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Preface

The Center for Computing Research (CCR) at Sandia National Laboratories organizes an
active and productive summer program each year, in coordination with the Computer Science
Research Institute (CSRI) and Cyber Engineering Research Institute (CERI). CERI focuses
on open, exploratory research in cyber security in partnership with academia, industry, and
government, and provides collaborators an accessible portal to Sandia’s cybersecurity experts
and facilities. Moreover, CERI provides an environment for visionary, threat-informed
research on national cyber challenges. CSRI brings university faculty and students to Sandia
National Laboratories for focused collaborative research on DOE computer and computational
science problems. CSRI provides a mechanism by which university researchers learn about
problems in computer and computational science at DOE Laboratories. Participants conduct
leading–edge research, interact with scientists and engineers at the laboratories, and help
transfer the results of their research to programs at the labs.

Within the CCR Summer Program students from around the country conduct internships
at Sandia. Each student is paired with a Sandia staff member who serves as technical advisor
and mentor. The goals of the summer program are to expose the students to research in the
mathematical and computer sciences at Sandia and to conduct a meaningful and impactful
summer research project with their Sandia mentor. Every effort is made to align summer
projects with the student’s research objectives and all work is coordinated with the ongoing
research activities of the Sandia mentor in alignment with Sandia technical thrusts.

The CCR Summer Program consists of two key components, the CCR Summer Seminar
Series and the CCR Summer Proceedings.

All summer students and their mentors are encouraged to contribute a technical article
to the CCR Summer Proceedings. In many cases, the CCR Proceedings are the first
opportunity that students have to write a research article. Not only do these proceedings
serve to document the research conducted during the summer but, as part of the research
training goals of Sandia, it is the intent that these articles serve as precursors to or first
drafts of articles that could be submitted to peer-reviewed journals. As such, each article has
been reviewed by a Sandia staff member knowledgeable in that technical area with feedback
provided to the authors. The contribution for the 2018 CCR Proceedings have been organized
into the following broad technical focus areas—Software and High Performance Computing,
Computational Mathematics, Applications We would like to thank all participants who have
contributed to the outstanding technical accomplishments of CSRI and CERI in 2018. The
success of the program hinged on the hard work of enthusiastic students and their dedicated
Sandia technical staff mentors. We would also like to thank those who reviewed articles for
this proceedings; their feedback is an important part of the research training process and
has significantly improved the quality of the reports.

An important educational component of the summer program is the CCR Summer
Seminar Series. We would like to thank the staff who gave presentations at the 2018
Series: Tim Wildey (1441) on “Combining Measure Theory and Bayes’ Rule to Solve
a Stochastic Inverse Problem”, Allen Robinson (1443) on “Z, Z-Next and Multiphysics
modeling: Opportunities in plasma physics modeling”, Reed Milewicz (1446) on “Software
Engineering for Science: Challenges, Opportunities, and Research Perspectives”, Bill Rider
(1446) on “The History of Computational Fluid Dynamics, Part I: CFD Before CFD”, Marta
D’Elia (1441) on “Nonlocal Models in Computational Science and Engineering: Challenges
and Applications”, Ken Moreland (1461) on “Building Better Plots”, Steve Plimpton (1444)
on “Particles, HPC, and the Ukulele Syndrome”, Luke Shulenburger (1641) on “Towards
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Ab initio Materials Predictions with Known Accuracy”, and Andrew Baczewski (1425) on
“Light-matter interaction in the extremes of time, intensity, and energy”.

Finally, the CCR summer program would not be possible without the administrative
support of Christine Trujillo, Steven Garcia, Celia Montoya, Ashley Avallone, Sandy Portlock,
John Perseo, Emily Lujan, and especially Lorena Martinez.

Attila Cangi
Michael L. Parks

December 6, 2018
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Software and High Performance Computing

The articles in this section discuss the implementation of high performance computing (HPC)
and productivity software. In many cases, performance improvements and portability are
demonstrated for many-core architectures, such as conventional multicore CPUs, the Intel
Many Integrated Core coprocessor (MIC), and graphical processing units (GPU).

Sahasrabudhe, Phipps, and Rajamanickam address code portability across wide range
of architectures by extending previous work on leveraging single instruction multiple data
(SIMD) type primitive with overloaded operators. They provide a GPU support for SIMD
type primitives and compare performance characteristics on different types of kernels from
real life scientific applications such as general dense matrix-matrix multiplication and char
oxidation kernel of Uintah.

Hutter and Rajamanickam develop the TCKK software package, a library for performance-
portable batched tensor contractions in highly parallel MIC architectures and GPUs. Its
applications include finite element codes and convolutional neural network kernels. They
present its interface and assess performance results on the Intel Knights Landing architecture.

Yasar, Rajamanickam, Wolf, Berry, and Çatalyürek improve upon the general sparse
matrix-matrix multiplication (SpGEMM) algorithm in the Kokkos kernels library which is
triangle counting algorithm for graph analysis. They demonstrate significant speed-ups in
runtime compared to the previous version and to traditional graph based formulations.

Strack, Luchini, Elliott, and Siefert discuss methods to reduce the amount of runtime
memory in the ALEGRA shock and multiphysics computational simulation code for problems
beyond 232 topological entities in a finite element mesh. They realize this with new compiler
and linker options, as well as by transforming the code base from 32-bit to 64-bit using a
new C++ class to reference its finite elements.

Yenpure and Moreland present a fast and efficient approach to merging three-dimensional
points in space based on data parallel techniques in shared memory environments. They
demonstrate the scalability and efficiency of their approach by comparing against widely used
scientific visualization libraries on parallel hardware such as many-core CPUs and NVIDIA
GPUs.

Morris and Curry address the problem of disk failure prediction using machine learning.
They train their machine learning model on raw S.M.A.R.T. attributes from a dataset over
a vast amount of disks and models from various manufacturers. Performing with a very
low false positive rate, their model is a practical tool for anticipating disk failure in real
situations.

Chen, Lofstead, and Mitchell develop the stitch library, an efficient I/O API and database
format that leverages novel data storage and I/O methods to accelerate multiscale modeling
of manufacturing materials. They achieve comparable scaling performance and increased
data storage flexibility to other I/O methods. They demonstrate this by applying their stitch
library to kinetic Monte Carlo simulations of additive manufacturing using spparks.

A. Cangi
M. L. Parks

December 6, 2018
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PERFORMANCE PORTABLE SIMD SCALAR TYPE FOR EFFECTIVE
VECTORIZATION ACROSS HETEROGENEOUS ARCHITECTURE

DAMODAR SAHASRABUDHE∗, ERIC PHIPPS† , AND SIVASANKARAN RAJAMANICKAM‡

Abstract. To achieve exascale computing, new and upcoming architectures of CPUs are getting equipped
with more and more capable vector units along with longer vector lengths. Hence effectively using these
vector units becomes a key. At the same time, the architectures are evolving rapidly. Heterogeneous and/or
many core architectures are being deployed in largest supercomputers today. Thus the code portability
across wide range of architectures has become all the necessity of the time.

This study extends the previous work on leveraging “SIMD” type primitive with overloaded operators
which is allows users to effectively use intrinsics without compromising portability. This work provides a GPU
support for “SIMD” type primitives which was not present so far and compares performance characteristics
on different types of kernels from real life scientific applications such as GEMM and char oxidation kernel
of Uintah. The ultimate goal is to add this capability into kokkos so that it can be easily used by wider
scientific community.

1. Introduction. With efforts for exascale computing, the usage of vector units is
becoming more and more important. Each generation of processors is adding new capabilities
in Vector Processing Units (VPUs) coupled with increase in vector length and memory
bandwidth that can support massive data movement. Intel’s KNL supports vector length of
512 bits, while upcoming ARM processors are supposed to have vector length of 2048 bits.

Thus efficiently utilizing these vector units has become a key to extract the performance
from new architectures. However using SIMD on data parallel tasks is not as easy as it
would seem. Traditionally compilers fail to auto vectorize the code if it has complex control
flow such as nested if conditions or nested loops or break statements. The alternative
to efficiently utilize SIMD capabilities is to use architecture dependent vector intrinsics.
Although intrinsics can deliver near optimal performance, it makes code non-portable across
different architectures. Few studies have been carried out to remedy the problem using a
“SIMD” as a primitive data type and providing operator overloads to carry on arithmetic
operations on “SIMD” data [1,3, 5, 6]. The basic idea in all the works is same - Declare a
primitive (say a class or a structure) containing an array or a intrinsic SIMD datatype. Thus
each instance of the primitive contains elements equal to vector length. Each of them also
contains overloaded operators which operate on simd data in primitive. These overloaded
operators process primitive elements using platform supported intrinsics. For each new
platform new set of intrinsic back end and primitive data type created. Thus when users
use a primitive or map an array to a primitive, each instance of it can execute operation on
elements of primitive in SIMD fashion.

However none of these implementations have support for GPUs at the moment. This
restricts use of these “SIMD” premitives in portable implementations such as those using
Kokkos. Kokkos is a performance portable library designed to provide consistent front end
interfaces to users while Kokkos backend is adapted as per the architectures. Further Kokkos
provides different scheduling policies to extract maximum performance out of underlying
architecture achieving performance portability. Kokkos kernels has it’s own version of this
“SIMD” data type, but without support for GPUs [2].

Pertaining to different nature of kokkos-kernel use case and stokhos [5] use case, both
have different implementation of “SIMD” type. This works aims to provide GPU support
for SIMD primitive and also create a generic SIMD primitive with flexible vector length

∗University of Utah, damodars@sci.utah.edu
†Sandia National Laboratories, etphipp@sandia.gov
‡Sandia National Laboratories, srajama@sandia.gov
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independent of physical vector length provided by underlying hardware. Further it desires to
support both uses cases of kokkos kernels and stokhos. The ultimate goal of the study is to
include this “portable SIMD primitive” into kokkos and release it for all the kokkos users
allowing larger scientific community to effectively take advantage of vector units.

2. SIMD primitive for CPU. Following pseudo code shows simplified version of
existing SIMD primitive in kokkos-kernel for KNL:

template <typename T> struct Vector;

//specialization for double

inline template<> struct Vector<double> {

__m512d _data; //KNL 512 bits datatype for double

//different constructors to initialize _data

.

.

//overloaded operators

Vector& operator= (const Vector& x) {

_data = x._data;

return *this;

}

};

//overloaded operators

inline Vector operator+ (const Vector& a, const Vector& b) {

return Vector(_mm512_add_pd(a._data, b._data));

}

//overloaded math library functions

inline Vector sqrt(const Vector& x) {

return Vector(_mm512_sqrt_pd(x._data));

}

Listing 1: Simplified SIMD primitive

“Struct Vector” is a structure template used for SIMD primitive data type. Users can
pass the required datatype as a template argument. “template¡¿ struct Vector¡double¿” shows
the specialization for data type double. Each datatype is implemented as a specialization.
For double, m512d is used as underlying datatype, which is a simd data type provided by
intel with length of 512 bits. The sturcture provides different constructors (not shown in the
code) which can be used to initialize class with variety of different ways such as from a scalar
variable (double), from another simd type (i.e. Vector¡double¿) or directly from m512d.

Operators = and + a are overloadeded to accept another Vector as an input and return
appropriate Vector result depending upon operation. It should be noted that both the
operations are performed using vector intrinsics. As the code is inlined by compilers, it
appears (and performs) as if written using intrinsics. Similarly math functions are also
overloaded which in turn call in built functions operating on intrinsics.

Similar implementations are present in stokhos and stk packages.

3. Use Cases. The portable implementation of SIMD type tries to achieve three
important uses case:
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• Kokkos kernels: The general dense matrix-matrix multiplication (Gemm) and
triangular solve (TRSM) kernels implementations within kokkos kernels operate
on multiple matrices. It rearranges data in “compact batch layout” where matrix
dimension is the smallest dimension i.e. elements are placed as (row, column, matrix)
rather than traditional (matrix, row, column) [2]. Thus elements of same cell given
by same (row, column) of all matrices are placed adjacently in the memory then
comes (row, col+1) and so on. Hence matrix dimension is used as simd dimension. In
case of KNL operating on double precision floating point data, each simd operation
at a time processes 8 elements in SIMD using SIMD primitives, processing 8 matrices
simultaneously. Thus users iterate over matrix loop for “number of matrices / 8”
iterations only.

• Stokhos: Stokos implementation of SIMD primitive is similar except it takes “Vector
Length” as an additional template parameter. Users pass number of matrices as
Vector length assuming each SIMD element contains all the elements across entire
matrix dimension. Thus any operation process all the elements in the matrix
dimension by internally iterating over “number of matrices / 8” iterations. This
simplifies the user code as it makes entire matrix dimension to disappear from users’
context. Users simply need to perform operations as if operations are done on scalar
type without bothering about matrices.

• Char oxidation in Uintah [4]: Small gemm and trsm kernels in kokkos-kernels are
straight forward and quite easy to tune in such a way that compiler can auto
vectorize. To evaluate real potential of SIMD type, it is necessary to test it on
real life large and complex scientific application kernel which has enough control
flow which certainly prevents compiler auto-vectorization. Uintah provides such an
opportunity. Uintah is a massively parallel multi task run time system used to solve
PDEs in order to simulate complex physics problems such as combustion. Uintah is
being used for simulation of a coal boiler under DoE’s PSAAP II project and has
been successfully scaled across 256k, 512k cores on MIRA and Titan respectively.
The Arches component of Uintah used to simulate combustion has a kernel which
simulates char oxidation. The kernel iterates over each cell of a 3 dimensional
patch. The kernel has around 300 lines of codes. It has computations with if -
else conditions, multiple for loops over “number of reactions” (which account for
different reactions taking place during the oxidation process) followed by a Newton-
Raphson solve to find out rhl. (need to fin out what is rhl) The for loop over
Newton-Raphson solver iterations contains few more “reactions” loops and also if
and break statements to check the residual and exit the loop. Finally the kernel
computes six different quantities for every cell - char mass rate, char rate, gas char
rate, particle temperature, particle size and surface rate. This computationally
intensive kernel presents a highly data parallel task. However complex control flow
in it prevents the auto vectorization by the compiler and forms an ideal candidate
to try out effectiveness of SIMD primitives.

4. Portable SIMD primitive. As mentioned in section 1, existing SIMD primitives
do not do not support execution on GPU and thus can not be used in portable codes such
as kokkos kernels.

The GPU (more specifically CUDA) support for SIMD primitives is added as part of this
work. CUDA inherently executes the code in SIMD fashion. Hence adding CUDA support
for SIMD primitives will not give any added performance boost on GPU, however it will
make primitives truly portable by allowing heterogeneous execution at no additional cost.

Challenges: The main challenge in making SIMD primitive portable is a type of
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temporary SIMD variables declared inside kernel. Consider following pseudo code for matrix
multiplication using kokkos parallel for assuming row major order:

//assuming vector length 8 for KNL

#define VEC_LEN 8

//Vector<double> is a SIMD primitive for double

Vector<double> A[N][N][M/VEC_LEN], B[N][N][M/VEC_LEN], C[N][N][M/VEC_LEN];

//populate A and B.

Kokkos::parallel_for(N*N, [&](int id) { //parall_for across rows and columns

int i = id/N, j=id%N; //row and column ids.

for(int m=0; m<M/VEC_LEN; m++) //iterate over all matrices

{

Vector<double> temp;

for(int k=0; k<N; k++)

temp += A[i][k][m] * B[k][j][m];

C[i][j][m] = temp;

}

});

Listing 2: Return type challenge

The main reason for using kokkos parallel for is to make it portable and of course
TO extract parallelism. A, B and C are arrays of M matrices each of size N x N. These are
declared using SIMD primitive - Vector¡double¿ and are laid out with matrix (M) dimension
as the smallest dimension so that vectorization can take place across matrices. m th dimension
is divided by VEC LEN to get M/VEC LEN chunks, each containing VEC LEN elements. The
loop will do the standard multiplication of ’i’th row of A and ’j’th column of B for ’m’th
chunk of matrices and accumulate it’s result in temp. Note that each element returned by A,
B and C is SIMD element and contains 8 doubles. Same is true for temp.

Now when this code is ported to cpu, by kokkos, ’temp’ and matrix element both have
same length of VEC LEN. The code works smoothly because the declaration of ’temp’ is
outside simd context and hence each element of temp gets mapped to the vector lane of
VPU. However when the same code is ported to GPU, entire code is executed in the SIMD
context due to execution model of CUDA. Thus each simd thread declares ’temp’ of size
VEC LEN. Although each thread operates on it’s own simd lane of temp, thereby making code
work technically, rest of the elements of temp always remain unused and waste huge amount
of memory.

The second challenge is the return type of operation A[i][k][m] * B[k][j][m]. CPU
intrinsics return the intrinsic packed element. However each GPU thread acts as a vector
lane and returns a scalar element i.e. double. The responsibility to collect data from
each thread and map to correct element in SIMD primitive lies on the developer. Hence
CUDA implementation of SIMD primitive needs combinations of operands - (Vector, Vector),
(Vector, Scalar) and (Scalar, Vector).

Implementation: Several options were tried to address the challenges and the fastest
was picked up for testing GEMM and Uintah kernels. Few key approaches discussed below
along with performance results for dummy operations ( such as A(index) /= (A(index) +
((B(index) + A(index)) + B(index))) + (B(index) + B(index)) ) on one dimensional arrays
repeated for several thousand times show the evolution of the final implementation.

• Dummy SIMD Type: In this approach, CUDA SIMD type was written with only
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Approach Execution time (s)
Dummy SIMD Type 0.28
Different Kernel type 0.28

Variable Vector Length, EVL=1 0.28
Variable Vector Length, EVL=2 0.4

Using Shared Memory Pool, EVL=2 7

*EVL: Elements per Vector Lane

Table 4.1: Performance results for different approaches on K80

one element rather than using an array of VEC LEN elements. This solved all the
challenges. Because each SIMD element contains only one data element, it exactly
maps to value returned by a single CUDA thread. Further declaring it inside SIMD
context also works well as it does not waste extra memory space as explained earlier.
Further this approached gave the best performance as each element returned a single
double, it could well be stored in registers rather than in memory. However problem
arises when SIMD primitive is included as element of another class / structure. It
occupies space of only one scalar element, where semantics would expect it to occupy
space of VEC LEN thus disturbing all the offset calculations.

• Different Kernel type: To address the problem posed by Dummy SIMD Type, a
new type “SIMD Kernel Type” was introduced. SIMD primitive is set to VEC LEN

always and is used to declare variables outside kernel i.e. outside simd context. New
SIMD Kernel Type to is utilized to declare variables inside kernel, if needed. For
CPU, SIMD Kernel type is same as SIMD primitive. For CUDA, SIMD Kernel
Type contains only one scalar element. The approach needs additional operators
overloaded as mentioned in the second challenge. Further each thread access it’s
own elements using threadIdx.x as an index into the data of SIMD primitive. SIMD
Kernel Type does not need index because it contains only one scalar element and
each thread has it’s own copy of it. This approach performs equally good as Dummy
SIMD Type as shown in the table 4.1.

• Variable Vector Length: Stokhos use case mentioned earlier needs the vector
length to be platform independent. To support it, new template parameter “Vector
length” is added to “Different Kernel type” approach. It is required that the
Vector Length passed should be multiple of the physical vector length of underlying
architecture. This basically assigns multiple elements per vector lane or cuda thread.
Overloaded operators loop over the SIMD primitive data for “Vector Length /
physical vector length” number of iterations. However the disadvantage is that
CUDA has to allocate memory space to return / pass multiple elements per vector
lane. This memory would naturally be allocated from the global memory rather
than registers as in case of previous two approaches. As a result this approach
performs slower unless Vector Length is set same as physical vector length where
this approach become same as “Different Kernel Type”

• Using Shared Memory Pool: To rectify slowdown caused by multiple elements
per vector lane in “Variable Vector Length” approach, the return type was explicitly
allocated from shared memory pool with goal to avoid long latency global memory
access. To avoid bank conflicts, each element within assigned to one CUDA thread
was allocated to space offseted by VEC LEN. This allowed all elements of CUDA
thread to be placed in a single memory bank and each thread in a warp can access
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it’s own element with a single load / store cycle. However this method did not
perform as expected due to overload of maintaining pool. This overhead increases
exponentially as number of operations increase in spite of reusing allocated shared
memory chunk. Table 4.1 shows the impact of the pooling overhead.

The first three entries in table 4.1 represent the same underlying structure - one scalar
element per vector lane which is passed / returned using registers. All of them perform
equally well. When elements per vector lane are increased to two, performance degrades from
0.28 to 0.4 seconds. The version using shared memory pool performed worst taking 7 seconds.
Hence out of all the variants, “Variable Vector Length” was chosen for the implementation
which is most flexible and delivers best performance when used with one element per vector
lane.

5. Experiments. To test the implementation of performance portable SIMD primitive,
two different types of kernels were used.

5.1. DGEMM. The performance portable kernel to carry out dense general matrix
multiplication over array of M matrices was written using Kokkos. Kokkos TeamPolicy was
used to achieve parallelism at multiple levels. Matrices are split equally across teams and each
thread team works on it’s own chunk. Next rows and columns are split across threads within
a team as shown in pseudo code in section 4. Further SIMD primitive is spanned across
matrix dimension. Thus each CPU thread (or a CUDA Warp) carries out each operation
on VEC LEN elements of VEC LEN matrices in simd fashion. Few more experiments were
conducted using Kokkos RangePolicy instead of team policy. Standard tiling optimizations
with tile sizes 3 x 3, 4 x 4 and 5 x 5 were introduced to extract spacial and temporal locality
among matrix elements. Experiments were carried out using 4 different matrix size - 3 x 3, 5
x 5, 10 x 10 and 15 x 15. Each time 16,384 number of matrices were evaluated.

The portable code was successfully compiled and run on Nvidia Pascal 100 and Volta
with Cuda back end and on intel’s KNL using OpenMP back end for kokkos without any
code changes. These results are then compared against results of GEMM kerenls present in
Kokkos-Kernels package. As of now kokkos-kernels has two separate kernels for CPU and
GPU. Those respective kernels are used for testing.

Different combinations of number of threads (and teams in case of team policy) were
tried and the best timing was picked.

5.2. Uintah Kernel. Transforming Uintah [4] kernel was more challenging because of
complexities mentioned earlier in use cases. The main steps of vectorization using SIMD
primitive are listed below:

• Cast Uintah data structures: The first step was to obtain raw data pointer and
reinterpret cast to array SIMD Primitives. The casted pointer is then converted
into Kokkos unmanaged view based on SIMD primitives. Further subview is taken
to offset as per patch boundaries. This subview is then embedded into KokkosView3
data structure within in Uintah. This Kokkos view is then used everywhere in the
kernel instead of existing scalar kokkos views.

• Adjust iterations and array dimension: SIMD execution is supposed to take
place across cells of a patch in x dimension. Thus number of iteration in x dimension
of paralle for and array dimensions in x dimension are both divided by VEC LEN.
As of now number of cells in x dimension are assumed to be multiple of VEC LEN

and hence explicit scalar iteraiton for remainder loop are not added.
• Replace local variable: Each local variable declared inside the kernel before

operated on a single cell and was a scalar. However with simd execution, each
iteration would process VEC LEN number of cells in parallel and hence each local
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variable needs to hold VEC LEN scalars. Hence it is replaced with “SIMD Kernel
Type”. With these 3 changes, most of the computations got aligned with simd
execution. However handling control flow was tricky part.

• for loops over Number of Reactions: The kernel computes effects of multiple
chemical reactions taking place in boiler and several arrays of length “Number of
Reactions” are declared inside kernel and are used in multiple for loops scattered all
over the kernel. To use SIMD primitive, each array was changed to SIMD primitive
type instead of scalar type. The for loop control remains unchanged. Thus each
iteration now executes for loop over number of reaction in SIMD style across patch
cells due to operators overloaded in SIMD primitive.

• Solver Iterations: The kernel solves the oxidation equation (Need to confirm
which equation) using Newton-Raphson method. Depending upon residual value
break statement comes of out iteration loop and the number of solver iteration vary
for each cell. Thus this becomes a major hurdle in SIMD execution - especially for
compiler to auto vectorize. To overcome this problem, a scalar loop separately tests
whether the equation is solved at the end of each solver iteration. As long as at least
one cell is not converged the solver loop continues. However this overwrites solutions
of those which are already converged. To fix this error a temporary SIMD variable
is used to store results as soon as solution for the cell converges. This temporary
variables remains untouched later because the scalar loop ignore the cell once it is
converged. As soon as all solutions for all cells converge, solver loop exits and values
from temporary solution variable are written back to real solution which is used in
the subsequent code. Although this technique makes the solve time of entire group
to solve time of slowest cell, it still proves faster than scalar solve of individual cells.

• If else: Typical if else computations done using intrinsics use masked intrinsics for
conditional evaluation. However it is not an option in this case as operators can not
take third parameter for mask. Declaring global variable for mask would not be such
an elegant idea. Preferred alternative was to evaluate if condition and cast it into an
integer 0 / 1 and multiply the result with this integer value. The disadvantage is it
forces calculation of if and else both, but still proved to be faster than scalar code on
KNL. Some if else used global values in conditions rather cell based variables. This
easier as control flow would remains same for entire simd and converting contents of
if - else was enough.

The experiments were carried out on intel’s KNL using two different domain sizes - 64
cubed and 128 cubed. Every time, domain was divided among 64 patches leading to two
different patch sizes - 16 cubed and 32 cubed. 64 patches were distributed among 4 ranks
each rank spawned 4 teams of threads with 4 threads per team thus assigning 64 threads
to 64 cores of KNL. Each team is assigned with multiple patches. The z dimension of each
patch is parallelized among threads within a team and each thread executes x dimension in
simd fashion.

6. Results.

6.1. GEMM Kernel. Figure 6.1 compares GFLOPS of existing GEMM kernel in
Kokkos-kernels package with new portable kernel written using kokkos and new SIMD type
primitive and run on Nvidia Pascal 100 and intel’s KNL respectively.

As expected, KNL results of SIMD primitive show similar GFLOPS to Kokkos-kernels
as Kokkos-kernels version is already vectorized and has all optimizations such as tiling.

