art methods on a multicore server, and
present scaling results on a wide variety of networks. The
Multistep method uses optimized BFS and coloring routines
and several heuristics to achieve this performance. In future
work, we will study Multistep performance optimizations for
manycore systems and for processing larger graph instances.
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