Similarly the performance of CUDA should be remain same for CUDA version of kokkos
kernels and for kernel using SIMD type primitive, because CUDA inherently executes in SIMD
mode and SIMD scalar type does not make provide any extra advantage. The algorithm and
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Fig. 6.1: Comparison of GFLOP between Kokkos Kernels and SIMD Type

optimizations used in both are also same. However 1.7x slowdown was observed for matrix
size of 3. The performance of SIMD primitive gradually improved with matrix size and
for SIMD primitive ran 2x faster than kokkos kernels for matrix size of 15. This particular
behaviour demands further investigation. Few possible reasons are:

• Among versions, range policy version is the fastest for matrix sizes 3 and 5. On
the other hand SIMD Primitive used team policy. Possibly overhead of team is not
justified fo such a small matrix size. Need to test Range policy version of SIMD
primitive.

• Kokkos kernels spawn 1024 teams of 64 threads per team with vector length of 16
for matrix size 15. Thus number of threads spawned = 1024 x 64 x 16 = 1 million.
This possibly creates an overhead and not enough work per thread especially when
tiling is used. On the other hand SIMD Primitive version initiated only 1024 x 3 x
16 = 48k threads.

16 cubed patch 32 cubed patch
Scalar 13 100.4
Vector 2 12.76

Speedup 6.5x 7.8x

Table 6.1: Uintah’s Char Oxidation Kernel Execution time (ms) on KNL

6.2. Uintah Char Oxidation Kernel. Uintah results gave more spectacular results
on KNL than GEMM kernel. Char oxidation kernel vectorized using SIMD primitive type
showed speedups of 6.5x and 7.8x compared with existing scalar version for patch size 16
cubed and 32 cubed respectively as shown in table 6.1. It is worthwhile to note vectorization
became possible due to SIMD primitive type where auto vectorization by compiler was not
possible earlier due to complex control flow.

7. Conclusion. The SIMD primitive type proved to be easy to use and yet very efficient
vectorization technique as was done in previous studies. It is especially handy when the
code has complex control flow and compiler refuses to auto vectorize giving near optimal
speedups.
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The more important aspect of this work is adding CUDA support for SIMD primitives
at no extra overhead compared to code written using plain CUDA. It makes the SIMD
Primitives performance portable when used along with kokkos.

8. Work In Progress. This is work in progress / future work:
• Need to verify the performance difference - Possible reason of slowdown for matrix

sizes 3 and 5 is team policy. Need to try range policy. Also verify theory of thread
count for improved performance for matrix sizes 10 and 15.

• Implement DGETRF kernel.
• Try running CUDA version of Uintah kernel.
• Add the code in Kokkos source code and carry out thorough testing making it ready

for kokkos team.

9. Acknowledgements. Authors are thankful to Christian Trott and Simon David
Hammond from Sandia National Labs and John Holmen and Martin Berzins from the
University of Utah for their advice and help.
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PERFORMANCE-PORTABLE BATCHED TENSOR CONTRACTIONS:
LIBRARY DESIGN AND PERFORMANCE ANALYSIS

EDWARD HUTTER∗ AND SIVA RAJAMANICKAM†

Abstract. TCKK is a software package currently in development within the Kokkos Kernels library that
supports performance-portable small, dense, batched tensor contractions for highly parallel MIC architectures
and GPUs. Targeted applications include finite element codes that reformulate assembly steps into batched
tensor contractions, and convolutional neural network kernels ubiquitous in machine learning. The goal of
this project is to provide library support for performance-portable batched tensor contractions that rival
leading implementations within the CEED and MAGMA frameworks. This report describes TCKK and will
present its current interface, as well as early performance results on the Intel Knights Landing architecture.

1. Introduction. Tensor contractions have been present in a spectrum of research
areas for many years, and with recent improved library support for distributed-memory,
GPU, and heterogeneous architectures, an increasing number of applications are casting
linear algebraic computation into tensor contractions. Libraries such as [7] and [9] focus on
large dense tensor contractions on single-node architectures. More general libraries provide
auto-generated code for both sparse and dense tensor contractions [6], while others offer
performance portability for tensor contractions arising from BLAS-like primitives [8]. A
few libraries have been recently developed to efficiently contract small tensors present in
high-order finite element method simulations on GPUs [1, 10]. TCKK aims to differentiate
itself by offering compiler-generated performance-portable small batched tensor contractions.

2. FEM tensor contractions. We explore three tensor contractions below. Tensor
contraction #1 comes from the time term of a scalar advection diffusion problem in Nalu, a
code for generalized unstructured massively parallel low Mach flow, where a nodal quadrature
is used on a tensor-product hex element and W tensors represent integration operations.
Tensor contractions #2 and #3 below are tensor formulations for the high-order finite element
kernels of the Lagrangian phase of BLAST derived in [1]. These formulations solve the Euler
equations of compressible hydrodynamics in a moving Lagrangian frame [2, 3].

1. Ud,l,m,n =
∑
i,j,k

Wi,lWj,mWn,kZd,i,j,k

2. Ui1,i2 =
∑

k1,k2,j1,j2

Bk1,i1Bk2,i2Dk1,k2
Bk1,j1Bk2,j2Vj1,j2

3. Ui1,i2,i3 =
∑

k1,k2,k3,j1,j2,j3

Bk1,i1Bk2,i2Bk3,i3Dk1,k2,k3
Bk1,j1Bk2,j2Bk3,j3Vj1,j2,j3

Naive implementations taken directly from the tensor contraction equations above yield
computational costs of O(n7), O(n6), and O(n9), respectively, where n is the length of all
modes. Computational costs of O(n5), O(n3), and O(n4), respectively, can be achieved
by contracting individual tensors using matrix multiplications, for which highly-optimized
routines exist. One such GEMM transformation is enumerated below for contraction #3,
with GEMM calls highlighted in blue and non-GEMM computation highlighted in red. The
enumeration of tensor contractions #1 and #2 follow closely from the enumeration below.

U =
∑

k1,k2,k3,j1,j2,j3

Bk1,i1Bk2,i2Bk3,i3Dk1,k2,k3
Bk1,j1Bk2,j2Bk3,j3Vj1,j2,j3

∗University of Illinois at Urbana-Champaign, hutter2@illinois.edu
†Sandia National Laboratories, srajama@sandia.gov
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=
∑

k1,k2,k3,j1,j2

Bk1,i1Bk2,i2Bk3,i3Dk1,k2,k3
Bk1,j1Bk2,j2

∑
j3

Bk3,j3V
T
j3,(j1,j2)


=

∑
k1,k2,k3,j1

Bk1,i1Bk2,i2Bk3,i3Dk1,k2,k3
Bk1,j1

∑
j2

Bk2,j2Zk3,(j1,j2)


=

∑
k1,k2,k3,j1

Bk1,i1Bk2,i2Bk3,i3Dk1,k2,k3
Bk1,j1

∑
j2

Bk2,j2Z
T
j2,(k3,j1)


=

∑
k1,k2,k3

Bk1,i1Bk2,i2Bk3,i3Dk1,k2,k3

∑
j1

Bk1,j1Zk2,(k3,j1)


=

∑
k1,k2,k3

Bk1,i1Bk2,i2Bk3,i3Dk1,k2,k3

∑
j1

Bk1,j1Z
T
j1,(k2,k3)


=

∑
k1,k2,k3

Bk1,i1Bk2,i2Bk3,i3Dk1,k2,k3
Zk1,(k2,k3)

=
∑

k1,k2,k3

Bk1,i1Bk2,i2Bk3,i3Ek1,k2,k3

=
∑
k1,k2

Bk1,i1Bk2,i2

(∑
k3

Bk3,i3Ek1,k2,k3

)

=
∑
k1,k2

Bk1,i1Bk2,i2

(∑
k3

BTi3,k3
ETk3,(k1,k2)

)
=
∑
k1,k2

Bk1,i1Bk2,i2Zi3,(k1,k2)

=
∑
k1

Bk1,i1

(∑
k2

BTi2,k2
ZTk2,(i3,k1)

)
=
∑
k1

Bk1,i1Zi2,(i3,k1)

=
∑
k1

BTi1,k1
ZTk1,(i2,i3)

= Zi1,i2,i3

TCKK will aim to identify these transformations at compile-time by analyzing tensors
represented as types. We explore this approach and detail TCKK’s interface below.

3. TCKK design.

3.1. Overview. TCKK’s performance-portable design is dependent on
Kokkos [4], a C++ library aimed at providing performance-portability across multicore and
GPU architectures. TCKK makes liberal use of three lightweight variadic class templates:
Modes, Indices, and Types.

template<char...>
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class Modes {};

template<size_t...>

class Indices {};

template<typename...>

class Types {};

A tensor’s structure is completely described using Modes. For example, in TCKK,
a tensor contraction Cm,n,p,q,r = An,k,qBr,m,p,k is described by the following types:
Modes<'m','n','p','q','r'>, Modes<'n','k','q'>, and Modes<'r','m','p','k'>. The Indices
class template allows variadic access to Kokkos::Views by faciliating pack expansions.

A number of lightweight classes and constexpr functions exist to manipulate these basic
types at compile-time. Definitions will not be provided here.

3.2. Tensor allocation. TCKK constructs tensors as Kokkos::Views in either thread-
local scratch memory, team-local scratch memory, or global memory, each encoded as types
under the policy MemoryTraits. The Tensor class template detailed below is specialized
only on these choices, regardless of execution space.

The internal datatypes of TCKK’s tensors are complicated and thus hidden from the in-
terface. These datatypes depend on the execution space (Kokkos::Cuda or Kokkos::OpenMP)
because there exists a dedicated datatype within Kokkos for SIMD vectorization on MIC
architectures. This datatype, a class template KokkosBatched::Experimental::Vector, was
developed to vectorize small batched matrix multiplication with dimensions smaller than
the vector lane width [5]. This datatype is exploited in similar spirit for small batched
tensor contractions. The absense of such a datatype for the Kokkos::Cuda execution space
motivates TCKK’s choice to insert an extra mode of lengh 32 into the Kokkos::View. In
either case, the fastest logical mode in the batched tensor data structure cycles through data
belonging to unique tensors; each TCKK Tensor never holds a single tensor’s data and can
thus be called a tensor pack.

The Tensor class template below utilizes a typetrait ModeType internally to allocate a
Kokkos::View object. A variadic template parameter pack, indices, containing an enumerated
list of tuple indices, is used to expand the tuple ModeLengths into the Kokkos::View
constructor. NumBatches is also provided as an argument to allow the allocation of multiple
tensor packs into a single data structure. Note that NumBatches accounts for the slowest
mode in the tensor object. The declarations for the three partial specializations are provided
below.

// Tensor host class template

template<typename ScalarType,typename ExecutionSpace,

typename MemoryTraits> class Tensor;

template<typename ScalarType,typename ExecutionSpace>

class Tensor<ScalarType,ExecutionSpace,GlobalMemory>{

public:

template<typename... modetypes,size_t... indices>

static auto create(std::tuple<modetypes...>& ModeLengths,

Indices<indices...>);

template<typename... modetypes, size_t... indices>
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static auto create(std::tuple<modetypes...>& ModeLengths,

Indices<indices...>,size_t NumBatches);

};

template<typename ScalarType,typename ExecutionSpace>

class Tensor<ScalarType,ExecutionSpace,TeamScratchMemory>{

public:

template<typename... modetypes,size_t... indices,

typename TeamMemberType>

KOKKOS_FUNCTION

static auto create(const TeamMemberType& TeamInfo,

std::tuple<modetypes...>& ModeLengths,

Indices<indices...>, size_t MemoryLevel=0);

};

template<typename ScalarType,typename ExecutionSpace>

class Tensor<ScalarType,ExecutionSpace,ThreadScratchMemory>{

public:

template<typename... modetypes,size_t... indices,

typename TeamMemberType>

KOKKOS_FUNCTION

static auto create(const TeamMemberType& TeamInfo,

std::tuple<modetypes...>& ModeLengths,

Indices<indices...>, size_t MemoryLevel=0);

};

3.3. Tensor fill. To construct tensors directly in scratch memory, TCKK relies on
the ability to fill tensors with data within a Kokkos::TeamPolicy. The TensorFill policy
implemented by policy class TensorCreateRandom below requires filling a single pack of
tensors with data. Any such policy class can be passed into the Contract class template as a
template template parameter, to be used at the library’s discretion. The values taken by
parameters NumThreads and ThreadID are dependent on the pool of memory in which the
tensors were allocated.

Nontype template parameter pack, indices, expands tuples IndexPack and IndexBound-
sPack to allow variadic access to Kokkos::Views. Each thread fills a contiguous portion of
the tensor with data and updates its tuple IndexPack at each iteration.

It must be noted that passing a TensorFill policy class to TCKK is necessary only to
support TCKK’s future ability to allocate, fill, and contract slices of tensors on-the-fly in
the closest memory level possible.

template<typename ScalarType,typename ExecutionSpace>

class TensorCreateRandom{

public:

template<typename... types,size_t... indices,

typename TeamMemberType,typename TensorPackType>

KOKKOS_FUNCTION

static void invoke(const TeamMemberType& TeamInfo,

TensorPackType TensorPack,

std::tuple<types...>& IndexPack,

std::tuple<types...>& IndexBoundsPack,

Indices<indices...>,size_t NumThreads,

size_t ThreadID);
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};

3.4. Tensor contraction. The Contract class template configures a number of policy
classes together to provide access to many different contraction routines through a single
interface. The GemmThreadType policy takes template parameters for transposing matrices
A and B, as well as an algorithm type specified by the following template parameter
GemmAlgType. Template parameter MemoryPool decides whether to allocate tensors in
thread-local or team-local scratch memory.

Each tensor contraction must be called from inside a Kokkos::TeamPolicy. The length
of the template template parameter pack TensorFills must match the length of Contract ’s
function template’s template parameter pack TensorModes and ModeLengthTuples, as each
input tensor allocated by Contract must have a size and must get filled with data. Each
type within the TensorModes pack describes the mode-ordering of a unique input tensor and
each type within ModeLengthTuples gives the mode-lengths for each tensor.

Both the Contract class template’s declaration and its function template’s declaration
are given below. The implementation is not given as it comes directly from the procedure
enumerated in Section 2.

template<typename ScalarType,

template<typename,typename,typename> class GemmThreadType,

class GemmAlgType,class MemoryPool,typename ExecutionSpace,

template<typename,typename> class... TensorFills>

class Contract{

public:

template<typename TeamMemberType,typename Tout,

typename... TensorModes, typename... ModeLengthTuples>

KOKKOS_FUNCTION

static void invoke(const TeamMemberType& TeamInfo,Tout TensorOutput,

TCKK::Types<TensorModes...>,

ModeLengthTuples&& ModeLengths,

std::size_t MemoryLevel);

};

3.5. Example usage. An example on how TCKK can be utilized for tensor contraction
#3 is given below.

// Partial specialization for tensor contraction #3 (MethodID==3)

template<typename ScalarType,

template<typename,typename,typename> class GemmThreadType,

class GemmAlgType,class MemoryPool,size_t MemoryLevel,

typename ExecutionSpace>

void Test<3,ModeLength,ScalarType,GemmThreadType,GemmAlgType,

MemoryPool,MemoryLevel,ExecutionSpace>::

test(size_t NumContractions,size_t NumTeams,

size_t NumThreadsPerTeam,size_t ModeLength){

// Describe the tensor contraction as a type

using TensorContractionType

= TCKK::Types<TCKK::Modes<’a’,’b’,’c’>, TCKK::Modes<’j’,’a’>,

TCKK::Modes<’k’,’b’>, TCKK::Modes<’l’,’c’>,

TCKK::Modes<’j’,’k’,’l’>, TCKK::Modes<’j’,’m’>,

TCKK::Modes<’k’,’n’>, TCKK::Modes<’l’,’o’>,
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TCKK::Modes<’m’,’n’,’o’>>;

// Assuming equal-length mode-lengths known at compile time

auto ModeLength3D = std::make_tuple(ModeLength,ModeLength,

ModeLength);

auto ModeLength2D = std::make_tuple(ModeLength,ModeLength);

size_t ScratchMemorySize

= TCKK::GetScratchMemorySize<ExecutionSpace>(MemoryLevel);

size_t PerThreadScratchMemorySize

= TCKK::GetThreadScratchMemorySize<ExecutionSpace>();

// Get number of batches along the critical path

size_t NumBatches=0;

size_t BatchSize=0;

size_t BatchDiv=0;

if (std::is_same<TCKK::ThreadScratchMemory,MemoryPool>::value){

auto CriticalPathBreadth = NumTeams*NumThreadsPerTeam

* TCKK::VectorPackSize<ScalarType,ExecutionSpace>::size;

BatchSize = NumTeams*NumThreadsPerTeam;

BatchDiv = 1;

NumBatches = NumContractions / CriticalPathBreadth;}

else if (std::is_same<TCKK::TeamScratchMemory,MemoryPool>::value){

auto CriticalPathBreadth = NumTeams

* TCKK::VectorPackSize<ScalarType,ExecutionSpace>::size;

BatchSize = NumTeams;

BatchDiv = NumThreadsPerTeam;

NumBatches = NumContractions / CriticalPathBreadth;}

else {Kokkos::abort("Wrong MemoryPool type");}

// Build the output tensor as a pack of tensors

auto VectorSize

= TCKK::VectorPackSize<ScalarType,ExecutionSpace>::size;

auto OutputTensor = TCKK::Tensor<ScalarType,ExecutionSpace,

TCKK::GlobalMemory>::create(ModeLength3D,TCKK::Indices<0,1,2>(),

NumContractions/VectorSize);

Kokkos::parallel_for(Kokkos::TeamPolicy<ExecutionSpace>(

NumTeams, NumThreadsPerTeam).set_scratch_size(MemoryLevel,

Kokkos::PerTeam(ScratchMemorySize),

Kokkos::PerThread(PerThreadScratchMemorySize)),KOKKOS_LAMBDA(

const typename Kokkos::TeamPolicy<ExecutionSpace>

::member_type& TeamInfo){

auto TeamSize = MemoryPool::GetTeamSize(TeamInfo);

auto ThreadIndex = MemoryPool::GetThreadIndex(TeamInfo);

auto ThreadOffset = (TeamInfo.league_rank()*TeamInfo.team_size()

+ TeamInfo.team_rank()) / BatchDiv;

for (size_t NumIter=0; NumIter < NumBatches; NumIter++){

// Extract subview of OutputTensor

auto SliceID = ThreadOffset + BatchSize*NumIter;

auto OutputTensorTile =

TCKK::GetSubTensor<ExecutionSpace>

::invoke(TeamInfo,OutputTensor,

std::make_tuple(Kokkos::Impl::ALL_t(),
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Kokkos::Impl::ALL_t(),Kokkos::Impl::ALL_t(),SliceID));

MemoryPool::Barrier(TeamInfo);

Contract<ScalarType,GemmThreadType,GemmAlgType,MemoryPool,

ExecutionSpace,TensorCreateRandom, TensorCreateRandom,

TensorCreateRandom,TensorCreateRandom,TensorCreateRandom,

TensorCreateRandom,TensorCreateRandom,TensorCreateRandom>

::invoke(TeamInfo, OutputTensorTile,

TensorContractionType(),ModeLength2D,

ModeLength2D,ModeLength2D,

ModeLength2D,ModeLength2D,

ModeLength2D,ModeLength2D,

ModeLength2D,MemoryLevel);

}

});

3.6. Tensor contraction code generation. For a single interface to suffice, the
class template Contract must analyze its function template’s template parameter pack
TensorModes at compile time. By comparing and manipulating each Modes type hidden
inside TensorModes, a sequence of GEMM calls and non-GEMM computational kernels can
be identified. The enumerated steps given in Section 2 for tensor contraction #3 lead to a
recursive strategy, with each step mapping to a single dedicated computation. This idea is
currently in development.

4. Performance results. We hardcoded tensor contractions #1, #2, and #3 to test
the performance of small, batched tensor contractions using the various GEMM routines
that exist within Kokkos-Kernels. Each test performed 131072 individual tensor contractions
with ScalarType=double. The number of teams was kept constant at 64, while the number
of threads/team was varied among 1, 2, and 4. All tests were performed on an Intel Knights
Landing architecture inside Sandia’s Bowman testbed cluster, with the Kokkos::OpenMP
execution space.

The performance results below include all work inside the Kokkos::TeamPolicy, including
launching the TeamPolicy, allocating each input tensor, repeatedly filling the input tensor
packs for each contraction, and the contraction itself. Table 4.1 enumerates the different
policy classes passed into Contract. Columns B and C name classes and class templates
present inside the KokkosBatched::Experimental namespace.

A B C
0 Kokkos memory level 0 SerialGemm Algo::Gemm::CompactMKL
1 Kokkos memory level 1 TeamGemm Algo::Gemm::Unblocked
2 x x Algo::Gemm::Blocked

Table 4.1: Information table for the plots below

4.1. Tensor contraction #1. In each of Figures 4.1, 4.2, and 4.3, MKL Compact is
the only GEMM routine showing significant performance divergence between memory levels 0
and 1. Suprisingly, the results indicate that contracting tensors allocated in high-bandwidth
memory using MKLCompact achieve higher performance than contracting tensors allocated
directly in cache. MKL Compact ’s performance for tensors allocated directly in cache obtains
the worst overall performance among all variants.
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Fig. 4.1: Tensor contraction #1, 64 teams, 1 thread/team

Fig. 4.2: Tensor contraction #1, 64 teams, 2 thread/team

Its evident that each GEMM variant scales poorly with the number of threads-per-team.
In any SerialGemm method, such behavior can be explained by insufficient bandwidth among
the hyperthreads for accessing L1 cache, and increased contention for other on-chip resources.
Less contention seems to give both TeamGemm variants added performance at the larger
mode-lengths, resulting in better scaling.

A potential performance pitfall shared by all variants is the increasingly non-square
matrix multiplication that arises in tensor contraction #1. Note that a mode-length of
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Fig. 4.3: Tensor contraction #1, 64 teams, 4 threads/team

n = 8 yields GEMMs with 8× 8 and 8× 512 matrices. The design of the KokkosBatched
infastructure is not meant for non-square GEMMs, so we expect batching these into many
square GEMMs to yield better scaling.

Fig. 4.4: Tensor contraction #2, 64 teams, 1 threads/team

4.2. Tensor contraction #2. The performance and scaling achieved by all variants
for tensor contraction #2 in Figures 4.4, 4.5, and 4.6 far surpasses that achieved for tensor
contraction #1. This can be attributed to the fact that only square GEMMs are present. As



20 Performance-Portable Batched Tensor Contractions

Fig. 4.5: Tensor contraction #2, 64 teams, 2 threads/team

Fig. 4.6: Tensor contraction #2, 64 teams, 4 threads/team

before, the performance gap between memory levels is present only with the MKL Compact
variant. The TeamGemm variants scale worse than the SerialGemm variants because there
is insufficient work present in contracting a single pack of tensors of mode-length ≤ 8.

4.3. Tensor contraction #3. Tensor contraction #3 involves non-square
GEMMs, yet not quite as large as those present in tensor contraction #1. As such, the
Blocked TeamGemm scales the best with the higher thread counts, as sufficient work is
available for each team to efficiently utilize multiple threads. The overall performance



E. Hutter and S. Rajamanickam 21

Fig. 4.7: Tensor contraction #3, 64 teams, 1 threads/team

Fig. 4.8: Tensor contraction #3, 64 teams, 2 threads/team

attained in Figures 4.7, 4.8, and 4.9 is slightly lower than that achieved for tensor contraction
#2, motivating the batching of the short-and-fat folded tensor into square GEMMs. This
performance issue can also be attributed to the asymptotically larger number of bandwidth-
bound operations that are currently being performed, such as folding, unfolding, and filling
each input tensor.
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Fig. 4.9: Tensor contraction #3, 64 teams, 4 threads/team

5. Conclusions. We have introduced early performance results and the future interface
of TCKK, a performance-portable library that performs small, batched tensor contractions
using Kokkos. Its main contribution will be its ability to deduce a recursive sequence of
computational steps at compile-time that can be handled in a performance-portable way by
GEMMs and other computational kernels.

There remains numerous directions for future development of
performance-portable tensor contractions present in finite element and convolutional neural-
net codes. First, the current implementation can be greatly improved. The performance of
contracting the smallest tensors directly built in the closest memory level (Kokkos level 0) is
suprisingly worse than that of contracting tensors built in high-bandwidth memory (Kokkos
level 1). Further, at a certain tensor mode-length, the performance difference is negligable.
An investigation into this performance as well as into understanding the conditions under
which Kokkos’ allocations spill out to larger memory levels will influence whether further
tensor slicing is required to allocate and contract solely in the closest memory level. Tensor
slicing alone will require either knowledge of the mode-lengths at compile-time, or a JIT-like
compilation.

The performance results of tensor contraction #1 motivate future work on
compile-time recognition of tensor slicing, where slicing can avoid large, innefficient non-
square GEMMs induced by folding. Tensor slicing will force changes to the TensorFill policy,
as TCKK will need to fill tensor slices instead of entire tensors.

TCKK’s support for tensor contractions on GPUs is not mature enough to warrant
discussion in this report. The performance of various GEMM implementations in the
KokkosBatched::Experimental namespace must be investigated.

Perhaps the largest avenue for future research involves compile-time code generaton for
tensor contractions of any flavor. Compile-time infastructure is already in place for analyzing
the typelists that represent each tensor. We seek optimal slicing, folding, and contracting
strategies using tensor structure available at compile-time. Such a design strategy fits the
template metaprogramming approach utilized by Kokkos.
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FAST TRIANGLE COUNTING USING CILK

ABDURRAHMAN YAŞAR∗, SIVASANKARAN RAJAMANICKAM† , MICHAEL WOLF‡ ,

JONATHAN BERRY§ , AND ÜMIT V. ÇATALYÜREK¶

Abstract. Triangle counting is a representative graph analysis algorithm with several applications. It
is also one of the three benchmarks used in the IEEE HPEC Graph Challenge. Triangle counting can be
expressed as a graph algorithm and in a linear algebra formulation using sparse matrix-matrix multiplication
(SpGEMM). The linear algebra formulation using the SpGEMM algorithm in the Kokkos kernels library was
one of the fastest implementations for the triangle counting problem in last year’s Graph Challenge. This
paper improves upon that work by developing an SpGEMM implementation that relies on a highly efficient,
work-stealing, multithreaded runtime. We demonstrate that this new implementation results in improving the
triangle counting runtime up to 5× to 12× on different architectures. This new implementation also breaks
the 109 barrier for the rate measure on a single node for the triangle counting problem. We also compare the
linear algebra formulation with a traditional graph based formulation. The linear algebra implementation is
up to 2.96× to 7× faster on different architectures compared to the graph based implementation. Furthermore,
we present analysis of the scaling of the triangle counting implementation as the graph sizes increase using
both synthetic and real graphs from the graph challenge data set. This report is firstly submitted to Graph
Challenge 2018 [29].

1. Introduction. Triangle counting is an important kernel for graph analysis and
forms the core of several important graph algorithms such as triangle enumeration, subgraph
isomorphism, dense neighborhood graph discovery [27], and link recommendation [25].
Triangle counting is one of the three IEEE HPEC Graph Challenge problems [19] and
is important for k-truss computation, another Graph Challenge problem [11]. The 2017
graph challenge had several papers related to the triangle counting problem improving the
state-of-the-art for a foundational graph analysis kernel (see Section 2 for a summary).
Samsi et al. [18] analyzed the different results presented at the workshop to understand the
state-of-the-art for the triangle counting problem. Typical results for the fastest submissions
in 2017 Graph Challenge were on the order of 108 edges per second for the triangle counting
problem.

The primary motivation of this paper is to improve the state-of-the-art for triangle
counting, using an efficient, task-stealing, multithreaded runtime – Cilk [4]. This paper
improves the earlier linear algebra based triangle counting implementation KKTri, which
was one of the “champions” of the 2017 Graph Challenge workshop [28], by replacing
OpenMP with Cilk. The choice of new runtime was motivated by an analysis of the OpenMP
implementation’s scalability for larger problems and large number of threads. Section 3
describes the algorithms that are implemented and the Cilk based implementation. The
differences between these two runtimes for the triangle counting problem on irregular graphs
are evident based on the results (see Section 4).

The primary contribution of this paper is a Cilk based implementation (KKTri-Cilk) of
the KK-SpGEMM algorithm from the Kokkos kernels library [14] and a Cilk-based triangle
counting implementation using the new SpGEMM. The focus is on obtaining the best
performance on a single multicore node. Our triangle counting implementation surpasses
109 for the rate measure on a single node for the first time. Previous work has reported
such rates, but only when ignoring preprocessing steps in the calculated runtime (e.g., [3]).
Furthermore, detailed experiments comparing an OpenMP (KKTri) and Cilk (KKTri-Cilk)

∗Georgia Institute of Technology, Atlanta, GA, U.S.A.
†Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, U.S.A.
‡Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, U.S.A.
§Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, U.S.A.
¶Georgia Institute of Technology, Atlanta, GA, U.S.A.
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based triangle counting demonstrate the Cilk based triangle counting results in a speedup
of up to 5× to 12× on different architectures. KKTri-Cilk is up to 2.96× to 7× faster on
different architectures when compared with the graph based implementation (TCM) [21].
Another significant contribution is a scalability analysis of triangle counting for synthetic
and real graphs. This analysis shows that the runtime per vertex for triangle counting is
highly correlated with 4

3 -moment of the graph. Finally, we show the correlation between the
rates and the conductance of graph.

2. Background.

2.1. KKTri and 2017 Static Graph Challenge. For the 2017 Static Graph Chal-
lenge [19], we submitted a linear algebra-based triangle counting implementation KKTri
(previously designated TCKK) [28], focused on efficient single node parallelism. KKTri was
built upon the performance portable SpGEMM (called KK-MEM) [9] in the Kokkos kernels
library [14].

We described two linear-algebra based formulations of triangle counting that were based
on the adjacency matrix of the graph [19]. The first formulation was a slight variant of Azad,
et al. [1] (a linear algebra-based formulation of Cohen’s algorithm [6]). This formulation
represented triangle counting in terms of sparse matrix-matrix multiplication followed by an
element-wise matrix multiplication: D = (L ·U). ∗L, where L and U are the lower and upper
triangle parts of the adjacency matrix for the graph, respectively (Azad et al. used A for the
element-wise multiply). The SpGEMM operation can be fused with the the element-wise
multiply by using the rightmost L as a mask for the SpGEMM, which avoids explicitly storing
all the non-zeros resulting from L · U . However, even with this optimization, each triangle is
“counted” twice (with one being filtered out). This method was not evaluated in the previous
work. Instead, we presented a second formulation, D = (L · L). ∗ L, which we used for the
2017 Graph Challenge. This formulation follows the same logic as the previous method with
the SpGEMM operation counting wedges and element-wise multiplication filtering out the
wedges that are not triangles. However, this formulation resulted in an additional constraint
on the wedges “visited”, which reduced the number of wedges stored after the SpGEMM
operation. Typically, we saw a reduction in the number of operations and runtime. Both
formulations are used in this paper and implemented using Cilk.

Previously, we found three optimizations that helped in achieving good performance.
First, masked SpGEMM (mentioned before) reduced the memory needed for triangle counting.
Secondly, our masked SpGEMM operation used data compression on the right hand side
matrix. Finally, the ordering of the graph before forming the lower and upper triangle
matrices is essential for good performance. All three optimizations are used in the Cilk
implementation described here as well.

KKTri was one of the fastest triangle counting methods in the 2017 Static Graph
Challenge with a top rate (defined to be the number of undirected edges in the graph divided
by the runtime) of 637 million edges per second on a single multicore system. We also
compared KKTri to the Cilk implementation of parallel merge-based triangle counted method
(TCM) [21] (TCM-Cilk). KKTri performed favorably to TCM-Cilk except when compression
did not help or when hyperthreads were used. This observation led us to consider developing
a Cilk based implementation of our algorithm, the focus of this paper.

The KK-MEM algorithm in Kokkos kernels library has been improved with a meta-
algorithm KK-SpGEMM that chooses between different accumulators, compression scheme
and hashmaps [10]. This will be the basis of the Cilk implementation as well. The meta-
algorithm has been improved further to support Cilk runtime specific optimizations.

The 2017 Graph Challenge has spurred advancements in the state-of-the-art triangle
counting. These include advancements in shared-memory parallel [13, 22, 24], single node
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accelerator [3], multiple accelerator [12], operator-based [26], and distributed-memory [17]
implementations. We also compare favorably to the Graph BLAS numbers in SuiteSparse [7]
on the IBM Power8 architecture using 160 threads (e.g. 63% faster on friendster using 96
threads).

3. Approach.
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Fig. 3.1: Example problem. (a) is the matrix representation of a graph, each colored cell
represents an edge. (b) and (c) are the lower triangular matrices of (a) ordered for LL and
LU algorithms, respectively. In (a-c) permutation and partition ids of the rows are written
in the first and last column, respectively. Red line is the partition border.

3.1. Cilk Based KKTri Algorithm. KKTri-Cilk algorithm inherits from the KK-
SpGEMM algorithm described in [10] and tries to improve load-balancing and efficient
hyper-thread usage issues using Cilk based programming model and optimizations. The Cilk
programming model supports different parallel patterns such as cilk for, and cilk spawn.
Cilk tasks are lightweight with efficient task-stealing allowing an implicit way to load balance.
Aside from the runtime system, the parallelization strategy is the main difference between
KKTri-Cilk and KKTri. KKTri used a very simple scheme, partitioning the matrix evenly
into partitions of a fixed number of rows. KKTri-Cilk also creates row-wise partitions (with
each partition being assigned to a Cilk task) but not with a constant number of rows per
partition. Instead, a KKTri-Cilk partition Pi stores its border in two pointers, one for its
first row and one for its last row.

To balance the work among the tasks, KKTri-Cilk uses an heuristic to find the partitions,
creating partitions such that the number of non-zeros within each partition are approximately
equal. This is a greedy block (row) partitioning approach to balance the number of non-zeros
in a partition. For instance, in our example (Fig. 3.1b), we have four partitions (divided by
the red lines), P = {P0, P1, P2, P3}, with these partitions have 3, 2, 3, 3 non-zeros respectively.
The orderings used for triangle counting help reduce the number of dense rows and achieve
better partitions as well. We partition the L matrix for both LL and LU algorithms.

Algorithm 1 outlines the basic KKTri-Cilk triangle counting algorithm. Each task is
responsible for counting the number of triangles in its partition, Pi. These partitions are
disjoint therefore tasks can be freely executed in parallel. Since each partition may contain
different numbers of rows, cilk for is not used. Instead, cilk spawn is used to initiate these
tasks and execute them in parallel. Experimentally, we saw that this approach gave better
performance than using cilk for with different grain sizes. Finally, when each task has
finished computing the number of triangles within its partition (ensured by the synchronize
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Algorithm 1 kkTri-Cilk(G)

Graph G is given in CSR format
n|T | ← 0 ⇒ Initialize number of triangles.

Decide algorithm then order and set A - B matrices
〈A,B〉 ← analyzeMatrix(G)

Partitions are balanced based on number of non-zeros.
P ← createPartitions(G)

Run kkTri algorithm in parallel for each Pi

for each Pi ∈ P do
cilk spawn kkTriSpGEMM-Cilk(A,B, Pi, n|T | )
cilk sync

end for
return n|T |

Algorithm 2 kkTriSpGEMM-Cilk(A,B, Px, n|T |)

A is lower triangular matrix.
B is lower or upper triangular matrix; depends on the alg.
Pi is the partition, keeps first and last row’s pointers.
n|T | is shared between tasks.
nt ← 0 ⇒ Count of the local number of triangles
H ← ∅ ⇒ Initialize hashmap accumulator
for each i ∈ Px do

H[v ∈ B(i)]← i
for each j ∈ A(i) do

for each k ∈ B(j) do
nt ← nt + 1 if H[k] = i else 0

end for
H ← ∅ ⇒ Clean hashmap

end for
Atomically add local number of triangles.

end for
atomicADD(n|T |, nt)

step), the global triangle count has been atomically updated to give the final answer.
Each task does a matrix multiplication on its partition. As described in the background,

matrix multiplication based triangle counting can be solved using two different algorithms;
LL and LU. Algorithm 2 describes these methods. A represents the lower triangular matrix
in both algorithms. B is the upper (lower) triangular matrix in LU (LL) algorithm. In
both algorithms, we multiply A and B matrices, C = A ·B, and then mask their result, C,
with lower triangular matrix (C. ∗ L). KKTri-Cilk implements an in-place masking strategy
to reduce number of operations and also memory movement. For a given row, i ∈ Px, all
non-zeros , v ∈ B(i), are inserted into a hashmap, H, by using their column ids as the key
and i as their value. For each non-zero column, j, of A(i) we visit B(j) and check H. If a
non-zero column k ∈ B(j) is set to i, we do in-place masking. If H[k] is equal to i, we have
found a triangle. The hashmap needs to be reset for each row in Px. Finally, we add the
local triangle count to the global one using atomic addition.

KKTri-Cilk inherits some of the techniques, and the data structures such as compression,
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linked-list based hashmap accumulator and dense hashmap accumulator from KKTri [10]
and optimizes them for the Cilk implementation.

Hashmap accumulator is critical role for the efficiency of the KKTri algorithm. As
previously defined data structures for this problem are highly optimized, we use KKTri’s
linked list based and dense hash accumulators with minor changes. First, in KKTri-Cilk
a graph is partitioned into disjoint sets and, each of these disjoint sets are executed in
parallel. Therefore, there are no concurrent inserts, which would require atomic compare
and swap instructions. KKTri-Cilk simply defines a hashmap accumulator for each parallel
task. Second, as shown in Alg. 2 when execution of a row is completed, we need to reset the
hashmap. This can be done in two ways; first, all entries can be reset, second used hashes
can be tracked and cleaned. For, the first case using Cilk’s array notation to reset all of the
elements in a vectorized fashion gives better performance. If the number of used hashes are
less than the 50%, cleaning the tracked hashes results in better performance.

Compression of the right hand side matrix can decrease the problem size significantly,
and allow using efficient bitwise operations. However, compression is not always successful
because of the natural order of the matrices. If there is low locality in the matrix (e.g.
RMAT graphs) then compression doesn’t improve the execution time [28]. Locality of the
partitions which are being processed by tasks has an important effect on efficient usage of
the memory bandwidth and the cache. Hence, locality can significantly impact the triangle
counting rate obtained by KKTri. In this work, we use conductance as as a way to evaluate
locality for a given matrix. In this context, conductance is defined as the ratio between the
number of non-zeros in a partition where rows of their column indices appear in different
partitions, and total number of non-zeros within that partition. Denoted by Cd, formally
conductance of a partition, P , can be defined as follows:

Cd(P ) =
|{A(u, v) 6= 0 : |{u, v} ∩ P | = 1}|
|{A(u, v) 6= 0 : |{u, v} ∩ P | > 0}| (3.1)

For example, in the matrix represented in Figure 3.1a, P0 has 2 rows 7 non-zero elements,
2 of the non-zeros (A(0, 1) and A(1, 0)) can be accessed within this partition. Therefore we
can define conductance of this partition as follows; Cd(P0) = 5

7 = 0.71. We use the average
of the conductance of 16-way partition to study the locality of a graph (Table 4.2).

4. Experimental Evaluation. We present several experiments to identify the perfor-
mance trade-offs of the KKTri-Cilk algorithm. These experiments were carried out on three
architectures with multicore processors that are shown in Table 4.1. Intel compiler (icpc)
version 18.1.163 is used to compile both KKTri and TCM codes. We use 2 hyperthreads for
Skylake and Haswell architectures.

4.1. Dataset and Peak Rate. Table 4.2 lists 27 graphs that we used in our experi-
ments along with the number of vertices (|V |), number of edges (|E|), number of triangles
(|T |), complement of the conductance (1− Cd), 4/3 moment. Table 4.3 lists execution time
in seconds on Skylake server, and the rate between edges and execution time (Rate) on three
different architectures. In addition to 20 Challenge graphs for which triangle computing is
particularly costly (based on the reference implementation), 7 additional large real-world
graphs [5,8, 16] are included in our experiments. We used the Graph Challenge procedure
of symmetrizing the matrices (using undirected graphs). For all experiments, we report
the median time of five runs. Table 4.3 shows the best achievable rate of 1.14 × 109 for
the uk-2005 matrix. We are also able to achieve more than 109 rate for wb-edu matrix.
This is about 2× better the reported peak rate in the 2017 Graph Challenge. All three
graphs have very high locality (based on their conductance). (In general, we observe a high
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Table 4.1: Characteristics of the architectures used.

Server 1 Server 2 Server 3

Code Name Skylake Haswell KNL

Model
Intel Xeon Intel Xeon Intel Xeon
Platinum 8160 E7-4850 v3 Phi 7250

Cores/Freq. 2 × 24/2.1GHz 4 × 14/2.2GHz 4 × 68/1.4GHz
Cache/Mem 33MB/196GB 35MB/16GB 1(MB)/16GB

correlation (0.91) between the conductance and the rate achieved.) The Skylake architecture
results in the best runtimes for all graphs except friendster. Table 4.3 also has the times
highlighted in green when KKTri-Cilk is the fastest method compared KK-OMP and the
TCM implementations.

Table 4.2: Properties of the dataset. Conductance is reported for lower triangular matrices. Moment is the
4/3 Moment.

Data Set |V | |E| |T | 1−Cd Moment

cit-HepTh 27,770 352,285 1,478,735 0.141 98.079
email-EuAll 265,214 364,481 267,313 0.112 13.521
soc-Epinions1 75,879 405,740 1,624,481 0.086 48.062
cit-HepPh 34,546 420,877 1,276,868 0.091 86.684
soc-Slashdot0811 77,360 469,180 551,724 0.067 50.726
soc-Slashdot0902 82,168 504,230 602,592 0.069 51.416
flickrEdges 105,938 2,316,948 107,987,357 0.098 268.872
amazon0312 400,727 2,349,869 3,686,467 0.229 30.455
amazon0505 410,236 2,439,437 3,951,063 0.233 31.100
amazon0601 403,394 2,443,408 3,986,507 0.276 17.434
scale18 174,147 3,800,348 82,287,285 0.059 347.232
scale19 335,318 7,729,675 186,288,972 0.058 395.145
as-Skitter 1,696,415 11,095,298 28,769,868 0.17 73.835
scale20 645,820 15,680,861 419,349,784 0.059 448.022
cit-Patents 3,774,768 16,518,947 7,515,023 0.027 21.888
scale21 1,243,072 31,731,650 935,100,883 0.059 506.130
soc-LiveJournal1 4,847,571 42,851,237 285,730,264 0.242 53.766
wb-edu 9,845,725 46,236,105 254,718,147 0.938 16.775
scale22 2,393,285 64,097,004 2,067,392,370 0.058 569.872
scale23 4,606,314 129,250,705 4,549,133,002 0.059 640.093
scale24 8,860,450 260,261,843 9,936,161,560 0.059 717.548
scale25 17,043,780 523,467,448 21,575,375,802 0.059 802.552
uk-2005 39,459,925 783,027,125 21,779,366,056 0.925 90.495
it-2004 41,291,594 1,027,474,947 48,374,551,054 0.942 125.144
twitter 61,578,414 1,202,513,046 34,824,916,864 0.126 687.587
friendster 65,608,366 1,806,067,135 4,173,724,142 0.182 344.160
uk-2007 105,896,555 3,301,876,564 286,701,284,103 0.968 144.436

4.2. Runtime Comparison. Table 4.4 presents observed speedups using the Cilk
programming model compared to the OpenMP runtime for both KKTri and TCM algorithms,
on three different architectures. The geometric mean of the speedups is in the last row of the
table. In Table 4.4 each cell is highlighted with yellow if the Cilk implementation is faster
than the OpenMP implementation. The KKTri-Cilk of the KKTri algorithm outperforms
the KKTri-OpenMP in 63 of 78 (81%) cases. For TCM, these numbers are 70 out of 78
(90%) cases. Clearly, Cilk helps to getter better performance for both algorithms.

Although KKTri-Cilk outperforms KKTri-OpenMP in all of the problems on Haswell,
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Table 4.3: Best of the medians of the execution times in seconds on Skylake is reported. Highlights: Green
- KK-Cilk is better than TCM, Red - the fastest rate for a graph, Blue- the best rate among all graphs and
the rate for the largest graph.

Data Set Time (s)
Rates

Skylake Haswell KNL

cit-HepTh 0.003 1.20E+08 8.24E+07 1.54E+07
email-EuAll 0.003 1.16E+08 1.10E+08 2.16E+07
soc-Epinions1 0.004 1.06E+08 6.72E+07 2.44E+07
cit-HepPh 0.004 1.11E+08 8.77E+07 2.47E+07
soc-Slashdot0811 0.004 1.18E+08 7.97E+07 2.71E+07
soc-Slashdot0902 0.003 1.57E+08 8.64E+07 2.77E+07
flickrEdges 0.013 1.85E+08 1.15E+08 2.99E+07
amazon0312 0.006 3.87E+08 2.51E+08 9.34E+07
amazon0505 0.006 3.79E+08 2.75E+08 9.36E+07
amazon0601 0.006 4.17E+08 2.87E+08 9.81E+07
scale18 0.031 1.24E+08 1.07E+08 2.88E+07
scale19 0.075 1.04E+08 8.06E+07 2.79E+07
as-Skitter 0.026 4.23E+08 3.23E+08 1.23E+08
scale20 0.184 8.53E+07 5.63E+07 2.50E+07
cit-Patents 0.028 5.82E+08 4.21E+08 1.22E+08
scale21 0.511 6.21E+07 4.78E+07 2.01E+07
soc-LiveJournal1 0.137 3.14E+08 2.28E+08 1.07E+08
wb-edu 0.042 1.10E+09 6.55E+08 1.48E+08
scale22 1.581 4.05E+07 3.50E+07 1.71E+07
scale23 3.786 3.41E+07 2.62E+07 1.45E+07
scale24 10.282 2.53E+07 2.04E+07 1.21E+07
scale25 25.652 2.04E+07 1.88E+07 9.11E+06
uk-2005 0.684 1.14E+09 9.35E+08 2.59E+08
it-2004 1.293 7.95E+08 5.86E+08 1.47E+08
twitter 28.359 4.24E+07 4.46E+07 N/A
friendster 18.552 9.74E+07 7.93E+07 N/A
uk-2007 3.545 9.31E+08 7.49E+08 N/A

the OpenMP version outperforms the Cilk version in smaller instances on Skylake. Since
Skylake gives the best performance in almost all problems, we hypothesize this could be due
to the tasking overhead in Cilk for these small graph instances. TCM’s Cilk implementation
outperforms the OpenMP implementation in all problems on both Haswell and Skylake
architectures with a geometric mean of 2.6 and 2.3. Part of this difference could be attributed
to optimizations used in different implementations. However, there is a clear trend that Cilk
helps these algorithms on Haswell and Skylake architectures. However, in KNL architecture
OpenMP implementations become competitive with Cilk implementations in many problems
and geometric mean of the speedup decreases to 1.07× and 1.65× for KKTri and TCM.
This could be due to the relatively smaller caches on the KNL architectures not helping the
tasking runtime.

4.3. Strong Scaling. Figure 4.1 presents strong scaling speedup of KKTri and TCM
for three graphs - Friendster, uk2005 and scale24 - on Skylake architecture. KKTri-Cilk
scales the best in all three problems when scaled by the best sequential execution time
among the different methods. For the uk-2005 and scale24 graphs, scaling is better before
using hyperthreads. Hyperthreads give a small but measurable benefit. For Friendster, all
implementations show better scaling with hyperthreads. Figure 4.1h shows the concentration
of non-zeroes in the uk-2005 graph. This graph has a very good ordering and most of the
non-zeros appear to be near diagonal resulting in highly local computations. Also, we observe
from Figure 4.1e that KKTri algorithms’ sequential execution time is also less than TCM
thanks to these local computations. In contrast to the uk-2005 graph, the scale24 graph
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Table 4.4: Comparison between OpenMP and Cilk runtimes for three architectures. For each
server KK represents KKTri/KKTri-Cilk speedup. TCM represents TCM-OpenMP/TCM-
Cilk speedup. Medians of the 5 runs are used. N/A - KK-OMP/TCM implementations did
not finish.

Data Set
Haswell Skylake KNL

KK TCM KK TCM KK TCM

cit-HepTh 1.82 1.46 0.52 1.62 0.32 0.82
email-EuAll 3.38 3.05 1.86 1.86 1.04 0.69
soc-Epinions1 1.65 1.18 0.75 1.04 0.70 0.94
cit-HepPh 1.70 1.49 0.44 3.17 0.37 0.89
soc-Slashdot0811 1.93 2.03 0.73 1.23 0.67 0.96
soc-Slashdot0902 1.73 1.54 0.96 1.42 0.68 0.93
flickrEdges 1.98 2.24 1.56 3.39 0.63 2.10
amazon0312 2.04 2.26 2.29 1.89 1.61 0.99
amazon0505 2.18 2.02 2.50 1.95 1.50 1.05
amazon0601 1.60 2.82 1.15 2.20 0.45 0.98
scale18 1.72 2.63 1.17 2.42 0.74 1.70
scale19 1.29 2.65 1.23 2.49 0.92 1.89
as-Skitter 2.46 3.04 2.30 2.56 2.71 2.14
scale20 1.03 3.44 1.33 3.16 1.14 2.08
cit-Patents 2.33 3.16 1.98 1.75 1.10 1.76
scale21 1.17 2.81 1.31 3.13 1.16 1.94
soc-LiveJournal1 2.00 4.06 1.81 2.76 2.25 2.59
wb-edu 5.77 2.11 5.28 1.53 12.66 1.24
scale22 1.20 3.72 1.17 2.95 1.19 2.02
scale23 1.33 2.66 1.46 2.75 1.24 2.82
scale24 1.38 3.56 1.21 3.16 1.27 2.18
scale25 1.50 3.02 1.24 2.41 1.15 2.26
uk-2005 2.85 2.40 1.97 2.05 1.30 2.60
it-2004 2.33 18.33 2.00 16.24 0.90 15.91
twitter 1.91 2.88 1.78 2.80 N/A N/A
friendster 2.06 1.26 2.11 1.13 N/A N/A
uk-2007 3.86 11.04 N/A N/A N/A N/A

Geometric Mean 1.87 2.61 1.42 2.33 1.07 1.65

has a very random distribution of the non-zeros (Figure 4.1i), resulting in random memory
access patterns. As we can see in Figure 4.1g, Friendster graph’s distribution is worse than
uk-2005 and better than scale24. In this graph, there are a small number of highly dense
parts and the other parts seem to present a more balanced distribution. This seems to be
the best case for scalability even though the best rates are achieved in uk-2005. The poor
locality in scale24 seems to hinder both the rate and scalability measures.

4.4. Relative Speedup. Figure 4.2 presents relative speedup between KKTri and
TCM codes (graphs ordered by the number of edges). KKTri outperforms TCM in 23 of
27 cases. In four small instances (3 amazon graphs and emailEU), TCM performs better
depending on the architecture. KKTri can achieve up to 7× speedup on graphs that have a
good natural ordering such as wb-edu, uk-2005, and uk-2007 (Figure 4.2). TCM also runs
out of memory for uk-2007 on two architectures. As both algorithms use the same runtime
system, the primary difference can be attributed to the algorithms, data structures used,
and the implementations.

4.5. Analysis of Triangle Counting Scalability. Let n and m be the number of
vertices and edges in an undirected graph. If the graph is a clique, the number of triangles
is bounded by Θ(n3) and Θ(m3/2). These are therefore trivial worst-case bounds on the
complexity of triangle enumeration. A trivial worst-case bound on triangle counting is
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Fig. 4.1: Strong scaling experiments: (a-c) x-axis presents number of threads, y-axis presents
speedup with compare to best sequential algorithm. (d-f) x-axis presents number of threads,
y-axis presents the execution time in seconds. (g-i) presents heat map of the graphs when
we partition the graph 8 by 8 grids, darker color means more non-zeroes.

O(nω), where ω is the exponent of matrix multiplication. Latapy gives a summary of

related complexity results and shows that triangle enumeration is bounded by Θ(mn
1
α ) if the

degree distribution is governed by a power law with exponent α [15]. This is an asymptotic
improvement over the worst-case, but Berry, et al. improved upon this further by showing
that triangle enumeration complexity can actually be Θ(n) in realistic circumstances [2].
These circumstances exist in many of the Graph Challenge instances, as we will show.

While the results of [2] are derived from a synthetic graph generation model (the
erased configuration model), we find that they help explain empirical results from the Graph
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Fig. 4.2: Relative speedup in Skylake, Haswell and KNL compared to TCM. The KKTri-Cilk
time for each graph in every architecture is used as the baseline. In KNL, because of memory
limitations, all of the implementations failed on Friendster and uk-2007 graphs. In Skylake
TCM fails on uk-2007 graph because of its memory requirement while KKTri doesn’t. In the
plot these cases are represented with ’N/A’.

0

100

200

300

400

500

600

700

800

900

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.E+06 1.E+07 1.E+08 1.E+09

4/
3-
m
om

en
t

Ti
m
e	
(m

s)

|E|

Time	(ms) (|E|^(4/3))*1.0E-7 4/3	moment

(a) Scale Graphs

0

100

200

300

400

500

600

700

800

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

4/
3-
m
om

en
t

Ti
m
e	
(m

s)

|V|

Time	(ms) (|E|^(4/3))*1.0E-7 |V|*1.0E-4 4/3	moment

(b) Non Scale Graphs

Fig. 4.3: Scale graphs and non-scale graphs triangle counting time in comparison to the
edge count. Trend lines for |E|(4/3) and |V | are also shown. The secondary axis shows the
4/3-moment. When 4/3-moments are small, we expect O(|V |) performance.

Challenge graphs. The essential argument of [2] is that fast triangle enumeration is associated
with small values of the 4/3-moment of the degree distribution. Letting dv be the degree of

vertex v, the 4/3-moment is defined as: E[d
4/3
v ] = 1/n

∑
v(d

4/3
v ). This moment is small for

many of the Graph Challenge instances.
The Graph Challenge 2017 organizers have summarized all submitted results, informally

fitting their runtimes with a regression line of O(m4/3) [18]. In this section, we use the
4/3-moment to explain the empirical runtime complexity more accurately. Graph Challenge
triangle counting algorithms can be evaluated this way to ensure that they obtain optimal
performance when possible.

The LU algorithm in this paper is asymptotically equivalent to the “MinBucket” al-
gorithm analyzed in [2] and proved to be optimal when the 4/3-moment is bounded by a
constant (MinBucket is alternatively called nodeIterator++ or Cohen’s algorithm [6, 20, 23]).
Therefore, we expect O(n) performance from LU if 4/3-moments remain small as n grows.

To test this conjecture, we separate the Graph Challenge instances into two classes which
we call Scale graphs and Non Scale graphs. The former comprise all of the R-MAT instances,
and would include other synthetic graphs that have increasing 4/3-moments. Non-scaled
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Table 4.5: Correlation coefficient between triangle counting time per vertex/edge and the

E
4
3 or 4

3 -moment.

Graph Type
Time-per-vertex Time-per-edge

E
4
3 4

3
-moment E

4
3 4

3
-moment

Scale graphs 0.90 0.98 0.89 0.98
Non-scale graphs 0.26 0.95 0.02 0.76

graphs are all others, many of which have small 4/3-moments despite their size. We compute
the 4/3-moment for all instances and calculate two correlation coefficients: that between
runtime per vertex/edge and the 4/3-moment, and that between runtime per vertex/edge
and m4/3 (the function identified by the Graph Challenge organizers). Table 4.5 shows the
results. Note that the per-vertex/edge runtimes are highly correlated with the 4/3-moment,
as predicted by [2].

Figure 4.3 depicts the relationship between the 4/3-moment and runtime on Graph
Challenge instances. Note that in the Scale graphs, m4/3 predicts the runtime trends
effectively. However, m4/3 does not model the runtime on real graphs as effectively as the
4/3-moment does.

5. Discussion: Approximate Accumulators. To extend this work to approximately
count number of triangles in a given graph we also tried to use approximate data structures;
bloom filter, hyperloglog and cuckoo filter. Although, theorotically their lookup complexities
are faster than our sparse hashmap accumulator their cache misses are too high for small
datasets although their performance is better in larger graphs they perform really poor
because of high number of cache misses. The accuracy we obtained was 99.996 %.

6. Conclusions. We developed a triangle counting method using the Cilk programming
model. This implementation resulted in a rate of 109 on a single multicore node and was
able to achieve measurable speedups compared to the OpenMP implementation of the same
algorithm. This linear algebra implementation is also faster than state-of-the-art graph based
implementation (up to 7×). We also showed correlation between the high rates achieved
and the conductance of the graph. Finally, we were able to show that the scalability of the
triangle counting is bounded by O(n) when the 4/3-moment is small. We plan to explore
the use of the Cilk implementation for other algorithms such as k-truss computation.
Acknowledgments: We thank Simon Hammond, Cynthia Phillips, and Stephen Olivier for
helpful discussions, and the test bed program at Sandia National Laboratories for supplying
the hardware used in this paper. Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA-0003525.



A. Yasar, S. Rajamanickam, M. Wolf, J. Berry, and Ü. V. Çatalyürek 35
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IMPROVING ALEGRA MEMORY USAGE

OTTO W. STRACK∗, JAMES J. ELLIOTT† , CHRIS B. LUCHINI‡ , AND CHRIS M. SIEFERT§

Abstract. Memory usage in the ALEGRA shock and multiphysics computational simulation code base
directly impacts its users, whether it concerns the amount of physical memory used or its ability to address
memory for extremely large problems (beyond 232 topological entities in a finite element mesh). In this paper
we discuss ways to reduce the amount of runtime memory used by ALEGRA executables, as well as their size
on disk. These improvements are realized through the use of a new linker and compiler options. We address
ALEGRA’s ability to run extremely large problems by discussing how the code base is being transformed
from 32-bit to 64-bit using a new C++ class to reference its finite elements. These improvements will allow
ALEGRA to become more efficient at running simulations and run larger simulations respectively.

1. Introduction. This paper discusses two projects that improved ALEGRA memory
usage. The first project involves using a new linker and compiler options to create an
ALEGRA executable that is smaller and more efficient. The second project introduces a
new global ordinate class in ALEGRA that enables the code base to utilize 64-bit instead
of 32-bit integers for addressing the finite elements in the code. Changing the code base to
utilize 64-bit is necessary because with the 32-bit code base you are limited to 232 topological
entities, whereas with a 64-bit base you can utilize 264 topological entities.

2. Gold linker. The new linker that we added to the ALEGRA build system is called
the Gold linker. The Gold linker was designed by Google [3, 4], but Firefox helped to push
its development [1]. It was created by Google for a faster link time, and to provide a tool for
experimenting with novel linker ideas. We use it for one of its advanced features, garbage
collection. Our team’s goal was to determine how much executable code we could reduce
and how much memory we could save by implementing this new tool. The Gold linker also
has other features, like Identical Code Folding [2]. This feature removes identical function
definitions from the compiled object code. Through the use of smarter compiling and linking
we were able to reduce the ALEGRA executable size and the memory used at runtime.

2.1. Making an executable. There are two major steps in creating a executable from
a set of source files: compiling and linking. Compiling is the process through which the
computer converts source files into object code or binary. On Linux, these object code files
contain different “sections” that are used for various purposes during compilation. These
sections are often labeled .text, .ro, etc... Linking can be described as merging object files
into an executable format that the computer can read into its virtual and physical memory
and execute (run). Even if only one source file needs to be linked, most linkers need to
include some sort of library to pull in previously existing code for math or graphics. After
compiling and linking an executable is produced.

2.2. Creating an executable with a smaller amount of memory. To illustrate
how the Gold linker reduces memory, assume the existence of two source files, func.cpp
and main.cpp. These two source files will be converted to object code using standard
GNU-compiler settings, and then the object files will be linked into an executable. The first
file, func.cpp will contain the functions F(), A(), and C() while main.cpp will have the
function main() which uses both F() and C() from the file func.cpp. These are compiled
into object code, also known as binary (ones and zeros) which the computer can read. A

∗Eldorado High School, ottostrack@yahoo.com
†Sandia National Laboratories, jjellio@sandia.gov
‡Sandia National Laboratories, cbluchi@sandia.gov
§Sandia National Laboratories, csiefer@sandia.gov
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binary copy of func.cpp called func.o will be made and likewise main.o will be made based
on the code of main.cpp. If we were to look into these .o files we would see that they are
broken into “sections”. There will be numerous sections, one such being the .text section.
This section will be the focus of our paper. When func.cpp is compiled all functions in the
file will become binary code inside the .text section. The same thing will happen to the
main.cpp file. When the linker is collecting the object code into an executable it reads the
main.cpp file and sees that F() and C() are not in the main.o file, so it will define them as
weak. In its next phase, the linker will read in the necessary files to define both F() and C()

found in the function main. In our case, these two functions are defined in func.cpp. The
linker will take func.cpp with F() and C() and insert it where F() and C() are defined as
weak in main.cpp. However, because the linker inserted the entire func.o file, not just the
needed functions, the executable now contains the function A(). This is a waste of space
because A() is not necessary for a functioning executable. For clarification see figure 2.1.

Step	1:	Compiling
Standard	Linux	executable	creation A()	is	defined	in	

Func.cpp
Never	used	in	main

Func.cpp

F(){…}
A(){…}
C(){…}

Func.o
.text
F: 011…01
A: 001…10
C: 111…11

Se
ct
io
n

main.cpp
main(){
F();
C();

}

main.o
.text
main: 011…11
F: weak
C: weak

Proj.exe
.text
main: 011…01
F   : 011…01
A : 001…10
C   : 111…11

Linkers	operate	on	
‘sections’

Everything	in	the	‘.text’	
section	from	a	file	(.o)	
will	get	added	if	any	
symbol	in	the	file	is	

used
Binary	includes	code	
for	A(),	even	though	it	
can	never	be	used

Step	2:	Linking

Fig. 2.1: Physical memory with A() loaded in

Now that the wastefulness of the original GNU linker is understood it will be easier to
understand the process to reduce the size of the executable. There are two steps to getting
a smaller executable size. We will illustrate this by using the Gold linker and adding two
compiler flags. The flags -ffunction-sections and -fdata-sections force the compiler
to place functions and data into separate sections. The only one that is necessary to influence
the .text sections in the .o files is the -ffunction-sections flag. The linker was changed
from the standard linker to the Gold linker. With these new optimizations we will follow the
same process as described above, but now when the files are compiled the result is completely
different. Because of the flags we added, instead of functions F(), A(), and C() all being
placed into a single binary chunk under the .text section, now the functions all have their
own .text section inside of func.o. Essentially, the compiler flags created smaller readable
sections to allow the Gold linker to differentiate between parts of the object file. In contrast
to before, we now see that when the linker retrieves the code needed to fill F:weak and
C:weak, the linker will recognize that .text.A is not needed in main() so it will not link it
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from func.o into main.o. This is where the size reduction in the executable comes from,
because the wasted binary of A() is no longer in proj.exe the executable is smaller. For
clarification see figure 2.2.

Proj.exe
.text
main: 011…01

.text.F
F   : 011…01

.text.C
C   : 111…11

Step	2:	Linking

Smarter	linkage	through	better	compiling
Step	1:	Compiling

Func.cpp

F(){…}
A(){…}
C(){…}

Func.o
.text.F
F: 011…01
.text.A
A: 001…10
.text.C
C: 111…11

main.cpp
main(){
F();
C();

}

main.o
.text.main
main: 011…11
F: weak
C: weak

When	–ffunction-sections	
is	added	to	the	flags	in	the	
compiler,	.text	files	are	

created	for	each	function,	
splitting	the	file	into	
readable	sections

The	Gold	Linker	recognizes	
that	text.A isn’t	called	in	main	
so	it	omits	that	section	from	

Proj.exe

Fig. 2.2: Physical memory without A() loaded in

2.3. Smaller runtime memory usage for ALEGRA. The compiler options from
the previous section result in smaller executables. Now, we discuss how this can translate
into less memory used at runtime. There are two types of memory that a computer uses.
The first type of memory is physical memory; This is the random access memory (RAM)
of a computer or the actual existing memory. The second type of memory is called virtual
memory this is the “fake” memory used to decide how to allocate physical memory. While
the virtual memory loads in everything that needs to be run and allocates physical memory,
the physical memory will only run small portions of the executable at a time. One function
of virtual memory is to determine which parts of an executable will be loaded in with a
corresponding piece of physical memory. For instance, the virtual memory may write main()

as taking up two memory pages, so that when it is loaded into the physical memory it will
load in the first page of memory with the first part of main() then the second part of memory
with the second part of main(). Later, when F() and C() are called by main() it will load
in the pages of memory that contain F() and C(). Physical memory can load in any page
from the virtual memory in any order, but it can’t divide the page of memory into smaller
subsections.

First, consider the initial example with the standard GNU linker. When the standard
GNU Executable is being loaded into virtual memory, let us assume that F(), A(), and C()

are all loaded in next to each other in the virtual memory. F() and A() will share a page
of virtual memory, but C() has its own page of memory. When main() is loaded into the
physical memory it then calls for F() and C() to be loaded into physical memory as well, so
all pages containing F() and C() are loaded into the physical memory. Because F() and A()

were assigned the same page by the virtual memory, A() will also be loaded into the physical
memory. Considering this, the physical memory should have four pages of memory running:
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the two main() pages, the F() and the A() page, and the C() page. For clarification see
figure 2.3.

Alegra	runtime	memory	reduction	
(Standard	GNU	Linker)	

Physical	Memory	(RAM) Virtual	Memory

main :010…11

F:011…01		A:101…01 C:000...11

main

:010…11

F:011…01		A:101…01

C:000...11

main

:010…11

F:011…01		A:101…01

C:000...11 Because	F:011…01	is	
loaded	in,	A:101…01	is	
also	loaded	in	because	
they	share	the	same	
page	of	memory

Additional	Memory	is	
then	spent	loading	the	
necessary	C	function

Proj.exe

Fig. 2.3: Physical memory with A() loaded in

Next, consider the example if we use the Gold linker combined with compiler flags.
When main() is loaded into physical memory it will call F() and C() again. However, now
F() and C() share the same page of memory. This is made possible by the fact that A() no
longer exists in the executable so it does not take up the extra space in the page with F().
Because A() is gone, an extra page of memory to get function C() in the physical memory is
no longer needed. The computer is now only using three pages of memory instead of the
four it was using with the GNU linker. This is how we achieved runtime memory savings in
ALEGRA. For clarification see figure 2.4.
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Alegra	runtime	memory	reduction	
(Gold	Linker)	

Physical	Memory	(RAM) Virtual	Memory

main :010…11

F:011…01 C:000…11

main

:010…11

F:011…01		A:101…01

main

:010…11

F:011…01	C:000…11

With	function	A	not	in	
proj.exe functions	F	and	
C	can	now	be	loaded	in	

the	same	page.

Proj.exe

Fig. 2.4: Physical memory without A() loaded in

2.4. Gold linker results. To test the runtime memory size of ALEGRA we ran a
series of benchmarks and recorded the values of MEMORY_HEAP_PMAX, which is the “high
water” mark of memory used by the program. We found that the benchmarks used anywhere
from 3-7 percent less memory than the original GNU build for both the “Comprehensive”
and “Integration” ALEGRA benchmarks, as shown in figures 2.5 and 2.6, respectively.
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Percent	Reduction	in	MEMORY_HEAP_PMAX	(Comprehensive)

Fig. 2.5: Runtime Memory Savings (ALEGRA Comprehensive Benchmarks)
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Fig. 2.6: Runtime Memory Savings (ALEGRA Integration Benchmarks)

Sheet1

Page 1

Emphasis and Alegra Builds Size (MB) % Smaller

2D

Alegra cts1intel Vanilla Build 183

Alegra cts1intel-Otto Gold Linker Build 153 16.4

Alegra cts1intel Vanilla Debug Build 1138

Alegra cts1intel-Otto Gold Linker Debug Build 1075 5.5

Emphasis cts1intel Vanilla Build 164

Emphasis cts1intel-Otto Gold Linker Build 136 17.1

Emphasis cts1intel Vanilla Debug Build 953

Emphasis cts1intel-Otto Gold Linker Build 902 5.4

Alegra cts1intel Stripped Vanilla Build 136

Alegra cts1intel-Otto Stripped Gold Linker Build 110 19.1

Emphasis cts1intel Stripped Vanilla Build 119

Emphasis cts1intel-Otto Stripped Gold Linker Build 95 20.2

3D

Alegra cts1intel Vanilla Build 264

Alegra cts1intel-Otto Gold Linker Build 217 17.8

Alegra cts1intel Vanilla Debug Build 1731

Alegra cts1intel-Otto Gold Linker Debug Build 1636 5.5

Emphasis cts1intel Vanilla Build 174

Emphasis cts1intel-Otto Gold Linker Build 144 17.2

Emphasis cts1intel Vanilla Debug Build 1057

Emphasis cts1intel-Otto Gold Linker Build 1001 5.3

Alegra cts1intel Stripped Vanilla Build 199

Emphasis cts1intel-Otto Stripped Gold Linker Build 102 20.3

Alegra cts1intel-Otto Stripped Gold Linker Build 158 20.6
Emphasis cts1intel Stripped Vanilla Build 128

Fig. 2.7: Executable Memory Savings (Various ALEGRA Builds)
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The ALEGRA executables we created with the Gold linker are much smaller than those
created with the standard GNU linker. Between the standard builds of ALEGRA, whether
they are the 2D, 3D, Emphasis, or stripped versions of them, we saw anywhere from a
15-20 percent reduction of size in megabytes (MB). The “stripped” build is the binary with
all the debug and line information removed. See figure 2.7. The debug versions and their
corresponding Gold versions also had a reduction in executable size. The Gold versions were
on average about 5-6 percent smaller than the debug builds (also seen in figure 2.7).

2.5. Gold linker overview. The Gold linker experiment was a chance for the ALEGRA
team to achieve savings in both executable size and runtime memory size at no cost to
other facets of the code. We saw a substantial reduction in the size of executables. Saving
approximately 15-20 percent for standard builds of ALEGRA. Additionally, we observed a
3-7 percent decrease in the runtime memory usage.

3. Global Ordinal Project. The Global Ordinal Project was conceived so ALEGRA
could run simulations with over 232 elements in a single problem on a finite mesh. Previously
when simulations were attempted that exceeded 264 elements the program would give
incorrect results or crash. The way to increase the number of elements that the executable
can reference has to do with the type of integers used to address memory. Before the Global
Ordinal Project was started, the ALEGRA code was based on the standard int type. Our
team changed this to type long long, which makes code 64-bit instead of 32-bit. Although
the most elegant way to achieve this is to create a typedef long long, our team wanted
to ensure that we had not missed any 32-bit integer types that needed to be converted, so
we made a typedef named ANGO_t and inserted it in a class called ANGO (as seen below).
Because long long ANGO is in a class, whenever the compiler tries to implicitly convert
an ANGO object to an int the compiler gives an error that states “type ANGO could not be
converted to type int”. To start the process of converting the code base we changed a few
global ints to ANGOs and allow the errors to appear. We then proceeded to follow the
errors fixing them then building the code again, slowly making our way through the code
base converting ints to ANGOs. This method ensured that we did not accidentally miss any
ints that needed converting. Although the class is being kept for developmental purposes,
once we are confident that our code is correct we will delete it and replace it with a typedef.
A partial listing of the ANGO class is provided below.

class ANGO {

public:

typedef long long ANGO_t;

typedef unsigned long long uANGO_t;

typedef long ANGO_fake_t;

typedef int CLASSIC_GO_t;

private:

ANGO_t go_;

public:

ANGO() { go_ = 0l;}

ANGO (ANGO_t g) { assert(g <= INT_MAX && g > INT_MIN); go_ = g;}

ANGO operator-() const {

ANGO n;

n.go_ = -go_;

return n;
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}

ANGO_t getGOValue() const

friend std::ostream& operator<<(std::ostream& os, const ANGO& );

};

inline std::ostream & operator<<(std::ostream& os, const ANGO & g) {

assert(g.go_ < INT_MAX && g.go_ > INT_MIN);

os<<g.go_;

return os;

}

4. Conclusion. We discussed improvements in memory usage of the ALEGRA code
base using a better set of compiler flags and the Gold linker. There were two memory
improvements concerning the implementation of the Gold linker. The first was a smaller
executable size and the second was a smaller amount of physical memory used (RAM).
We also discussed the Global Ordinal Project, which will eventually allow users to run
simulations with over two billion elements.
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EFFICIENT POINT MERGE USING DATA PARALLEL TECHNIQUES

ABHISHEK D. YENPURE∗ AND KENNETH D. MORELAND†

Abstract. We study the problem of merging three-dimensional points in space. We present a fast,
efficient approach that uses data parallel techniques for execution in various shared memory environments.
We then compare our approach against methods of a widely used scientific visualization library accompanied
with a performance study that shows our approach works well with different kinds of parallel hardware
(many-core CPUs and NVIDIA GPUs), and data sets of various sizes. We also present a heuristic for
efficiently clustering spatially close points together, which is one reason our method performs well against
the other methods.

1. Introduction. With this work, we contribute a many-core algorithm for merging
nearby points for scientific visualization. The primary challenge for this algorithm is efficiently
identifying which points are close to each other. Although the point merge algorithm does
not receive as much attention as algorithms like iso-surfacing or volume rendering, it is used
regularly in scientific visualization tools.

Point merging typically complements visualization algorithms that iterate over cells
like iso-surfacing or slicing. These algorithms iterate over input cells to generate triangles;
the vertices of these output triangles are interpolated and not part of the source data set.
Consider a case where an iso-surface operation is applied on two neighboring cells, C1 and C2,
to produce two abutting triangles T1 and T2, as shown in Figure 1.1. T1 comprises vertices
V11, V12, and V13, and T2 is composed of vertices V21, V22, and V23. As abutting triangles,
two sets of their vertices should be coincident. Without loss of generality, assume V11 and V21

are equal and V12 and V22 are equal. If these pairs are not merged, then connectivity-based
operations will fail. In particular, rendering this triangle data will result in flat shading,
since the normal of V11 would reflect only T1 (and not T2), the normal of V21 would reflect
only T2 (and not T1), and V12 and V22 would suffer similarly. However, if V11 and V21 are

Fig. 1.1: Example of abutting triangles generated by applying an iso-surface operation.

merged to make a new point V ′ and if V12 and V22 are merged to make a new point V ′′,
then the lighting will appear smooth.

Point merging is useful in other settings as well. When visualization algorithms generate
triangles with small areas, then lighting issues can again arise (among other issues). The
vertices of triangles with small areas are typically very close to one another and thus can be
reduced to a single vertex through point merging. Further, numerical errors can sometimes
cause interpolated vertex positions to be slightly offset. So in the previous iso-surface
example, even vertices that should be considered exactly coincident might have inexact point
coordinates. Point merging solves this problem as well.
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46 Efficient Point Merge Using Data Parallel Techniques

Point merging is typically done by organizing points into a spatial data structure and
traversing that data structure to locate nearby points. Our algorithms works in this vein,
although we are able to arrange our operations so that no explicit data structure is needed.
It is for this reason that we refer to our approach as “Virtual Grid” point merging. A
particular focus for our algorithm is on many-core architectures. Our code is designed to use
the parallel building blocks available from the VTK-m library that ensure good performance
over varying architectures. We evaluate this code, comparing to another module in VTK-m,
and to both parallel and serial modules in VTK. Overall, we find that our Virtual Grid
point merging algorithm is competitive with other parallel point merging techniques, more
resilient to irregular distributions of input points, scalable within shared memory domain,
and performs well on both CPU and GPU devices.

2. Related Work. We divide this section into two parts In the first part we discuss
previous works which deal with merging of points. In the second part we discuss previous
works for developing scientific visualization algorithms using data-parallel techniques.

2.1. Merging Points. This section describes previous works for merging spatially close
points. Many of these works present approaches for merging points in a related application
of mesh simplification, in which case points are referred to as vertices. This section is further
divided into three parts. In the first part we discuss works that use search structures to
discover spatially points. In the second part we discuss works that use much simpler data
structures to merge points. In the third part we discuss works that focus on improving the
accuracy of merging points.

2.1.1. Merging Points Using Search Structures. Rock and Wozny [19] provided
an approach for reconstructing the topology of a model. The first step in their approach
involved merging of spatially close points, which they term ‘vertex merging,’ as the points
that they merge are vertices of triangular facets. To locate close points that need to be
merged, they used an AVL search tree constructed with the vertices of the facets. Kanaya et
al. [6] presented a similar approach where they perform vertex clustering using an octree,
and offer multiple degrees of mesh simplification. Further, they use a depth first approach
on this octree to locate the connected components at the desired degree of simplification,
which are simplified then by vertex merging.

2.1.2. Merging Points Using Spatial Binning. The construction of search struc-
tures for very large data is known to have a significant computational overhead. Rossignac and
Borrel [20] address this issue with a mesh simplification approach that uniformly subdivides
a 3D volume containing the input mesh into smaller 3D regions, or “bins.” All vertices that
fall within the same region are merged together. The input mesh is then corrected to remove
all degeneracies that were introduced by the merge operation, yielding a simplified output
mesh. While this approach is fast, it has very little control over the accuracy and quality of
the simplification. Shin et al. [21] modify the uniform binning approach of Rossignac and
Borrel to observe an increased accuracy of vertex merging. To increase the merging accuracy,
vertices were merged only if they existed within a user-defined ε-tolerance of each other.
Vertices within this tolerance may be stored in one of the adjacent cells associated with the
bin in which the vertex resides. To limit searching in all adjacent cells, Shin et al. describe
a way to decompose a cell in multiple regions. This modification significantly reduces the
number of cells that must be sequentially searched. The primary focus of this work is on the
construction of topology from triangle data, given no prior connectivity information.

2.1.3. Improving Accuracy of Point Merging. Another set of works focus on
minimizing the error introduced by merging vertices. Garland and Heckbert [5] perform
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vertex merging by contracting pairs of vertices, one pair at a time. A pair of vertices are
merged based on a per-vertex error cost function that calculates the sum of square distances
to the planes of the triangles that meet at the vertex. To merge a pair (v1, v2), the position
vnew is calculated as the minimum-error point. Low and Tan [12] achieve a more-consistent
mesh simplification via a cell clustering approach that assign weights to vertices based on the
probability of the vertex lying on the mesh boundary from an arbitrary viewing direction,
and on the size of the faces bounded by the vertex. Lindstrom and Turk [11] minimize the
impact of point merging on the geometric properties (e.g., area and volume) of the mesh
by assigning a cost weights to the mesh edges, where the cost is a function of the volume,
boundary, and shape preservation properties of the mesh vertices. Finally, Barequet and
Kumar [1] merge a pair of vertices exist on different edges. In this method, edges are selected
based on the cost of moving the endpoint vertex of one edge to the endpoint vertex of another
edge. This cost has a user-provided upper-bound ε, and a pair of vertices are merged by
averaging their coordinates.

2.2. Data-Parallel Techniques. Recently, a growing body of literature has investi-
gated the design of data-parallel algorithms for scientific visualization applications using
data-parallel primitive (DPP) [2] operations, such as sort, gather, scatter, map, reduce, copy,
etc. These approaches inspire techniques for performing point merging in a data-parallel set-
ting. Lessley et al. [8] describe approaches for data-parallel searching for duplicate elements
in a 3D mesh topology. Their work finds the external faces of a given data set by hashing
the three vertices that define a triangular face. These hashed values are then used to group
duplicate faces. Point merging is a similar problem, whereby coincident points hash to the
same value. The approaches used to handle hash collisions directly affect the correctness
and the performance of point merging. Although the work of Lessley et al. does not readily
provide a solution for merging points, its results provide motivation to use data-parallel
techniques.

Miller et al. [13] present a data-parallel method that generates the output topology
of a visualization operator using the knowledge of the input mesh topology. One of the
visualization operators studied was the marching cubes algorithm, whereby all output vertices
occur on the edges of the cells of the input voxel grid. This work used the unique identifies of
these edges in the input mesh as keys to store the newly-calculated points as values. These
key-value pairs are used to merge points of the output topology using a reduce-by-key DPP.
However, this approach cannot be directly applied to a mesh when the information about
the original topology is unavailable.

Finally, the emergence of platform-portable libraries, such as NVIDIA Thrust [17] and
VTK-m [16], have made it convenient to write algorithms in a single code implementation
for execution across multiple platforms (e.g., both CPUs and GPUs). These high-level
libraries provide a set of core DPP that are optimized for each different target platform
of execution using low-level, platform-specific libraries, such as OpenMP, Intel TBB, and
NVIDIA Thrust. An algorithm is then written in terms of these core DPP or user-defined
DPP (“worklets”). Since its release a couple of years ago, platform-portable algorithms
written with VTK-m have demonstrated competitive performance to algorithms designed for
a specific platform [7,9,10,18]. This collection of work justifies the merit of the platform-
portable framework. In this work, we design our algorithm with VTK-m and contribute the
implementation as a standard, open-source filter within the library.

3. Formal Definition of Point Merging. Informally, the point merging operation
finds all point within a distance δ and merges those points together. However, it is necessary
to define correctness of merging points in ambiguous cases, when we have tolerance δ 6= 0.
Figure 3.1 presents a scenario, where we have 3 points to be merged together, points A, B,
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Fig. 3.1: Points to be merged, where x < δ

(a) Merge points A, and B.
y > δ

(b) Merge points B, and C.
y > δ

(c) Merge points A, B,
and C

Fig. 3.2: Possible, correct solutions to merging points

and C. Points A and B satisfy the distance criteria, and points B and C satisfy the distance
criteria with respect to tolerance δ, but A and C do not satisfy the distance criteria. This is
an ambiguous case because it is unclear whether A, and C should be merged together to
satisfy all of B’s distance criteria. In this work we consider any group of points that satisfy
the following properties to be a proper point merge.

1. In a group of points to be merged, every point in the group is within distance δ
from at least one point in the group.

2. A group of points to be merged have a fully connected distance criteria relationship
among the points. That is between any two points there is a path of points that
satisfy the distance criteria between them.

3. After the merging is complete, none of the resulting points are within distance δ
from one another.

Note that our definition of point merging allows for multiple, equally correct solutions. For
example, Figures 3.2a, 3.2b, 3.2c present all the possible, correct solutions to merge the
points from Figure 3.1. Since there are multiple correct solutions to merge points successfully
in an ambiguous case, the outputs of different approaches can be slightly different from each
other, i.e they might not contain the same points in the final output. However, they must
satisfy the discussed properties.

4. Technical Approach. This section provides details on our Virtual Grid approach.
The key differentiator between our approach and previous approaches is that our approach
is designed for many-core architectures and is composed of data parallel techniques. At
a high level, our approach works as follows. It begins by binning points into the cells of
a 3D uniform grid, which is the same first step taken by previous approaches. However,
previous approaches have relied on an explicit mapping from cells to lists of points within
the cells. Our approach, instead, focuses on using data parallel operations to rearrange a
large list of points. After rearranging, each thread of a many-core device operates on one
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Fig. 4.1: Notional example of working of the Virtual Grid approach.

cell at a time, and the points that lie within that cell are readily available in the thread’s
memory. This is the reason we term our approach as a “Virtual Grid” approach. Figure 4.1
provides a 2D schematic of how this process occurs in our Virtual Grid approach. Another
difference between our algorithm and previous approaches is in the merge step. Many
previous approaches have merged all points that occur in the same cell, and also looked
at neighboring cells for close points in adjacent cells. Our approach works differently; we
perform distance computations between pairs of points within a cell to ensure that only the
points that occur within the tolerance δ are merged. However, this operation by itself is not
sufficient to merge all points.

Occasionally, close points (i.e., points that are with δ and should be merged) are mapped
into adjacent cells of the virtual grid. It is important to identify when this happens and
ensure they are merged. We deal with this case by performing the multiple iterations of our
point merge operation, with each iteration having the virtual grid offset by a small amount.
This way, the points that satisfy the tolerance criteria, but were binned into different cells in
one iteration, can be binned into the same cell in a later iteration. Specifically, we run eight
iterations. We calculate the eight bounding boxes of the eight virtual grids as:

1. Expanding the bounding box of the original data set by δ in all directions (1 count);
2. Shifting the bounding box from step 1 by δ/2 along each axis (3 counts);
3. Shifting the bounding box from step 1 by δ/2 diagonally along planes XY, YZ, and

XZ (3 counts); and
4. Shifting the bounding box from step 1 by δ/2 along the diagonal of the bounding

box (1 count).
Our algorithm also treats a tolerance of 0 as a special case, and only a single iteration is
required to merge coincident points, since the issue of close points in adjacent cells is not
relevant in this case.

A single iteration of our approach works as follows:
1. For each point, identify which cell in the Virtual Grid contains it.
2. Rearrange the layout of the points so that points contained in the same cells are

grouped together in an array. This is done via a Reduce-By-Key data parallel
operation, which is provided by VTK-m.

3. For each group, calculate the points that are within the tolerance δ of each other.
For a set of points that satisfy the tolerance criteria, output neighbor index as the
point with the minimum index in the set.

4. Cluster all points that share the same neighbor, which becomes a neighborhood.
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This is done via a Reduce-By-Key data parallel operation, which is provided by
VTK-m.

5. Reduce each cluster of points by calculating its centroid. The set of reduced clusters
is the output of the merge operation.

Miller et al. [13] show how to perform Steps 2 and 4 efficiently in parallel by sorting, and
VTK-m provides this grouping as a basic feature [14]. The steps described above are
performed once for all the virtual grids described earlier. Algorithm 3 explains how each of
these steps is performed. This approach performs at its best when the cells of the virtual

Algorithm 3 Virtual Grid approach

1: for all i← 0, : Points : in parallel do . Step 1
2: Cell[i]← Get-Cell-For-Point(()Points[i])
3: end for
4: Bins← {(bin, Pbin) : Pbin are indices of all points in bin} . Step 2 : Performed by

VTK-m, using Cell array from Step 1.
5: for all (bin, Pbin) ∈ Bins, do in parallel do . Step 3
6: for doi ∈ Pbin
7: nearest[i]← i
8: dist←∞
9: for doj ∈ Pbin and j 6= i

10: j dist← Distance(Points[i], Points[j])
11: if thenj dist ≤ δ and j dist ≤ dist and j < i
12: nearest[i]← j
13: dist← j dist
14: end if
15: end for
16: end for
17: end for
18: Clusters← {(cluster, Pcls) : Pcls are indices of all points in cluster} . Step 4:

Performed by VTK-m, using Nearest array from Step 3.
19: for all (cluster, Pcls) ∈ Clusters, do in parallel do . Step 5
20: centroid← Get-Centroid(Points, Pcls)
21: end for

grid have small numbers of points binned into them. Binning fewer points in the cells of
the virtual grid translates to performing fewer computations to correctly group points that
satisfy the tolerance δ. Also, since the virtual grid is represented sparsely in memory, i.e., no
state information for the grid is stored, it can use much smaller bins and therefore reduce
the cost of searching for neighbors in step 3 of Algorithm 3. To achieve this, we calculate
the optimal dimensions for the uniform grid based on the tolerance δ using the following
equation:

dimensiont =
lengtht
2× δ (4.1)

where dimensiont is the dimension of the grid along axis t and lengtht is the length of the
bounding box along axis t in the original data set. This enables us to create the smallest
bins for which all pairs of points within the tolerance δ of each other are guaranteed to
bin in the same bin or in adjacent bins. However, if the tolerance δ is very small, then the
dimensions of the virtual grid can become so large that it requires more than 232, or 264
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bins, which means they cannot be indexed by 32-bit or 64-bit numbers. In such cases, we
limit the dimensions of the grid using the following equation:

dimensiont = floor( 3
√
|MaxV alue|) (4.2)

Where MaxV alue is the maximum number of bins that can be indexed using the data type
we choose for binning points.

Section 6 presents impacts of the data type choice on performance.

5. Experimental Overview. To better compare and study the performance charac-
teristics of our methods, we performed tests with the following variables:

• 6 algorithms;
• 3 data sets;
• 2 values of tolerance δ; and
• 2 different hardware architectures.

We ran performance tests with selective combinations of these variables Table 5.1 details
these combinations. Note that we tested each of these combinations with all three of our
datasets. In total we compared 168 unique combinations of these variables. Limitations of
the features from the VTK library restricted us from testing all 288 possible combinations.
We elicit these limitations further in this section. Our performance evaluations are presented

Tolerance Parallel
Algorithm δ = 0 δ 6= 0 Serial TBB(6) CUDA Count

vtkMergePoints 3 3 3
vtkCleanPolyData 3 3 3

vtkSMPMergePoints 3 3 18
VTK-m Point Locator 3 3 3 3 3 48

VTK-m Virtual Grid (32 bit) 3 3 3 3 3 48
VTK-m Virtual Grid (64 bit) 3 3 3 3 3 48

Total 168

Table 5.1: Combinations that we tested. To interpret this table, consider the row for ”VTK-
m Point Locator,” which supports execution with both the values of tolerance, and all types
of parallelism. For different hardware architectures we ran 1 experiment for each, serial and
GPU execution, and performed 6 experiments for TBB with varying number of CPU threads,
making the total 8. For this case, we have 2 tolerances × 8 parallelizations × 3 data sets =
48 experiments.

in Section 6.

5.1. Algorithms. We consider a total of six algorithms: three algorithms are from the
VTK library, and three algorithms are implemented using VTK-m.

5.1.1. VTK Algorithms. The three algorithms from VTK come from the vtkMerge-
Points, vtkSMPMergePoints, and vtkCleanPolyData classes. Each of these classes has
limitations. The “vtkMergePoints” point locator merges exactly coincident points, but does
not work in parallel. We also considered “vtkSMPMergePoints,” which performs the same
operation in parallel1, but requires the user to explicitly take care of threading. Finally,

1We encountered a bug in this module, and so the experiments performed in our study came from a
revised version provided by Kitware, The bug fix will be available in a future version of VTK. The bug report
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we studied the “vtkCleanPolyData” filter, which is capable of merging points within a user
provided tolerance. This filter also performs additional tasks, such as removing degenerate
triangles. Like vtkMergePoints, vtkCleanPolyData filter operates only in serial.

5.1.2. VTK-m Algorithms. From the three algorithms implemented in VTK-m, two
of the algorithms come from variants of our Virtual Grid approach, and one other algorithm
comes from a point locator based approach for merging points.

The variants in the Virtual Grid approach result from the user’s choice in data type to
store the bin indices while binning points. For this paper, we chose to test with two different
data types: 32-bit integers and 64-bit integers.

The point locator based approach was implemented as a VTK-m counterpart for the
point locator based modules in VTK, namely vtkMergePoints and vtkSMPMergePoints. The
solution for this study was implemented using a modification of the “PointLocatorUnifor-
mGrid” module from the VTK-m library, which uses spatial binning to locate the nearest
neighbor of a points. The modification was performed in order to support querying nearest
neighbors of the same points that were used to build the search structure. Without this
modification, for a given query point, the points locator returns the same query point as
the nearest neighbor. Other point locator modules based on a k-D tree and on two-level
uniform grid are also available in the VTK-m library but were not used for this study. The
algorithm that was developed uses multiple iterations to merge points. For each iteration it
finds the nearest neighbor for every point, and merges the neighbors by reducing them to
their centroid. These iterations are performed until no new neighbors are discovered in the
the set of the residual points.

5.2. Data Sets.

(a) Fusion (b) Thermal Hydraulics (c) Supernova

Fig. 5.1: Data sets used for the performance tests. An additional clip operation was applied
to generate the images for the Fusion and Supernova data to reveal more intricate details.

We explored three data sets for this study. In each case, we took an existing data set
and applied an iso-surface operation. This fusion data set comes from the NIMROD [22]
simulation code which is used to model the behavior of burning plasma. This thermal
hydraulics data set comes from the NEK5000 [4] code which is used for the simulation
computational fluid dynamics. Finally, the supernova data set comes from a supernova
simulation made available by Blondin and Mezzacappa [3]. We used the VTK-m library
to perform the iso-surfacing and disabled the option for merging coincident points. This
resulted in a triangle soup, where no triangles shared any common vertices. Explicitly, if
there were N triangles, then the soup would have 3×N vertices, with many of the vertices

can be found at the link: https://gitlab.kitware.com/vtk/vtk/issues/17386

https://gitlab.kitware.com/vtk/vtk/issues/17386
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being coincident and replicated in the vertex list. Figure 5.1 provides the visuals for the test
data sets, and Table 5.2 provides additional information for reproducibility purposes.

Output
Data set Iso-Values Points Cells Bounds

Fusion 2.4, 3.2 4125540 1375180 0 – 1
Thermal Hydraulics 42, 64 15686430 5228810 0 – 1

Supernova 0.02, 0.05, 0.07 24493224 8164408 0 – 431

Table 5.2: Details of the data sets we used for our experiments.

5.3. Tolerance for Merge. We test our algorithms with two distinct values for tol-
erance, δ = 0, and δ = 0.0001. These two values provide a fair comparison with features
provided by the VTK library and also enable us to study the performance characteristics of
our algorithms.

δ = 0 : We use a zero tolerance to merge exactly coincident points present in
the data set. Choosing the tolerance as δ = 0 enables us to compare our parallel
algorithms implemented using VTK-m with the parallel features to merge coincident
points from the VTK library.

δ = 0.0001 : We use a non-zero tolerance δ to merge points that occur within
the specified distance of each other. This enables us to test cases where there
is a need to merge points that may not be exactly coincident, but are separated
by some threshold distance between them. For our tests we used the tolerance
δ = 0.0001. As mentioned earlier, the VTK library has no alternatives for merging
points that are separated by some difference in parallel. We instead compare our
VTK-m implementations with the ‘vtkCleanPolyData’ filter provided by the VTK
library, which also accepts a tolerance value from the user to merge points in the
data set, but only supports serial execution.

5.4. Hardware Architectures. The biggest advantage of using the VTK-m library is
its ability to provide portable performance over multiple architectures that are comparable
to platform specific solutions. We tested our implementations on two different hardware
environments:

CPU: Dual Intel Xeon Platinum 8160 CPU of the SkyLake family, each with 24 cores
running at 2.10 GHz, able to run 2 threads per core, and equipped with 191 GBytes
of DDR4 memory.

GPU: NVIDIA Tesla P100 GPU of the Pascal family with 3584 CUDA cores, capable
of 5.3 TeraFLOPS of double precision computations, and equipped with 16 GBytes
of HBM2 memory.

VTK-m uses the TBB (Thread Building Blocks) library as a backend threading library for
execution on many core CPUs, and uses CUDA as a backend threading library for execution
on NVIDIA GPUs. Henceforth, all parallel CPU execution times are reported using TBB,
and GPU execution times are reported using CUDA.

6. Results. We divide this study into four parts. In Section 6.1 we present the
comparison of our Virtual Grid approach with the other algorithms from Section 5.1 for
merging exactly coincident points (δ = 0). In Section 6.2 we present the comparison of
our Virtual Grid approach with the other algorithms from Section 5.1 for merging close
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points within a tolerance (δ = 0.0001). In Section 6.3 we compare the strong scaling
characteristics of our Virtual Grid approach while executing on multi-core CPUs. In Section
6.4 we present the performance portability of the our Virtual Grid approach through VTK-m
while executing on multi-core CPUs and NVIDIA GPUs. In Section 6.3 and Section 6.4,
we quantify performance and scaling in terms of the rate of processing points, which is
calculated using the following equation:

processing rate =
number of points

execution time (seconds)
(6.1)

This gives us the total number of points that a program is able to process in a second. We
use processing rate as a measure because it is a better indicator of parallel speed-up than
execution time [15].

VTK-m
Parallel Point Virtual Grid

Data Set Environ. VTK Locator 32-bit 64-bit

Fusion Serial 0.54 4.48 1.43 1.35
TBB 0.12 0.26 0.15 0.20

CUDA 0.08 0.04 0.05

Thermal Serial 9.61 68.22 6.37 6.03
Hydraulics TBB 0.64 2.13 0.58 0.73

CUDA 0.82 0.16 0.18

Supernova Serial 7.64 55.82 10.24 9.71
TBB 0.68 2.16 0.93 1.05

CUDA 0.78 0.25 0.28

Table 6.1: Execution times in seconds for merging points with δ = 0. The execution times
for TBB are presented using 48 CPU cores.

6.1. Merging Coincident Points (δ = 0). In this part of the study we compare the
execution times of all algorithms for merging bit-wise coincident points. The serial execution
times for the VTK library come from the “vtkMergePoints” module. The TBB execution
times for the VTK library come from a custom program that explicitly manages spawning
of threads for the “vtkSMPMergePoints” module. As the VTK library does not support
execution on GPUs, there are no CUDA results for VTK.

The two selected VTK modules for this part of the study are imperfect comparators.
Both VTK modules only deal with the special case of bit-wise coincident points. The
algorithms that we implemented using the VTK-m library deal with the general case, which
means they need to perform more computations. Specifically, we perform additional distance
computations to make sure we group points only within the given tolerance δ. Also, we
calculate the centroid for all the points grouped together to merge them, coincident or
otherwise. Despite this asymmetry, we feel the comparison is valuable since it lets us test
against another parallel implementation.

Table 6.1 presents the execution times for this part of the study. In most cases the
execution times for the serial and TBB versions of the VTK library are better than our
Virtual Grid approach. Again, this is an expected result as we perform significantly more
computations in our Virtual Grid approach. The point locator based approach, implemented
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in VTK-m, performs slower than the other approaches in all cases. The reason for this
behavior, apart from the extra computations, is the cost associated with the construction of
the point locator data structure for every iteration until the merge converges.

Table 6.1 also shows the difference between the two versions of our Virtual Grid approach.
Under most circumstances, the version using 32-bit integers performs better than the one
using 64-bit integers. The 32-bit integers results in larger bins, which results in more points
binned together, which in turn results in more time spent computing distances between points.
However, 32-bit integers can be sorted faster than 64-bit integers, and the reduced sort
time more than compensates for the extra distance comparisons, which are embarrassingly
parallel.

When considering performance across data sets, the algorithms behaved differently. The
execution times for the Virtual Grid are consistently proportional to the number of points
being processed. For example, the Virtual Grid algorithm using 32-bit integers running with
TBB processes at a consistent rate of about 27 million points per second for all three data
sets. In contrast, the algorithms based on point locators, which includes the VTK algorithm,
process points at a much slower rate for thermal hydraulics data than the other two data
sets. This is because the thermal hydraulics data is not spatially distributed as evenly as the
other two data sets. We observe, therefore, that the Virtual Gird approach is more resilient
to the spatial distribution of the points in the data and a better choice for unstructured data
at different scales.

VTK-m
Parallel Point Virtual Grid

Data Set Environ. VTK Locator 32-bit 64-bit

Fusion Serial 2.17 5.21 1.97 2.0402
TBB 0.33 0.29 0.3605

CUDA 0.10 0.07 0.1148

Thermal Serial 64.94 77.23 10.52 11.03
Hydraulics TBB 2.26 1.22 1.41

CUDA 1.03 0.33 0.37

Supernova Serial 54.02 57.20 13.65 15.94
TBB 2.38 1.25 1.95

CUDA 0.84 0.35 0.48

Table 6.2: Execution times in seconds for merging points with δ = 0.0001. The execution
times for TBB are presented using 48 CPU cores.

6.2. Merging Close Points (δ = 0.0001). In this part of the study we compare the
execution times of all algorithms for merging points that are separated by a small tolerance.
The execution times for the VTK library come from the “vtkCleanPolyData” module. This
is the only module available in the VTK library that readily supports merging of points that
are separated by some distance. As mentioned in Section 5, it does not support parallel
execution on any architecture. In addition to merging close points, the vtkCleanPolyData
module removes degenerate triangles; we modified our algorithms implemented using VTK-m
to also remove these triangles to have a fair comparison.

Table 6.2 presents the execution times for this part of the study. There is a significant
increase in the execution times for both the VTK library and the VTK-m implementations
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compared to the times presented in Section 6.1. The increase in execution time for the VTK
library are a result of now having to perform distance checks and calculating the centroid for
merging points that are within the distance δ. The modules for merging coincident points
from the VTK library only perform a comparison for equality. The increase in the execution
times for the VTK-m implementations are a result of having to perform multiple iterations
to merge points that are within the distance δ. The Virtual Grid approach in VTK-m is
the most performant of all the algorithms that we tested for this case. As we optimally bin
points into small cells of the virtual grid, we only have to perform a few distance checks
between pairs of points that belong to the same cell in order to merge them correctly. This
reduces the computations that are performed by each thread when executing in parallel.
Also, in contrast to the point locator based algorithm implemented in VTK-m, the Virtual
Grid approach does not have the overhead of maintaining and updating a search structure
to locate close points.

6.3. CPU Scaling Study.
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(a) CPU strong scaling for fusion
data.
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(b) CPU strong scaling for thermal
hydraulics data.
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(c) CPU strong scaling for supernova
data.

Fig. 6.1: CPU strong scaling for merging close points (δ = 0.0001) : The dashed lines show
scaling results when using both NUMA nodes, and the solid lines show scaling results when
threads are restricted to a single NUMA region. Beyond the dashed vertical line at 48 threads
we use logical CPU cores of both the NUMA nodes, and beyond the solid vertical line at 24
cores we use logical CPU cores for the chosen NUMA region. The VTK data shown is the
processing rate for the serial version.

In addition to comparing our Virtual Grid approach to the reference VTK counterparts, and
the point locator based VTK-m algorithm, we also studied the strong scaling characteristic of
the algorithms for merging close points. Further, since the CPU hardware has two processors
using a NUMA architecture, we also study the impacts of the NUMA architecture on the
performance of our implementations. Figure 6.1 plots the results for this part of the study.
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Fig. 6.2: Comparison of processing rates for Virtual Grid (32-bit) approach across devices.
These rates are based on the tolerance δ = 0.0001. The TBB results are provided using 48
CPU cores.

Since there is no parallel module in VTK for this task, the plots show a flat line for the
corresponding VTK module. The plots present the comparison of strong scaling results of
our implementations when CPU threads use both NUMA regions and when threads are
restricted to use a single NUMA region. In the presented plots, the dotted lines show the
strong scaling results when the programs use both NUMA nodes and the solid lines show
the strong scaling results when the programs execute on a single NUMA node using only the
local memory of that node. The scaling results for a single NUMA node only go to 48 cores,
because a single node only contains 24 physical cores, which could also be used as 48 logical
cores.

In general, the plots indicate that our VTK-m implementations are able to benefit from
an increase in the number of available CPU cores. That said, we observe that while this
scaling is good, it does level off as we approach the number of cores available. We believe this
is because the point merging algorithm, which by its nature must load points from disparate
memory locations, is memory bandwidth bound. Consequently, we observe diminishing
returns for more cores, almost no benefit from engaging hyper-threading, and a large penalty
when executing across NUMA memory regions. These observations suggest:

1. Increasing the number of threads for execution beyond the available physical CPU
cores does not result in any performance improvements for our implementations;

2. Limiting threads to use a single NUMA node and its local memory provides the best
rate for processing points.

These ideas can be used as a heuristic to schedule programs to yield the best performance. If
users were to use our implementations in a distributed memory setting, they should launch
processes such that each process is limited to execute in a single NUMA region, with threads
not exceeding the maximum available physical cores.
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6.4. Performance Across Devices. Figure 6.2 presents the comparison of processing
rates for the Virtual Grid approach across devices. The processing rate for the VTK library
comes from the “vtkCleanPolyGrid” filter and is used as a comparator for the Virtual Grid
approach when executing in serial. This section reinforces our findings from Section 6.2
that the Virtual Gird approach is very efficient for a general case of merging points. When
executing in serial the Virtual Grid approach offers better throughput compared to the VTK
comparator. Additionally, the Virtual Grid approach is able to use available parallelism
efficiently. When executing on GPUs the Virtual Grid approach is able to achieve a much
higher processing rate.

7. Conclusions. We presented our Virtual Grid algorithm, a fast and scalable solution
for merging points in a data set that occur within a certain user provided tolerance. This
algorithm leverages VTK-m and its data parallel techniques.

Overall, our algorithm performs well on varied parallel environments and workloads. Our
comparison against parallel VTK showed that the Virtual Grid approach was competitive.
Although our implementation is slower in some cases, we attribute this to the fact that the
VTK code is designed and optimized for a single specific use case and thus removes several
operations necessary for our more general code. We also compared against another VTK-m
module, point locators, and found that we had superior performance in all cases.

For future work, we expect further optimizations are possible with respect to optimizing
memory accesses. We will also be exploring alternatives to the sort used for grouping points
in the same Virtual Grid bins. We are considering hash-table–based approaches similar to
that used by Lessley et al. for external facelist calculation [7, 9].
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PREDICTING DISK FAILURE WITH MACHINE LEARNING

BRANDON L. MORRIS† AND MATTHEW L. CURRY‡

Abstract. Hard drives are one of the least reliable components of a large-scale system and are prone to
failure. However, it can be difficult to determine when a disk is close to failure and for what reason. Almost
all disks report various S.M.A.R.T. statuses that provide data about various health-related attributes of
the disk. Even with a disk’s S.M.A.R.T. data, understanding how likely a disk is to fail is nontrivial. We
tackle the problem of disk failure prediction using machine learning. Specifically, we train a random forest
classification model on raw S.M.A.R.T. attributes from a dataset of over 120,000 disks across 88 models and
six manufacturers. Despite the large number of different disk types and the massive data imbalance, our
resulting model achieves good results with a test precision of 0.97 and F1 score of 0.75.

1. Introduction. Disk failure is a common obstacle in large data centers. Reacting
to failure reduces system availability and can even cause data loss, which can have serious
impacts on the center’s operation. Furthermore, disk failure is reasonably common inside
large centers with thousands of disks. To make matters worse, disks often fail with little or
no warning. Detecting when disks are likely to soon fail is a difficult challenge and a solution
can provide substantial benefit to maintaining large data centers.

Nearly all disks contain Self-Monitoring, Analysis, and Reporting Technology
(S.M.A.R.T.) statuses that report various statuses about the current drive. For instance,
S.M.A.R.T. 9 reports the number of power-on hours. In addition to raw values, the statuses
also have normalized variants that are meant to be more interpretable. However, some
S.M.A.R.T. attributes are ill-defined and can vary between manufacturers.

Unfortunately, it can be difficult to reliably and accurately anticipate a disk’s failure
directly from its S.M.A.R.T. statuses [9]. A common method involves defining a threshold
for certain attributes, and disks that report values exceeding that threshold are replaced.
Which attributes are tracked and the values for the thresholds are arbitrary, leading to a
system that almost certainly has a high false positive rate and in turn unnecessarily replaces
disks.

In this report, we describe our efforts to apply machine learning methods to predict
the failure of a disk directly from the reported S.M.A.R.T. attributes. Specifically, we
use a random forest classifier trained directly on raw S.M.A.R.T. values from a very large
dataset of over 120,000 disks from various manufacturers. Our classifier makes very accurate
predictions, with a test-time precision of 0.97 and an F1 score of 0.75.

2. Related Work. S.M.A.R.T. statuses have often been used as an indication of the
health and potential failure of a disk. As mentioned earlier, it is common for large data centers
to implement simple heuristic-based schemes such as thresholding specific attributes [1].
More relevant to this work, the problem of anticipating disk failure can be approached as a
machine learning problem.

Some of the earliest attempts worked with datasets much smaller than commonly found
in modern machine learning and that used in this work. These approaches included variations
of a naive Bayes classifier [4, 9] and statistical tests [5]. The goal of classifying failure has
also been rephrased as an anomaly detection problem [4], which confronts the substantial
imbalance hard drive failure data.

More recent approaches utilize decision tree-based learning methods, which is also done
in this work. These algorithms include regularized greedy forests [2] and boosted random
forests [11]. Similar to our work, Li et al. [7] used tree-based models to classify a disk’s
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failure, and even goes further by attempting to regress a numeric “health value” for a given
disk.

Other machine learning algorithms have been applied to disk failure prediction. Yang et
al. [12] demonstrated effective results with logistic regression and a very large dataset. Deep
recurrent neural networks have also been applied to the regression problem of attempting to
predict the remaining life of a disk [3, 11].

We note that in all of the previous works mentioned, the datasets used for training and
evaluating the model only include disks of a single model, or a handful of models from the
same manufacturer. However, we trained our model on the full range of disks and models
available, totaling 88 unique models from six manufacturers. To the best of our knowledge,
we are the first to train jointly across such a multitude of models and manufacturers and
achieve useful results.

3. Using Random Forests to Predict Disk Failure. Our goal was to create a
machine learning model that predicts impending failure in disks from S.M.A.R.T. attributes.
Here we describe our strategy for collecting and processing the data, as well as the architectural
decisions for the classifier itself.

3.1. The Backblaze Dataset. To train our model we leveraged the existing and
public Backblaze dataset [1]. Backblaze takes daily snapshots of a subset of S.M.A.R.T.
attributes for every disk in their production data center. In addition, they include contextual
information such as the disk model and its capacity. The complete dataset dates back to
2013, but for our purposes we only leveraged data from 2015 up through the first quarter of
2018. We chose not to include the first two years for both computational reasons and out of
concern that their data distributions may not be similar to the latter years from our initial
testing. The resulting dataset utilized for training and evaluation contains 126,386 different
disks with numerous models and manufacturers.

The data is arranged in columnar format, where each row represents a daily snapshot
of a single disk, and the columns correspond to S.M.A.R.T. attributes or relevant disk
information. Both normalized and raw values are recorded in the Backblaze dataset. Only
a subset of all S.M.A.R.T. attributes are recorded, with some added over time. We only
examined attributes present in the entire dataset, for a total of 39 attributes. Backblaze also
records a single bit for whether a disk has failed, which is particularly relevant to our study.

3.2. Data Cleaning and Preparation. The data comes from Backblaze as a series
of CSV files. Given the structured nature of the format, it was particularly well suited for
manipulation using the Pandas1 library [8].

Manually inspecting the data guided our process for cleaning and preparing. A small
number of rows contained no useful information. This was likely due to an error during data
collection and those values were removed from the dataset. In addition, we noticed that
Backblaze would commonly remove disks that had not actually failed. A disk could have
been retired because (i) it was replaced by a larger, faster disk, or (ii) the disk’s S.M.A.R.T.
attributes signaled a potential failure in Backblaze’s own monitoring system [6]. Since it
is impossible to determine the cause of retirement from the data, we removed all rows
corresponding to retired disks to avoid biasing our model.

Our initial analysis also revealed a heavy imbalance in the data. The vast majority
of disks do not fail during the time the data was collected. This is likely compounded by
Backblaze’s retirement strategy. Leaving this imbalance unaddressed can seriously hamper
the performance of a machine learning model. We investigated several sampling methods

1The Pandas library requires that all the data fit into memory. While this was not an issue during out
testing, Dask is an alternative that alleviates this requirement with a very similar API.



62 Predicting Disk Failure with Machine Learning

during training to attempt to balance the dataset, but ultimately found that a preprocessing
technique we call “failure smoothing” had the best effect. Failure smoothing involves going
back n days prior to a disk’s failure and marking those rows as failures as well. This helps
leverage information in the S.M.A.R.T. statuses leading up to a failure. Failure smoothing
also makes sense in practice, since we often want to predict a failure prior to a disk actually
ceasing to function, rather than right when it happens. Failure smoothing is similar to
window averaging strategies used in other approaches to this problem [2]. In our tests we set
n to be 10.

In addition to the above preparation, we also performed typical cleaning common to
nearly all data science problems. Categorical features like the disk model and capacity were
mapped to integers. Missing raw S.M.A.R.T. values were replaced with the median value
for that attribute, since raw values are typically discrete integer counts. Similarly, missing
normalized values were replaced with the mean value for that attribute.

3.3. The Classification Model. We experimented with several classification models,
and found best results with a random forest classifier. A random forest is a collection of
individual decision trees, trained on subsets of the data. Their predictions are averaged
leading to better generalization than an individual decision tree. We used a standard
implementation from Scikit-Learn library [10].

Given the imbalance of our dataset, the selection of a performance metric was carefully
considered. Normal accuracy is not particularly informative in our case, since a näıve model
that always predicts a non-failure would achieve very high accuracy. Instead we evaluated
our models using the F1 metric, which is the harmonic mean between precision and recall.
Precision measures the accuracy with which the model makes positive predictions, and is
defined by the following equation:

precision =
tp

tp+ fp
(3.1)

where tp and fp correspond to the number of true positive and false positive predictions
respectively. A model’s recall measures how effective the model is at recognizing positive
instances, and is defined as

recall =
tp

tp+ fn
(3.2)

where fn is the number of false negative predictions. Combining these, we can define the F1
metric:

F1 = 2 · precision · recall

precision + recall
(3.3)

Like precision and recall, the F1 score ranges between 0 and 1, with higher value
indicating a better performing model.

4. Results. We were able to successfully train a random forest classifier on the raw
S.M.A.R.T. statistics and achieve good results. Our best performing model achieved an F1
score of 0.75 on a hold-out test set of data not utilized during training. Looking closer, we
saw the resulting model had a very high precision (0.97) and a less impressive recall (0.61).
This suggests that, when our model makes a failure prediction, it is almost always correct,
but it struggles to catch every failure. This is reasonable, since disks can fail with little to no
indication in their S.M.A.R.T. values. Additionally, the high precision value is particularly
useful in real applications, since a low false positive rate means failure predictions can be
taken with more confidence.
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Fig. 4.1: The relative importance of S.M.A.R.T. attributes for failure classification. A higher
bar indicated a more significant contribution to the final classification status for a particular
input. Note that S.M.A.R.T. attributes 13 and 201 have no significance; this is likely because
most of the values for those attributes were missing in the dataset.

While developing our final model, we experimented with different data subsets and
hyperparameter values. For instance, we found the increasing the number of decision trees in
the random forest improved the results, but with diminishing returns. We used 150 trees in
our testing, as it gave good results with a reasonable training time. Additionally, the dataset
contains two values for each S.M.A.R.T. attribute: a raw and normalized value. We trained
our random forest on both values and each one individually. The results are depicted in
Table 4.1. Using both values slightly underperformed compared to just the raw values, and
training with just the normalized values gave very poor test results. This could be because
the range for raw values is substantially wider, or because the manufacturers in our dataset
do not normalize S.M.A.R.T. values identically.

During our experimentation, we found that the selection of S.M.A.R.T. attributes to train
with had the single greatest impact on validation accuracy. Backblaze lists five attributes
that they have determined useful for predicting failure2, but we found that these were not
adequate to produce a useful model. Training on just these attributes only gave an F1 score
of 0.09. We tried a slightly larger subset, and the results improved. We only got our best
results by training on nearly every attribute provided in the dataset. We also examined
the relative significance of each attribute when making the classification prediction. These
importances are graphed in Fig. 4.1. It seems that most attributes are at least somewhat
significant to the model, the most import attributes being the power on hours (9), the load
cycle count (193), and the total LBA read/written (241 and 242).

2https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/

https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/
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Metric Raw Normalized Both
Precision 0.972 0.202 0.966
Recall 0.606 0.21 0.591
F1 0.745 0.206 0.733

Table 4.1: Comparison of training with different presentations of the S.M.A.R.T. statistics.
We achieved best results only using the raw S.M.A.R.T. values. Only using normalized
values gave poor results, possibly because of the mix of manufacturers in the training set.
The random forest was able give good results with value types, but still less than the raw,
and at the cost of extra memory consumption.

5. Future Work. There are several avenues for continuing the work described in
this report. An obvious route would be to regress the length of the remaining life for a
disk based on its S.M.A.R.T. statuses. This may need to be done in conjunction with a
classifier such as the model described here, since the vast majority of disks will have very
long lives. Additionally, our model could be combined with other techniques in an ensemble.
Unsupervised techniques such as clustering could be incorporated to better identify potential
failures and improve overall recall when used in conjunction with our high-precision random
forest.

We also believe our model has interesting implications for real-world system maintenance
and design. Being able to simulate system conditions and infer the likelihood of failure is
very valuable to understanding the reliability of the overall system. In addition, our model
can easily be incorporated into a real-time monitoring system that can identify potentially
problematic disks and automatically replicate the disk’s contents and notify operators.

6. Conclusion. In this work, we leveraged the power of machine learning to develop a
simple and efficient model to predict the failure of a disk directly from its raw S.M.A.R.T.
values. The resulting random forest classifier is performant with a very low false positive
rate, despite the mix of numerous disk models and manufacturers. Our best model achieved
a precision of 0.97 and a final F1 score of 0.75 on a hold-out test set. In addition, our results
can be very practically used in real situations where disk failure needs to be anticipated. We
hope that these results and our account of attaining them inspire others to take advantage
of machine learning in their own domains.
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WHAT’S THE STITCH? AN EFFICIENT I/O LIBRARY FOR
EXTENDING LENGTH SCALES IN MULTISCALE MODELING

ENZE CHEN‡ , JAY LOFSTEAD§ , AND JOHN A. MITCHELL¶

Abstract. One of the foremost challenges in multiscale modeling of manufacturing materials is bridging
the gap between the length scales of material transformations (microns or less) and that of engineered
parts (centimeters or more). While more advanced models are constantly being developed to meet this
challenge, novel data storage and I/O methods have received less attention, even though I/O can be a
severe bottleneck for parallel applications that read and write large volumes of data. In this report, the
stitch library is introduced. Stitch is an efficient I/O API and database format that enables out-of-core
computations and merges outputs written over time to construct the full simulation domain; in essence,
stitch builds the simulation domain analogously to the way an additive manufactured (AM) part is built.
The new stitch capability is demonstrated by applying it to AM simulations using spparks, which is an
open source kinetic Monte Carlo simulation framework particularly suited for grain growth simulations
associated with welding and AM. Scaling studies are conducted, profiled, and compared to existing spparks
I/O capabilities. It is shown that stitch not only has comparable scaling performance to other I/O methods,
but also enables increased data storage flexibility and larger simulation domains with significantly fewer
computational resources.

1. Introduction. In exploring the central tenet of process-structure-property-
performance relationships in materials science, researchers are more frequently turning
towards computational models and numerical simulation techniques. While there has been
an explosion of progress in recent years developing computational models for material sys-
tems [6], one of the principal existing challenges is resolving length scale disparities between
material transformations at the sub-micron level and engineering performance at the scale of
centimeters and above. Formulating such multiscale models is an active area of research [1,20],
with the ultimate goal being high-fidelity simulations that can scale across space and time.
In this report, we focus on this length scale challenge for additive manufacturing (AM) and
work towards resolving it using the stitch database and library API.

While the focus has been on improved models and algorithms, a major component of
performant large-scale simulations is efficient data storage and I/O. Existing I/O libraries
such as ADIOS [9], NetCDF [15], and HDF-5 [18] all assume the entire simulation domain
is written as output by the application at each time step. While this may be necessary
for certain applications, there are other scenarios where it would be more efficient to only
compute on and handle data in a locally affected region while leaving the rest of the domain,
which doesn’t change, untouched. Therefore, the development of an I/O library that can
flexibly manipulate local data and later merge the results to reconstruct the full simulation
domain is a critical step towards enabling practical multiscale models for these styles of
applications.

To highlight the urgency of this problem, we focus on the rapidly emerging field of metal
AM [3]. AM is the process of joining materials in a layer-by-layer fashion from a wire feed or
powder bed using a laser beam, as opposed to subtractive manufacturing methodologies that
machine away material and/or manipulate bulk structures to form a final part geometry.
Because material macroscopic properties (moduli, yield strength, ductility, etc.) of finished
parts are highly dependent on underlying microstructures, modeling of the AM process is a
crucial step for design and qualification of AM built parts. During the AM process, evolution
of metallic grains primarily occurs in the vicinity of the laser beam heat source, while the
system outside of this zone is largely unaffected; the stitch concept was born from this basic
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fact. Stitch facilitates simulation of the AM build by constructing the computational domain
analogously to the way it is constructed in practice. As novel AM alloys [10] and increasingly
larger designs [7] emerge, simulation technologies for AM must be capable of predicting
microstructure on the entire part; in this report, stitch is introduced as an approach to
handling this problem.

While many AM models for metals exist in the literature [2], we focus on the kinetic
Monte Carlo (KMC) code spparks [13,14]. KMC is a popular simulation technique that spans
the gap between atomistic and continuum length scales [19]; spparks has been previously
used to simulate grain growth [5] and various welding and AM applications [16, 17]. For the
welding application, spparks moves a teardrop-shaped melt pool for a specified number of
Monte Carlo steps (MCS) and evolves grains within a certain distance of pool boundary.
The affected region is termed the heat affected zone (haz ); grains outside this region are
assumed to be unaffected by the moving heat source. While spparks has existing built-in AM
models and I/O capabilities, practical AM capabilities are limited by the aforementioned
problems. Existing spparks models require the entire domain to exist in memory despite the
fact that grain growth is highly localized; furthermore, I/O is also conducted on the entire
domain but output files (text or binary) are not very easy to work with for post-processing.

In this report, we highlight the initial development and application of the stitch I/O
library, an efficient I/O tool optimized for applications such as those found in spparks.
The stitch library is linked with spparks to enable more flexible I/O and facilitates data
analysis and image creation after AM process simulations are completed. Stitch enables
out-of-core computation by only recording data in the area that is changing, thus reducing
memory, storage footprint, and required computational resources for large-scale simulations.
Computations are on a localized simulation domain which is rectangular and referred to
as the computational volume (cv); the cv contains the melt pool, haz, and local weld path.
Using stitch for parallel calculations is simplified because a single stitch file can be written
by multiple processes; after a series of spparks calculations are completed, one stitch file
contains all results, thus simplifying post-processing and image generation. Data in the stitch
file can be accessed through a C API or Python API for further calculations and analysis. To
assess the performance of this I/O method, we perform strong and weak scaling studies for a
typical-sized simulation domain and compare the performance to that of existing capabilities
in Section 3.

One of the primary innovations afforded by the stitch I/O library, a process we call
stitching, is best illuminated by the AM weld application. Traditionally, a spparks user
would specify dimensions of the full simulation domain, which is loaded into memory for
simulation; subsequently the entire domain is written as output using the traditional approach.
Incorporating the full domain into memory is both computationally expensive and wasteful,
since the majority of spparks sites at each time step lie outside the haz and are unchanged.
Not only does stitch enable simulation over just the local cv, but it can also merge outputs
written over time to assemble a picture of the entire simulation domain at any given time.
We call this process stitching and illustrate it in Figure 1.1. At time t = 0, an external script
calculates the dimensions of cv1 and initializes the microstructure. The melt pool welds
across cv1 where only sites within cv1 are considered for computation and I/O. When the
pool reaches the end of cv1 (t = 20), a second overlapping cv2 is initialized for the pool to
continue moving, where now only data in cv2 is used for computation and I/O. This stitching
process continues until the full simulation domain is covered or stitched together. When
the user later queries the full simulation domain (or any subset thereof) at any time step,
stitch is capable of merging previously written blocks in a way that forms a coherent picture
of the specified extent. As an example, the welded microstructure is shown across the full
domain at t = 26 in Figure 1.1. In practice, only a subset of the entire domain is queried for
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Fig. 1.1: Schematic of stitching example; melt pool travels to the right. At t = 0, the pool
starts outside of the domain and we generate the first computational volume that the pool
scans over. The dimensions of the computational volume encompass the haz in which grain
evolution occurs, and only grains inside this volume are considered for computation and
I/O. When the pool reaches the right boundary at t = 20, a second computational volume
is generated and the pool continues moving until it again reaches the right boundary of
the second box. By writing the time step at each output interval, stitch can then merge
the outputs to reconstruct an image of the entire simulation domain that is spatially and
temporally consistent with the progression of the simulation.

purposes of visualization and analysis.
In Section 3, we highlight ways stitching allows us to extend spparks functionality and

discuss the scientific merits of these results. We further measure the execution time of spparks
simulations and output file size with and without stitching to quantify the performance
enhancement. Our initial studies reveal stitch to be a promising I/O tool that offers flexibility
in data storage and has computational expense comparable to existing libraries.

2. Methods. The stitch database and programming API are inspired by spparks welding
and AM applications. In this section, benefits of using the stitch library are summarized
and briefly described; then stitch concepts are introduced and described relative to existing
I/O approaches. Subsequently, the benefits of using stitch are described relative to spparks
KMC applications of simple equiaxed grain growth and AM modeling of grain growth.

2.1. Benefits of using stitch I/O with spparks. Using the stitch database and
library API with spparks, the following advantages/benefits are obtained.

1. The stitch file can be accessed using a Python interface. During spparks
calculations of grain growth, a single stitch file is written using dump stitch for both
parallel and serial calculations. A native Python interface has been developed which
allows Python scripts to read/write stitch files using numpy arrays. This greatly
enhances the ease of post-processing capabilities and facilitates image creation using
existing standard Python tools.
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2. The stitch file can be appended and used to assemble a much larger
simulation incrementally. This stitching feature of a stitch database can result
in a huge reduction in file sizes and facilitates very large simulations across multiple
length scales; this allows spparks to incrementally append sites and associated states
to an existing database, thereby extending the spatial extent of an AM simulation—
much like the physical AM process of adding material. Stitching is further discussed
and demonstrated in subsequent sections.

3. Any rectangular sub-volume of a stitch file can be read for any time step.
Because spparks simulations can be very large, it is generally impractical and often
unnecessary to read an entire stitch file for post processing—although that can
be done if sufficient computer memory is available. On practical terms, only a
sub-volume may be required for image processing and/or analysis, and the stitch
database allows the user to query blocks of any dimension.

2.2. Stitch Design. The current stitch capability has been developed for structured
grids associated with spparks calculations. However, Stitch is a significant departure from
existing I/O libraries motivated in part by the AM and welding examples, but also by the
understanding that there is a broader class of simulation types that can potentially benefit.
For example, some finite element models have similar computational intensity in limited
parts of the total simulation domain, offering an opportunity to do lossless compression by
only saving parts of data that have changed.

Previous efforts to do compression on data [8, 12] have focused either on looking at all
of memory or by looking at the entire simulation domain and determining what could be
skipped. In both cases, good “compression” is achieved, but with considerable effort. The
stitch approach is fundamentally different and is best for simulations with isolated work
properties. Other projects such as ASCR SIRIUS have investigated lossy data compression
and data decomposition by incrementally loading only part of the data precision at a time,
thereby progressively recreating the full precision data set. While these efforts can work
more broadly, data reduction with full precision cannot approach the benefits of the stitch
approach.

The design choices that have made stitch work stem from ignoring the traditional I/O
library need to know what the entire simulation domain is and likewise requiring that the
whole domain is written for each output. This seemingly simple shift has demonstrated
radical space savings with a projected slight time advantage on radically fewer processes
with no precision loss.

Internally, stitch can track multiple different fields, each with their own domain and
with no necessary relation to each other. Each field can store scalars, vectors or tensors.

From a time perspective, typical I/O libraries rely on an integer-based time progression
to match the library designer’s ideas about multi-dimensional data with one dimension being
time. Rather than having such a strict idea and force this view on the application developer,
stitch uses a real value for time along with absolute and relative tolerance parameters to
allow accurate matching for IEEE floating point values that notoriously cannot be compared
exactly.

At an implementation level, rather than recreating much of the data selection functionality
needed, an embedded relational database format is used instead. The SQLite [4] database
offers a public domain code base, full ACID transactions, full SQL functionality, and
the ability to share a database among a collection of different applications and processes
simultaneously without introducing errors. We leverage this functionality to implement
many of the different features we require. For example, to select all blocks written that
intersect with a given area no later than a particular time, we have a SQL query that
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takes into account the time tolerance parameters and matches the box boundaries against
blocks to select matching blocks ordering from oldest to newest. This radically simplifies
the manually constructed index and searching technology needed to support the stitch
functionality. Instead of searching all of the blocks to select the correct ones, we get just
the ones we need from SQLite and then copy the relevant portions into the provided buffer,
stitching together the requested region.

The implementation of stitch is completely in C to facilitate easy integration into a
variety of environments, and spparks uses the C interface directly from its C++ code base.
We also provide a fully functional Python API and use the Python unit testing capabilities to
test the correctness of the implementation. Given the richer array manipulation functionality
Python offers compared to C, this offers very readable tests that are not stuck comparing the
minutiae of array elements against a standard or even constructing such a reference array.
Beyond the testing advantages, the wealth of analysis tools available in Python make this
interface a crucial part of the provided functionality.

While the current code base works well for the intended purpose, there are limitations
that still must be investigated and solved. First, the stitching procedure is correct, but not
optimal. Currently it copies all data into the resulting block that would intersect with no
regard for if that data is overwritten with a newer value or not. Investigations to determine
if these wasted memory copy operations are significant have not been performed. Given the
performance measured currently, it has not been a priority.

The second, and potentially larger, issue relates to how SQLite locks the database when
writing. The current implementation is such that it locks the entire database for any writes,
no matter which table is being written to. The larger issue is that it relies on POSIX
file system locking to implement these locks. Parallel file systems do not always offer full
POSIX support with POSIX locking being a common feature that is ignored. For example,
Lustre does not properly implement POSIX locking without severe performance penalties.
SpectrumScale (IBM’s GPFS) seems to handle these locks correctly offering a platform for
use at Sandia (gpfs scratch).

While the locking may be an issue at scale—even though we do not expect to run at
scale beyond 1000 processes due to how the physics works—there are alternatives that may
work. BerkeleyDB from Oracle is a drop in compile time replacement for SQLite that uses
an external file to implement locks. It also has finer granularity locks, potentially prompting
not just using BerkeleyDB instead of SQLite, but also database and code implementation
redesign to decompose the field processing to allow greater parallelization. The challenge
with BerkeleyDB is the open source license it is released under. The license is well known
to be “sticky” to anything that touches it, making using alternative licenses difficult, if not
impossible. This limitation prevents the initial distribution of stitch from using BerkeleyDB.

The code is in the final stages of copyright review and will being released under the
LGPL v2.1 license shortly.

2.3. Microstructure Simulations. To demonstrate stitch with spparks and to mea-
sure performance, microstructure evolution simulations were conducted. In this subsection,
two kinds of microstructure evolution and grain growth are briefly described: 1) equiaxed
grain growth using the spparks Potts model [5], and 2) grain nucleation and evolution
associated with spparks KMC models of AM. In both cases, stitch I/O is used; in the first
case (Section 2.3.1), the spparks interface to stitch offers an alternative dump stitch command
to the existing dump text ; in the latter case (Section 2.3.2), stitching is used to demonstrate
the ability to append to an existing database. The present section only describes methods
and concepts; specific numerical results will be presented in Section 3.
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2.3.1. Stitch I/O replacement for spparks dump text. The stitch library offers
an alternative output database for the spparks dump text command. Rather than dumping
an ordinary text file of spparks lattice sites and spin values, or similarly a distributed set of
text files for parallel calculations, the spparks dump stitch command produces a single stitch
file and database for lattice site spin values irrespective of whether or not calculations were
conducted in serial or parallel. This approach introduces a new flexible way of conducting
microstructure analyses and image creation through the use of a Python API to the stitch
database file.

To assess the performance of the new dump stitch command, both weak and strong
scaling studies were conducted. In a weak scaling study, the problem size is scaled up
proportionally as additional resources (process cores) are applied to the problem; problems
solved in this way are sometimes referred to as “memory bound.” In a strong scaling study,
the problem size is held fixed while more and more computational resources (process cores)
are applied for obtaining the solution faster. Problems that are solved in this way are
sometimes referred to as “CPU bound.”

To measure performance, the spparks Potts grain growth model was used to create and
evolve an equiaxed microstructure over time. Output was generated for only a few steps and
regularly dumped at equal intervals. With this simple application, we only wanted to study
parallel performance of reading and writing data with stitch, and thus the Potts model was a
suitable choice. We only measure the execution time of stitch I/O, and do not include data
post-processing (e.g. image generation). The size of the simulation domain was chosen to
be on the order of 100 million total lattice sites so that performance evaluations could be
completed reasonably quickly; simulation domain sizes are given in Table 3.1. Stitch I/O
performance is measured against the following I/O methods:

• spparks without I/O
• spparks with single text file
• spparks with distributed text files – one file per MPI task
• spparks with image files (JPG or PNG files)

Spparks without I/O establishes a baseline for measuring the stitch I/O overhead. The
single text file output by spparks is the most direct comparison to stitch as both methods
write data to a single file at specified output intervals; this induces potential I/O contention
between processes for both stitch and text I/O. The distributed text files output by spparks
produces one text file per process per output time interval. The image I/O option generates
a JPG image of a 2D slice of the simulation domain per output interval. For both strong
and weak scaling studies, wall-clock time is calculated to the nanosecond in five separate
iterations and averaged; the standard deviation is used for displaying error bars. Timing
results are presented and discussed in Section 3.2.

2.3.2. Stitching an AM simulation domain: Benefits and approach. To demon-
strate stitching, a key aspect of stitch functionality, spparks AM simulations were conducted.
Stitching is a radical rethinking of how simulation data is written to a database. In particu-
lar, the stitch library and API were developed to allow appending of results to an existing
database. This approach is a true digital and numerical representation of the additive
manufacturing process, wherein the simulation domain is appended to at particular stages
during the simulation. At no stage during the simulation is the full domain in computer
memory or even specified; rather only very localized regions (called cv for computational
volume) of the haz is in memory at any particular simulation time. After the stitching
simulation is completed, the entire simulation domain is represented in the file. Any subset
for any simulation time can later be extracted, analyzed and viewed.

The benefits of stitching were enumerated in Section 2.1. For a physical AM process,
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layer-by-layer material is deposited and selectively laser melted. The moving heat source
leaves behind cooling material that quickly solidifies; material microstructures in this haz
form and evolve until the laser source has moved sufficiently far away, at which point the
material will not experience further grain growth. The stitching paradigm handles all of
these basic process conditions in an extremely performant way by facilitating reading/writing
over only those active regions where grain growth and evolution are occurring.

process decomposition 
for SPPARKS w/o stitching

cv for stitching full domain

Fig. 2.1: Schematic of how spparks simulations differ with stitching. The full domain is
outlined in black. Traditionally, a large simulation would require a large number of processors
(64 in this example) that divide the domain into sections such that each process handles
approximately the same number of sites (blue grid). The full domain is used for both
computation and I/O, even though the data in a vast majority of the sites are not changing.
Now, with stitching, the cv contains only the affected area as the pool moves across the
domain (orange, purple, green, etc.), and only one cv at a time is used for computation
and I/O. This makes it possible to break up the simulation over a large domain and final
AM build, into a series of small simulations, each of which can be run efficiently on a much
smaller number of processors.

Consequently, the stitching process leads to enormous reductions of required computing
resources (process cores) and output file size. Figure 2.1 gives a visual interpretation for the
improved distribution of computational resources in spparks. With the traditional approach
of simulating AM on the entire build domain, the problem is memory bound; this means
there is no way to store the entire simulation domain without distributing it across many
processors, despite the fact that nothing is happening on most of the domain. Large domains
therefore require more processors to distribute the computation. Note that in practice,
because of length scale disparities between the built part and grains, it is also generally
impossible to model the entire simulation domain on the largest supercomputers. In a related
but more subtle way, massive reductions in output file size arise because, in contrast to
writing/updating states on the entire simulation domain, stitch only stores states on the
active cv ; this means that for most of the domain, states are only stored for time steps when
evolution is occurring and otherwise it is logically treated as a constant for later times.

For stitching, a Python script is used to generate the sequence of cvs for spparks that
eventually get merged by stitch. The size of the haz is precomputed and used to size the
cv, which follows the movement of the melt pool. Then, using the stitch library and API
semantics, when computations on a new cv begin, states on the previous and/or overlapping
cvs can be read in and initialized on the new cv. The process of stitching with spparks consists
of precomputing a logical sequence of cvs that tile the build volume. A sequential series of
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spparks simulations are performed on each cv and the stitch file grows as the simulation
proceeds. Each spparks simulation is initialized by reading states from the growing stitch file.
In most cases, because the domain is growing, the new cv partially overlaps with previously
written cvs; states in the overlap region are initialized from the stitch file while new domain
sites must be logically initialized in spparks. This process is entirely implemented as a
combination of bash and Python scripts which control the workflow. Python scripts are
generally used to size and position cvs and used to write parameter files for inclusion in
spparks scripts. Bash scripts are generally used to loop over the logical sequence of cvs. We
note that there is no single formula for implementing the workflow as it can be accomplished
in many ways.

3. Results and Discussion. In this section, we present both qualitative and quan-
titative results of running spparks simulations with the stitch library. We first give visual
examples of the metallic microstructure generated by the AM models to demonstrate the
flexibility of stitching together cvs in different configurations. We then show the scaling
studies for the stitch I/O system and how the performance compares to native spparks I/O.
Finally, we present results on the execution time for spparks with and without stitching
for domains of various sizes. Concepts and context for these simulations were described in
Section 2.

3.1. Microstructure Simulations. Simulations of metallic grains were performed
using spparks built with the C library interface for stitch. The code was compiled with GNU
C/C++ compiler version 4.8.5 and OpenMPI 1.10. In addition, a serial Python interface of
stitch was built using Python 3.4.6 for calculating the stitching domains.

Figure 3.1 depicts grain evolution during simulation of the AM weld model with stitching.
Much like the progression of a physical AM process, only the first cv has to be initialized at
the start of the simulation as the melt pool only affects sites along the bottom edge; the rest of
the domain is assumed to be unaffected and therefore does not have to be stored in the stitch
database. As the melt pool progresses, it moves in a serpentine pattern, reversing directions
with each transverse increment, evident by the grain inclinations along the raster direction.
The cvs are generated one at a time, and only the current one is used for computation and
I/O—what is shown is a result of stitching together the previously computed cvs. Note that
all sites outside of the current haz are constant at later time steps, which is reflected by
the color of the grains in the figure. In the end, stitch is able to recover the full simulation
domain by stitching together the individual cvs in a manner that is commensurate with the
progression of the AM build.

Stitch is designed so that all stitching parameters are contained in a single JSON file. The
JSON file is parsed using Python and generates input scripts for spparks on any particular
cv. For a full description of possible inputs to the AM weld model, we point readers to the
online spparks documentation [11]. Since each invocation of spparks only simulates on the cv,
we anticipate the ability to simulate at low computational cost extremely large domains that
were previously inaccessible to conventional methods. The reduced memory usage for the
smaller cvs makes it possible to scale from laptops to clusters, depending on the simulation
parameters and urgency of results. One can then use the fully-stitched domain for crystal
plasticity finite element calculations [2] or data analytics studies of the microstructure. By
bridging the length scale from microns to centimeters, stitch enables scientists to study larger
systems and iterate on new experiments more efficiently than was previously possible.

3.2. Stitch I/O Performance. To probe the overhead of using stitch I/O (without
stitching), performance evaluations were performed on the Chama capacity cluster at Sandia.
It is an Infiniband-based cluster from Appro on a RHEL 7 platform with 1232 compute nodes.
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(a) t = 26 MCS (b) t = 98 MCS (c) t = 198 MCS

Fig. 3.1: Example of grain evolution produced by the spparks AM weld model with stitching.
Note that black regions have yet to be initialized and are not stored in the stitch database.
(a) Initially, only the first cv is initialized as the melt pool moves across the bottom edge,
as the rest of the domain is assumed to be unaffected. (b) As the layers build up, the pool
travels in a serpentine pattern, reversing direction with each transverse increment. Sites
outside of the current haz are constant at later time steps, evident by the stable color of the
grains. (c) In the end, stitch is capable of seamlessly stitching together the different cvs to
recover the full simulation domain, even though the full dimensions were never explicitly
recorded in the stitch file.

Each compute node contains two 8-core, 2.6 GHz Intel Sandy Bridge E5-2670 processors
with 4 GB of RAM per core. Tests were performed using a shared 4.6 PB GPFS scratch
space. We calculate the wall-clock time using five separate iterations, and report the average
total execution time with error bars of one standard deviation.

Simulation domain sizes for the Potts model (see Section 2.3) were chosen to be on the
order of 100 million total lattice sites so that performance evaluations could be completed
reasonably quickly for a “typical-sized” problem. This led to dimensions of 1200 sites ×
1200 sites × 88 sites. As seen in Figure 3.2a, we observed that stitch I/O performance was
comparable to other forms of I/O and had nearly ideal scaling behavior up to 256 processors.
For 256 processors and beyond, we observed degradation in scaling behavior for stitch I/O
that was reflected, to varying degrees, in the other I/O methods as well. We speculate that
the worsening performance and higher variability at 512 processors is due to file system
contention, although a deeper analysis is required for verification. However, in all cases, we
found stitch I/O to perform between 2 to 10 times faster than spparks single text I/O and
achieve much better scaling; note that single file text I/O has burdensome communication
issues because it requires each processor send its chunk of data to a single output processor
and is hence not very scalable; this is not the case for distributed text I/O which is faster
and scales better. the resulting stitch file size was 1.4 GB on average, which is almost 4 times
smaller than the average size of the text files (5.5 GB). Thus the stitch file is able to store
output data more compactly than the text file; furthermore, stitch file sizes did not vary by
more than 1 MB as the number of processors was scaled up.

A weak scaling study was also conducted; in this case, the number of sites per process
were kept around 5× 105 sites/process. This led to the domain dimensions shown in Table 3.1.
Figure 3.2b shows results for the same I/O formats. Again, stitch I/O remains competitive
with other formats up to 512 processors, and still runs 2 to 10 times faster than spparks I/O
with a single text file. Once again, the stitch file is 3 to 4 times smaller than the text file on
average, with the ratio increasing for more processors. All of the curves deviate from ideal



E. Chen, J. Lofstead, and J. A. Mitchell 75

25 26 27 28 29

Number of processors

25

26

27

28

29

210
Av

er
ag

e 
ru

nt
im

e 
(s

ec
on

ds
) Strong scaling study

ideal
without I/O
Stitch I/O
single text I/O
distributed text I/O
image I/O

(a)

22 23 24 25 26 27 28 29

Number of processors

25

26

27

28

29

210
Weak scaling study

ideal
without I/O
Stitch I/O
single text I/O
distributed text I/O
image I/O

(b)

Fig. 3.2: Scaling performance evaluations for spparks with no I/O (blue), stitch I/O (orange),
single text file I/O (green), distributed text files I/O (red), and static image (JPG) I/O
(purple). The black dashed line represents ideal scaling behavior. The wall-clock time was
averaged across five iterations and error bars represent ±1 standard deviation. (a) Strong
scaling study for a constant domain size of 1200 × 1200 × 88. We observed relatively little
impact on total execution time from stitch I/O up to 256 processors, and the additional
execution time of stitch I/O is still significantly lower than that of spparks single text I/O.
(b) Weak scaling study where domain sizes were chosen to keep the number of sites per
process close to 5× 105 sites/process. We observed good scaling of stitch I/O comparable to
cases with static image output and distributed text output.

behavior, which suggests that the increased parallel overhead is not exclusively a stitch issue.
This result shows that it is feasible to use stitch as an I/O tool on large parallel computing
clusters, though we emphasize far fewer than 512 processors are required if stitching.

Num procs Domain size Num sites Stitch file size Text file size

4 150 × 150 × 88 1980000 23 MB 59 MB
8 216 × 216 × 88 4105728 47 MB 137 MB

16 300 × 300 × 88 7920000 91 MB 277 MB
32 426 × 426 × 88 15969888 186 MB 608 MB
64 600 × 600 × 88 31680000 363 MB 1.26 GB

128 860 × 860 × 88 65084800 753 MB 2.67 GB
256 1200 × 1200 × 88 126720000 1.42 GB 5.53 GB
512 1700 × 1700 × 88 254320000 2.91 GB 12.1 GB

Table 3.1: Parameters used in weak scaling performance study. The number of sites per
process was kept constant at approximately 5× 105 sites/process. The stitch file size was 3
to 4 times smaller than the size of the corresponding text file.

3.3. Stitching Performance. Stitching enables the ability to run large AM simula-
tions on very few processors. This is in contrast to the traditional approach of running on
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the final domain that may be very large; significant computational resources go to waste
because the AM process is inactive on most of the domain at any particular time. Stitching
circumvents this problem by using fewer processors and only performing computations on
parts of the domain that are active; this enables AM simulations to run a desktop machine
(e.g. 16 procs) rather than on a supercomputer.

Performance enhancement from stitching was compared to traditional spparks AM
simulations. The parameters chosen for welding simulations were α = 0.75, β = 0.5,
kBT = 0.25, haz width = 30 sites, melt pool speed vp = 10 sites/MCS and melt pool width
of 301.3 sites. These values were adapted from previous work by Rodgers et al. [17], and we
point the reader there for a deeper analysis on the effect of different parameters on the weld
microstructure.

For performance measurements, the domain size was progressively doubled as shown
in Table 3.2. When running spparks without stitching, a weak scaling type approach was
used: The number of processors was doubled while attempting to keep the number of sites
per process at approximately 7031 sites/process; without stitching, the required number of
processors and file sizes increase rapidly (see Fig. 3.3b). Thus, the domain sizes we chose
were limited by the traditional approach and its computability on a reasonable number of
processors. Notably, however, when simulating the same domains with stitching, the number
of processors was kept constant at 16 (approx. 6230 sites/process) on the individual cv,
which is even accessible by desktop machines. Output was written every 2 MCS to a stitch
file and distributed text files for stitching and no stitching tests, respectively.

Num procs Domain size Num sites Stitch file size Text file size

32 750 × 300 × 1 225000 105 MB 156 MB
64 1500 × 300 × 1 450000 170 MB 663 MB

128 3000 × 300 × 1 900000 300 MB 2.68 GB
256 3000 × 600 × 1 1800000 497 MB 8.92 GB
512 3000 × 1200 × 1 3600000 890 MB 31.8 GB

1024 3000 × 2400 × 1 7200000 1.64 GB 122 GB

Table 3.2: Parameters used in the stitching performance study. Num procs is the number of
processes for simulations without stitching. The Text file size is the sum of all distributed
text files, and it is considerably larger than the size of the corresponding single stitch file.

Figure 3.3 compares the performance of spparks with and without stitching. We calculate
the wall-clock time to the nanosecond in three separate iterations, and we report the average
total execution time with error bars of one standard deviation. As shown by the orange data
points, the stitching simulations generally took more time than the corresponding simulations
without stitching (blue points); however, the difference is only worse by a factor of at most 3
in the worst case, even when the number of processors differed by as much as 26. We find
the longer execution time to be a reasonable tradeoff given that we can now perform the
same size simulation with far fewer computational resources. Furthermore, we observed an
expected linear scaling in the stitching execution time, since doubling the simulation area
roughly corresponds to doubling the number of cvs that need to be stitched together. The
size of the individual cvs remain unchanged, which greatly reduces the memory requirements
and computational burden for spparks.

In addition to the lower demand for processors, stitching provides yet another performance
boost in the form of reduced storage footprint. As shown in Table 3.2 and Figure 3.3b, the
stitch file is considerably smaller than the cumulative size of the corresponding distributed
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Fig. 3.3: Comparison of spparks performance with and without stitching for the AM weld
model. There were approximately 7031 sites/process in the simulations without stitching,
and the same area was used for the stitching simulations on just 16 processors (approx.
6230 sites/process). Each simulation was run for full coverage, and output was produced
every 2 MCS. The numbers next to the data points indicate the number of processes used
for that computation. (a) While spparks without stitching generally ran faster for all cases,
it used many times more processors than stitching (up to 26 times more). Stitching has
much improved scaling and runs only 2 to 3 times slower than spparks, despite using only 16
processors. (b) The size of the output file(s) are plotted against the domain size for both
cases. The stitch file is 2 to 75 times smaller than the corresponding set of text files (note
the log scale on the y-axis), which is a dramatic reduction in storage requirements.

text files, up to 75 times smaller for the largest problem size. The traditional approach
creates massive output files because the files include data from all sites at all time steps,
resulting in tremendous wasted storage space. The file size scaling without stitching is
approximately quadratic as doubling the simulation domain not only doubles the number of
sites written at each output step, but it also doubles the number of time steps that must be
written; stitching, on the other hand, has relatively constant-sized cvs, and thus the stitch
file sizes exhibit approximately linear scaling with respect to problem size.

To test the effects of problem scale, we also used the same stitching performance testing
framework to simulate domains that were ten times thicker than the ones listed in Table 3.2
(approximately 62 300 sites/process and 70 310 sites/process for simulations with and without
stitching, respectively). We had all simulations output data to stitch files to keep file sizes
reasonable. The results shown in Fig. 3.4 reflect the same qualitative trends we observed in
Fig. 3.3. Namely, we find that the execution time of stitching these larger domains is no more
than twice that of a traditional spparks simulations, despite using the same modest quantity
of 16 processors in all stitching runs. In addition, the output file from stitching is up to 9
times smaller than the file produced without stitching, with the factor of reduction in storage
footprint only increasing as the problem size increases. The results presented here reveal
how stitching enables spparks to simulate extremely large domains at low computational
expense, making such AM simulations tractable on personal machines as we strive to achieve
physically-relevant length scales.



78 Stitch I/O

103

104

A
v
e
ra

g
e
 r

u
n
ti

m
e
 (

se
co

n
d

s)

w/ stitching 16 procs

w/o stitching

X= 750
Y= 300

1500
300

3000
300

3000
600

Domain size (X by Y by 10)

32

64

128

256

= num procs
    w/o stitching

(a)

100

101

32

64

128

256

16

16

16
16

w/ stitching

w/o stitching

num procs = 

X= 750
Y= 300

1500
300

3000
300

3000
600

Domain size (X by Y by 10)

Fi
le

 s
iz

e
 (

G
B

)

(b)

Fig. 3.4: Comparison of spparks performance with and without stitching for the AM
weld model over domains 10 times larger than those in Table 3.2 (approximately
62 300 sites/process and 70 310 sites/process for simulations with and without stitching, re-
spectively). Stitching simulations were still performed on just 16 processors, and the number
of processors used is indicated next to the data. Each simulation was run for full coverage,
and output was produced to a stitch file every 2 MCS. (a) The execution time for stitching
is no more than twice that of a traditional spparks run, despite using just 16 processors for
stitching. (b) The stitch files produced by stitching are up to 9 times smaller than stitch
files output from the traditional approach, and stitching demonstrates better overall scaling
with problem size.

4. Conclusion. This paper introduced the stitch library and associated concepts for
its application to additive manufacturing simulations of grain growth using the spparks KMC
framework. Stitch is a novel approach to I/O for AM simulations; it facilitates incremental
growth of a database associated with a simulation, much the same way a part grows during
an AM build. It was shown that not only is there no loss in I/O performance if stitch is
used as a replacement for existing text file outputs, but stitch file sizes were also significantly
smaller than the equivalent text file outputs used by spparks. The novelty of stitch allows
for stitching calculations wherein only data in areas that are actively manufactured are used
for computation and I/O, resulting in dramatic reductions of computational resources and
file sizes. Demonstration calculations showed the same calculation could be conducted by
stitching with only 16 processors compared to 1024 processors using the traditional approach.
Stitching adds flexibility by enabling out-of-core computation and makes formerly unreachable
AM simulations on physically-relevant length scales more computationally feasible. Future
work will be directed at extending these results further into true 3D space, and integrating the
C library API with more applications such as finite element codes for thermal calculations of
AM thermal processes. As scientists continue to push the size limits of computer simulations,
we anticipate a growing demand for the functionality demonstrated by the stitch library for
AM and other use cases.
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Computational Mathematics

Computational mathematics is concerned with the design, analysis, and implementation of
algorithms to solve mathematical problems. Articles in this section describe the discretization
of partial differential equations and methods to solve equations, couple multiphysics systems
of equations, and quantify uncertainty.

Holtzer, Bochev, and Peterson study feature-preserving optimization methods. They
apply optimization-based property-preserving methods to advection-diffusion problems, assess
them numerically, and compare them to algebraic flux correction schemes.

Levitt, Boman, Rajamanickam, and Biros study an algebraic method to compress the
Green’s function in electromagnetic scattering simulations. They extend the geometry-
oblivious fast multipole method to support nonsymmetric complex matrices and assess its
ability to accurately compress the Green’s function.

Bonilla, Mabuza, Shadid, and Badia present a stabilized continuous finite element scheme
for first order conservation laws in scalar transport problems based on an artificial diffusion
operator and a differentiable, linearity preserving shock detector. They assess their method
for scalar convection and present a preliminary solution for a steady Euler equation problem.

Marvin, Wildey, and Bui-Thanh develop a scalable approach to the solution of linear
and nonlinear stochastic inverse problems using the recently developed consistent Bayesian
method. They demonstrate the scalability of their approach on an advection-diffusion
equation and a hyperelasticity equation.

Robertson, Khalil, and Adams study the challenge of Markov chain Monte Carlo (MCMC)
sampling. They compare several tools available for general MCMC samplers to determine
recommendations for diagnostic implementation in the Dakota software.

Reeder, Hill, Aimone, and Severa extend a neural algorithm for solving the diffusion
equation PDE by implementing random walks on neuromorphic hardware.

Ohm, Berger-Vergiat, and Tuminaro study strategies to exploit the mesh structure for
better performance. They develop an aggregation based multigrid method that preserves
local structure for applications where complex unstructured meshes are only required in
small sub-regions of the overall domain.

Nelsen and Bosler introduce a meshless Lagrangian particle-based numerical method
to solve the shallow water equations for ocean modeling. They study challenging physical
boundaries such as a moving wet/dry line.

Bogle, Devine, Perego, Rajamanickam, and Slota study degenerate mesh features in
climate simulations of ice-sheets which pose problems for solvers. They present a parallelizable
breadth-first-search-based label-propagation approach which removes all degenerate features
during each step of an ice-sheet simulation efficiently.

Schrum, Jr., Rintoul, and Newton discuss the detection of anomalous trajectories.
They introduce a semantic categorization into trajectory analysis by including additional
parameters such as trajectory curvature, distance, and total deflection.

Smith, Kaushagen, Hoemmen, and Siefert address the challenge of parameters selection
for convergent solutions of partial differential equations. They present a machine-learning
model which provides linear solver and preconditioner settings.

A. Cangi
M. L. Parks

December 6, 2018
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APPLICATIONS OF OPTIMIZATION-BASED TRANSPORT

NIKKI HOLTZER∗, PAVEL BOCHEV† , AND KARA PETERSON‡

Abstract. Unlike structure-preserving methods, feature-preserving discretization methods are still
relatively underdeveloped. In this report we consider optimization-based property-preserving methods for
advection-diffusion problems motivated by similar techniques for remap between two different meshes. The
work studies these methods numerically and compares them to algebraic flux correction schemes.

1. Introduction. The discretization of models which have physical properties that one
would like to include in the modeling process must be treated with care. Failure to do so, can
amount to discrete equations that are not well posed or that provide unphysical solutions.
For problems which are collections of physical models, the situation can become increasingly
worse. The unphysical solution may cause a trickle down effect. In such cases, solutions may
obey basic mathematical conditions such as consistency and stability, however still be next
to useless physically.
Although, research in structure-preserving discretization methods is extensive; see, e.g., [1,4]
and the references therein, limited work exists in feature-preserving discretization methods.
In such discretization methods, qualitative features of the exact solution are sought to be
reproduced. Unfortunately, structure preserving methods are not guaranteed to also preserve
features such as local solution bounds, maximum principle, and positivity, to name a few.
This paper seeks to use an optimization approach first applied in the context of remap [3] to
capture features whilst formulating stable and consistent solutions for a model advection-
diffusion equation. In particular, here we consider a problem configuration involving an
anisotropic diffusion coefficient motivated by Magnetohydrodynamic (MHD) applications.

This paper is organized as follows. Section 2 describes an abstract optimization-based
setting for property preserving discretizations and its specializations to remap and advection-
diffusion problems. Sections 3 will describe the model anisotropic diffusion problem and
provide preliminary numerical results. Section 4 will outline ideas for future work.

2. An abstract property-preserving scheme. We consider an optimization-based
property-preserving approach comprising the following two key steps:

1. Use any standard discretization scheme to compute a formally accurate but not
necessarily property preserving target solution.

2. Minimize the mismatch between the discrete solution we seek and the target solution,
subject to constraints enforcing the desired physical properties.

This approach has the following advantages [2]:
1. Given the target solution, the solution found with the additional constraints is

always the best possible, with respect to the selected measure of mismatch.
2. Accuracy is separated from the preservation of the properties.
3. Feature-preserving methods can be utilized on unstructured meshes.
4. Due to the fact that the only requirements for the scheme defining the target

are stability and consistency, adaptive procedures can be used where the solution
oscillates. If the solution or its derivatives have discontinuities across a cell, the
target can be altered via the use of discontinuous spaces.

A formal description of the approach follows. Suppose we wish to find a solution u ∈ X
∗University of Arizona, Applied Mathematics, nholtzer@math.arizona.edu
†Center for Computing research, Sandia National Laboratories, pbboche@sandia.gov
‡Center for Computing research, Sandia National Laboratories, kjpeter@sandia.gov
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such that

L(u) = f ∈ Y

where X,Y are Banach spaces, f ∈ Y is given, and the operator L : X → Y . We assume
there exists finite dimensional subsets U ⊆ X and V ⊆ Y such that for any f ∈ V the
solution, u ∈ U . These subsets encode the desired solution properties. Also, we assume there
exists discrete spaces, Xh and Yh, and discrete operators, Lh : Xh → Yh, such that there
there exists a unique solution to the following problem:

Lh(uh) = fh ∀h.

Furthermore, if fh → f then uh → u. For simplicity, we consider a conforming approximation
setting where

1. Xh ⊂ X and Yh ⊂ Y ;
2. Uh = U ⋂Xh and Vh = V⋂Yh.

Note we have not assumed that the discrete solution is property preserving, i.e., that the
following holds:

• fh ∈ Vh and uh ∈ Uh.
Instead, we introduce an optimization target solution uTh := uh and seek a property-preserving
discrete solution ûh such that ûh ∈ Uh and fh ∈ Vh. To find such a solution we treat the
physical properties as constraints and consider the following optimization problem:

minimize J(ûh;uTh ) :=
1

2
||ûh − uTh ||2W subject to

 Lh(uTh ) = fh
ûh ∈ Uh

Lh(ûh) ∈ Vh.

The paper [3] specializes this approach to the constrained interpolation (remap) problem,
while [2] further extends it to a semi-Lagrangian transport scheme. This report considers
application of the abstract approach to an Eulerian finite element method for the advection-
diffusion equation. The preserved features will be both conservation of mass and the density.

For completeness we review specialization of the approach to remap and then consider
advection diffusion problems. This requires some additional notation. Let Ω be a polyhedral
domain in Rd. Assume that C(Ω) is a given source mesh on Ω and C̃(Ω) is another, target
mesh on the same domain. We denote the source mesh cells by ci and their vertices by vi.
The set of all source mesh vertices is denoted by V (Ω). The corresponding entities on the
target mesh will be denoted with a tilde. We make the following assumptions regarding the
meshes:

1. The vertices which define ∂Ω belong to both C(Ω) and C̃(Ω).
2. If ṽi is on the boundary then vi is on the boundary also and both belong to the

same part of the boundary.
We denote the space of piecewise constant functions on C(Ω) by Ch and let Ch0 be its
zero-mean subspace, i.e.,

Ch0 =

{
u ∈ Ch |

NC∑
i=1

ui = 0

}
,

where NC is the number of mesh cells. The analogues of these spaces on C̃(Ω) are denoted
by a tilde. We endow all discrete spaces with the l2 inner product.
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2.1. Optimization-based finite element transport (OBFET). We first show how
the abstract property preserving framework specializes to the mass-density remap problem [2].

Let ρ be a positive scalar function (density) and

M =

∫
Ω

ρ(x)dV

denote the total mass in Ω. The cell mass and the mean cell density on the source mesh are
given by

mi =

∫
ci

ρ(x)dV and ρi =
mi

µ(ci)
, (2.1)

respectively, where µ(ci) is the measure of ci. It follows that mi = ρiµ(ci) and M =
NC∑
i=1

ρiµ(ci)

The mean density satisfies the following local bounds

ρmini ≤ ρi ≤ ρmaxi ∀i = 1...NC

where min and max are taken over the nearest neighbors of cell ci. It follows that

mmin
i = ρmini µ(ci) ≤ mi ≤ ρmaxi µ(ci) = mmax

i ∀i = 1...NC .

For the mass-density remap we assume that ρi is given on every cell ci of the source mesh
and ρ(x) is given on the boundary. We wish to find approximation of the cell masses on the
target mesh C̃(Ω), i.e.,

m̃i ≈
∫
c̃i

ρ(x)dV .

We require the following conditions be satisfied:

1.
NC̃∑
i=1

m̃i =
NC∑
i=1

mi = M (Mass Conservation)

2. m̃i =
∫̃
ci

ρ(x)dV , ∀ρ(x) = a0 + a1x. (Linear Density Preservation)

3. m̃min
i = ρmini µ̃i ≤ m̃i ≤ ρmaxi µ̃i = m̃max

i (Local Bound Preservation)
We specialize the abstract framework to this problem as follows. Let ρ(x) ∈ R and L : R→ C̃h

be the operator which computes the exact cell masses on C̃, i.e.,

(m̃)i = (L(ρ(x)))i :=

∫
c̃i

ρ(x)dV.

Since L is not known in general, we replace it by an approximation Lh : Ch × Ch → C̃h

which operates on the data that is given, and is exact for density functions belonging in
some set B, that is,

m̃ = Lh(m,u(ρ)) ∀ρ(x) ∈ B

However, the range of Lh is not required to satisfy conditions (1) and (3) from above. Here
we assume that B is the class of linear density functions, i.e. ρ(x) = a0 + a1x. To state the
optimization problem we view the above problem as an equation defining the optimization
target:

Lh(m,uT ) = m̃ .
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The abstract optimization formulation then yields the following property-preserving remap
scheme:

min
1

2
||û− uT ||2l2 subject to


Lh(m,uT ) = m̃ ∀ρ(x) ∈ B
NC∑
i=1

mi =
NC̃∑
i=1

(Lh(m, û))i

m̃min ≤ Lh(m, û) ≤ m̃min

(2.2)

We refer to [2,3] for further details and specific variations of this formulation which differ
in the manner in which the targets are defined. We next provide a brief summary of a
flux-based remap since a similar setting will be utilized for the advection-diffusion problem.

2.2. Flux-corrected remap (FCR). The optimization-based remap in Section 2.1
is related to a flux-corrected remap (FCR) scheme [8] motivated by the classical Algebraic
Flux Correction (AFC) approach [5]. In this section we briefly review FCR. To that end it
we retain the following notation

mi =

∫
ci

ρ(x)dV ; ρi =
mi

µ(ci)
; and M =

∫
Ω

ρ(x)dV =

C∑
i=1

mi =

C∑
i=1

ρiµ(ci). (2.3)

from the mass-density case and adopt the necessary additional notation from [8,9].
As before, we seek an accurate approximation of the mass on C̃(Ω) such that mass

is conserved and the remapped density satisfies local bounds. The FCR scheme uses the
so-called flux representation of the density on the new mesh, which is given by

m̃i = mi +
∑
k

Fmi,k (2.4)

where Fmi,k = −Fmk,i are mass fluxes defined as

Fmi,k ≈
∫

C̃i∩Ck

ρdV −
∫

Ci∩C̃k

ρdV ; (2.5)

see [8]. The antisymmetry of the fluxes ensures that mass is conserved. Following [8] we
rewrite the local bounds in terms of the flux:

mmin
i ≤ mi +

∑
k

Fmi,k ≤ mmax
i (2.6)

Accuracy of the approximation depends on the accuracy of the flux. Typically, a high-order
flux, denoted by Fm,Hi,k , is obtained by using a linear reconstruction of the density in (2.5).
However, the high-order flux is not guaranteed to satisfy the local bounds (2.6). Thus, the

goal is to find fluxes Fmi,k, which satisfy (2.6) and are close to the high order fluxes Fm,Hi,k .
In [8] this task is formulated as a global optimization problem:

Fm = arg min ‖Fm − Fm,H‖2l2 subject to (2.6). (2.7)

The FCR scheme results from simplifying the constraints in (2.7) to a set of box constraints
which decouple the variables and allow to find an approximate solution by solving small
local problems. This process assumes that there exist low-order fluxes Fm,Li,k satisfying these
bounds, so that the candidate solution can be written as

Fmi,k = Fm,Li,k + Cmi,kdF
m
i,k where dFmi,k = −dFmk,i = (Fm,Hi,k − Fm,Li,k ) , (2.8)
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and 0 ≤ Cmi,k = Cmk,i ≤ 1 are some yet to be determined coefficients. We now wish to find
Cmi,k such that (i) the bounds (2.6) hold and (ii) Cmi,k are as close as possible to 1. One can
show that an admissible set of coefficients is given by

Cmi,k =


min(Dm,+

i , Dm,−
k , 1) if dFmi,k > 0

min(Dm,−
i , Dm,+

k , 1) if dFmi,k < 0

1 if dFmi,k = 0

(2.9)

where

Dm,+
i =

Qm,maxi

Pm,+i

; Dm,−
i =

Qm,mini

Pm,−i

;

Qm,maxi = mmax
i − m̃L

i ≥ 0 , Qm,mini = mmin
i − m̃L

i ≤ 0

and

Pm,+i =
∑

dFmi,k>0

dFmi,k ≥ 0 , Pm,−i =
∑

dFmi,k<0

dFmi,k ≤ 0.

see [8] for further details.

3. Model Problem. We consider the advection-diffusion equation

∂ϕ

∂t
+∇ · (−D∇ϕ+ uϕ) = f on Ω× [0, T ] (3.1)

augmented with the boundary and initial conditions

ϕ = ϕD on ∂Ω× [0, T ] and ϕ (x, 0) = ϕ0, (3.2)

respectively. In (3.1) the domain Ω is a bounded open region in R2, D is a prescribed
diffusion coefficient, and u is a prescribed velocity field. We assume a problem setting such
that the solution ϕ preserves the mass in Ω, i.e.,∫

Ω

ϕ(x, t)dx =

∫
Ω

ϕ(x, 0)dx = µ0 ∀0 < t ≤ T . (3.3)

3.1. Extension of OBFET and FCR to the model problem. Assume that C(Ω) is
a finite element partition of Ω and (3.1) is discretized in space by a standard C0 nodal Galerkin
scheme using piecewise linear or bilinear elements. We assume that time discretization is by
an implicit or explicit one step scheme and denote the corresponding fully discrete equation
giving the finite element solution at the new time step as

Lh(ϕh) = fh .

For simplicity we omit the index of the current time step.
Let ϕmini and ϕmaxi denote the minimum and maximum nodal solution values at the

current time step of the nodes adjacent to node vi. We seek a discrete solution at the new
time step which satisfies the local bounds

ϕmini ≤ ϕi ≤ ϕmaxi ∀ i = 1...NV , (3.4)
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where NV is the number of vertices in the mesh C(Ω). To obtain such a solution we specialize
the OBFET formulation (2.2) as follows. We define the target as the solution of the Galerkin
problem and then seek a property-preserving finite element field by minimizing the L2 norm
of the difference between this field and the target. It is easy to see that a discrete version of
property (3.3) is given by

1TMϕ = µ0

where M is a consistent mass matrix, 1 is a vector of ones and ϕ is the coefficient vector of
the finite element solution ϕh at the current time step. The optimization-based property-
preserving formulation of (3.1) is then given by

min
1

2
||ϕh − ϕT ||20,Ω subject to


Lh(ϕT ) = fh

1TMϕh = µ0

ϕmini ≤ ϕi ≤ ϕmaxi ∀i = 1...NV .

(3.5)

The second property-preserving formulation for (3.1) is based on a representation of the
nodal values of the solution ϕh in terms of nodal fluxes. Specifically, we have the following
analogue of (2.3):

(ϕ)i = (ϕL)i +
∑
j 6=i

ωijFi,j

where Fi,j is a nodal flux from node vj into node vi and ωij is a weight which includes an
orientation factor, the lumped nodal mass and the time step; see, e.g., [7]. This representation
requires a notion of a low-order finite element solution ϕhL which satisfies the local solution
bounds (3.4) and preserves the mass, i.e.,

1TMϕL = µ0 .

Under these assumptions one can show that with slight modifications to account for the
fact that now Fi,j represent nodal fluxes, formula (2.9) provides a solution in the present
case as well. This type of property-preserving methods is often referred to as algebraic flux
correction, or AFC schemes; see [6, 7].

3.2. Computational study. Simulations of the Magnetohydrodrynamic (MHD) equa-
tions have expanded our knowledge of magnetic fields. Further understanding of magnetic
fields is essential to the field of astrophysics. This is due primarily to the sheer amount of
magnetized plasma existing in the universe. These fields can provide us information of forces,
stresses, and even transport in plasma. They allow diffusion along field lines while keeping
transport across them at bay. Anisotropic transport, specifically, affects many fundamental
properties within a plasma. Unfortunately, research of anisotropic transport in plasmas is
still insufficient [10]. As a preliminary step towards better understanding of the underlying
processes, here we present numerical results for an anisotropic diffusion version of the model
problem (3.1) that provides a simplified model of the relevant physics.

3.3. Anisotropic Diffusion. For clarity of physical meaning we restate the model
problem (3.1) as

∂T

∂t
+∇ · (D∇T − vT ) = f on Ω× [0, τ ] (3.6)
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augmented with the boundary and initial conditions

T = TD on ∂Ω× [0, τ ] and T (x, 0) = T0, (3.7)

respectively. Here, T is a temperature profile, Ω := [−2, 2]× [−2, 2], D = {dij} is a prescribed
anisotropic diffusion tensor coefficient, and v is a prescribed velocity field. We note that D
is made up of diffusivity parameters in the parallel, perpendicular, and angular direction
of the flow, each of which scales like ||B||−i where i = 1, 2 and B is a given magnetic field.
D will be some tensor which will be cylindrical in nature and T0 is an initial temperature
profile that we will evolve in time.

3.4. Numerical Results. We compare property-preserving solutions of the anisotropic
diffusion example (3.6) using the Optimization-based Finite Element Transport (OBFET)
scheme (3.5) and the algebraic flux correction (AFC) method based on the flux representation
of the finite element solution. In the numerical experiments that follow, we have set v = 0
and are using a forward Euler discretization scheme. Moreover, the initial temperature
profile, T0, is taken to be a Gaussian distribution on a ring; see Fig. 3.1. We define our
magnetic field, which we evaluate at integration points x and y, in the following way:

B =
{−B0x

r , B0y
r

}
where

1. B0 = 1
2. r =

√
x2 + y2.

Furthermore, the diffusion coefficient D is defined below.
If B > 0, we have,

D∇T = κ||∇||T + κ⊥∇⊥T.

Otherwise, we have,

D = κ||

where for the previous two definitions:

κ|| = 1, κ⊥ = 0

and finally ∇||(⊥)T denotes the projection of ∇T onto the parallel (perpendicular) direction
of the magnetic field. We use free boundary data on all boundaries. Our principal goal is to
investigate how these schemes handle the high material contrast in the example problem.

Figure 3.1 shows the initial temperature profile. Then we display the solution plots,
utilizing the previously presented AFC scheme, as well as x and y solution slices, for a 64x64
mesh respectively.
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Fig. 3.1: Initial temperature profile T0.
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Fig. 3.2: AFC solution on 64x64 mesh

We now display the same plots corresponding to one variation in the optimization based
remap approach, with a 64x64 mesh.
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Fig. 3.3: y solution slice: AFC on a
64x64 mesh.
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Fig. 3.4: x solution slice: AFC on a
64x64 mesh.
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Fig. 3.5: OBFET solution on 64x64 mesh
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Fig. 3.6: y solution slice: OBFET on
64x64 mesh.
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Fig. 3.7: x solution slice: OBFET on
64x64 mesh.
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For comparison, we increase our mesh to 128x128 and display the solution plots for both
AFC and OBFET and their corresponding x and y slices below.
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Fig. 3.8: AFC
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Fig. 3.9: OBFET
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Fig. 3.10: AFC
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Fig. 3.11: OBFET
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Fig. 3.12: AFC
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Fig. 3.13: OBFET

We see similar behavior between the two methods with the refined mesh, as expected.
We note that the solution still continues to have oscillations, a problem we will address in
the final section of this paper.

4. Future Work. We begin by noting that our work with anisotropic diffusion, utilizing
AFC, didn’t exactly match previously obtained results. In the future, we will try utilizing a
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radially discretized mesh i.e. each element will be a chunk of an annulus. This will provide a
more realistic representation of transport since the field lines will no longer be aligned with
the mesh. This should also improve our OBFET solutions as well. Moreover, we wish to
run all simulations with a more refined mesh since the above plots utilize a relatively coarse
mesh.
We aim to finish implementing a mixed finite element scheme. In doing so, we will im-
plement both simplicial and quad Raviart-Thomas elements. Then, we plan to combine
the optimization-based approach with a mixed finite element discretization of the model
problem. Such a combination has not yet been investigated and it presents several challenges.
Specifically, a mixed formulation involves a direct approximation of the flux and the scalar
variable. It is an open question whether or not enforcing bounds on the scalar alone will
ensure an acceptable flux approximation. If bounds for the flux are also required, the
structure of the optimization problem may change, potentially requiring a new optimization
algorithm.
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NONSYMMETRIC ALGEBRAIC FMM WITH APPLICATION TO
COMBINED FIELD INTEGRAL EQUATIONS

JAMES L. LEVITT∗, ERIK G. BOMAN† , SIVASANKARAN RAJAMANICKAM‡ , AND

GEORGE BIROS§

Abstract. Boundary integral equation methods are well-established tools for simulating electromagnetic
scattering. One of their shortcomings is that, upon discretization, they result in a linear system with a dense
matrix K. This problem is well understood and has been addressed with Fast Multipole Methods (FMM),
which date back to the early 90s. By introducing a controllable approximation error, such methods turn an
O(N2) matrix-vector product with K to an O(N) matrix-vector product under suitable conditions. Classical
FMM schemes are based on analytic expansion of the underlying Green’s function and they essentially
sparsify or compress K. From a software implementation point of view, they are rather intrusive and require
careful integration with the discretization code. This makes their use a bit difficult, especially if one wants
to experiment with different discretization schemes for the boundary integral equation. An alternative is to
use algebraic methods to compress K, the so-called H-matrix methods.

Here we test one such method, the geometry-aware variant of GOFMM, on a low-frequency scattering
problem discretized using the combined field integral formulation and the method of moments (essentially a
Petrov-Galerkin collocation scheme). This scheme gives rise to a non-Hermitian matrix. Current H-matrix
methods, including GOFMM, require row and column permutations of the matrix in order to compress
K and importance sampling to construct low-rank approximations. To construct these permutations and
sample rows and columns we need to know the coordinates of the collocation points. If K were SPD, we
could apply the geometry-oblivious variant of GOFMM, which does not require such coordinates. But
unfortunately K is not symmetric. In this work we extend the geometry-aware variant of GOFMM to support
nonsymmetric complex matrices and test it on a test matrix generated by the Eiger library developed at
Sandia National Laboratories. Since geometric information was unavailable, we use the natural ordering of
the matrix (no permutations) and uniform random sampling. Under these conditions, the Eiger matrix K
compresses well up to a relative error of 3E-4, which is insufficient for some right-hand sides since the matrix
has condition number of 7E-8. Further compression of K may be possible with a better permutation and
higher quality sampling that leverage geometric information. To demonstrate the possibility of attaining
arbitrary accuracies when the coordinates of the collocation points are available, we also test GOFMM on a
synthetic problem that results in a non-symmetric complex matrix related to low-frequency scattering from
point scatterers in three dimensions.

1. Introduction. Given a perfect electric conductor and an incident electric field, we
seek the induced current on the surface of the conductor due to the incident field, which
can then be used to find the scattered electric field. The induced current is governed by the
combined field integral equation (CFIE) [12], which is a weighted sum of the electric field
integral equation (EFIE) and magnetic field integral equation (MFIE). The problem can be
solved with either the EFIE or MFIE separately, and while they produce symmetric moment
matrices, such approaches encounter problems with homogeneous solutions corresponding to
interior resonance entering into the solution. Use of the CFIE avoids such issues at the cost
of losing symmetry of the discretized integral equation operator K.

The problem is discretized with the method of moments using Rao-Wilton-Glisson (RWG)
basis functions [13] to yield a linear system Kx = b, where K ∈ Cn×n and x, b ∈ Cn. The
discretized problem is generated using Eiger [6, 8], a parallel code for simulating frequency-
domain electromagnetic scattering. There are a number of concerns in formulating the
problem relating to the discretization, efficient computation of moment matrix entries, and
avoiding singularities, all of which are handled in Eiger and not discussed in this paper.

The matrix K is dense and the system is typically solved using a Krylov method such
as GMRES [14], in which the main computational cost is in applying K to a vector. In
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order to accelerate the algorithm, we construct a hierarchical low-rank approximation (a
compression) K̃ of K such that ‖K̃ −K‖ < ‖K‖. The matrix compression algorithm is an
algebraic variant of the Fast Multipole Method (FMM) which takes advantage of hierarchical
low-rank structure in the matrix to construct a compressed representation of the matrix with
O(n log n) work that can be applied to a vector with O(n) work under suitable conditions on
the problem. For certain problems, the compressed matrix-vector product delivers significant
speedup over the O(n2) uncompressed dense matrix-vector product, leading to a faster
overall runtime, even accounting for compression time.

There are a number of related works that use FMM-like algorithms for the fast solution
of electromagnetic scattering problems in the engineering literature. Many methods [4,15–17]
have appeared that aim at accelerating matrix-vector products. For a review of nearly
optimal and highly accurate methods for frequency-domain FMM methods, see [3]. For a
state of the art discretization of integral equations for electromagnetics, see [1].

As discussed, there are many efficient techniques for accelerating matrix-vector prod-
ucts with K. However, the majority of existing methods require tight integration of the
discretization and kernel evaluation codes with the acceleration scheme. Few schemes can be
used in black-box fashion and, to our knowledge, no existing software scales to distributed
memory architectures. In this project, we aim at exploring black-box schemes that scale on
distributed memory architectures. There are numerous works in the literature relating to
hierarchical low-rank approximation of rank-structured matrices, and so we only mention
those that are most closely related. We implement our scheme using the Geometry-Oblivious
Fast Multipole Method (GOFMM) library [18,19]. One of the main contributions of GOFMM
is the generalization of the ASKIT FMM [10] to general symmetric positive-definite matrices
that do not necessarily represent interactions between pairs of points. However, we do
not attempt to generalize the geometry-oblivious features of GOFMM for two reasons: the
problem setting of this work is geometry-aware, and there is no guarantee of symmetry and
positive-definiteness of K, a requirement for the geometry-oblivious features. Instead, we
extend the geometry-aware FMM, as implemented in the GOFMM library, to nonsymmetric
matrices.

2. Hierarchical Iterative Solver. For matrix K ∈ Cn×n and right hand side b ∈ Cn,
in order to solve the linear system Kx = b, our first goal is to construct a hierarchical matrix
approximation K̃ that satisfies ‖K̃ − K‖ < εc, where εc is a user-defined absolute error
tolerance for the compressed operator. This compressed operator is then used to efficiently
compute matrix-vector products inside an iterative solver.

Depending on the matrix and error tolerance, such an approximation may not exist
Applicability of this approach requires a matrix that can be permuted to reveal hierarchical
low-rank structure and an appropriate choice of error tolerance. Depending on the matrix,
an error tolerance that is too small results in very little compression, leading to poor
performance.

We begin this section with the hierarchical clustering of points, which defines a reordering
of the matrix that seeks to reveal low-rank structure in the off-diagonal blocks. Next, we
review the Interpolative Decomposition (ID), the low-rank matrix factorization that we use
to approximate off-diagonal blocks. We then describe the two main phases of the algorithm,
compression and evaluation, and follow with a comparison with the symmetric algorithm
of [18]. Finally, we discuss the use of the compressed operator in accelerating GMRES.

2.1. Clustering/reordering. The compressibility of matrix K depends on a proper
ordering of points {xi}. Therefore, we begin by reindexing the points (reordering the matrix)
such that points that are nearby in space have nearby indices. This is done by creating a
hierarchical clustering of the points represented by a balanced binary tree. The root node of
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the tree is assigned the full set of points. The set of points assigned to a node is split into
two balanced clusters, and each cluster is assigned to a child node. This process is continued
at each level of the tree until the number of points assigned to the leaf nodes fall within
some prescribed maximum leaf size. We split sets of points by their projections along an axis
which heuristically estimates the axis along which the points have maximal variation. This
method scales well with the dimensionality d of the data [11]. The hierarchical clustering
algorithm is outlined in Algorithm 4.

Algorithm 4 Construct a cluster tree for points {xi}
procedure Cluster tree({xi})

α =New node({xi})
if |{xi}| > max leaf size then

x̄ = 1
|{xi}|

∑
xi . Compute the centroid

xp = arg maxi ‖xi − x̄‖ . Find the point farthest from x̄
xq = arg maxi ‖xi − xp‖ . Find the point farthest from xp
med = Median({(xi, xp − xq)}i) . Split points by projections along xp − xq
α.left child = Cluster tree(xi : (xi, xp − xq) ≤ med)
α.right child = Cluster tree(xi : (xi, xp − xq) > med)

end if
return α

end procedure

2.2. Interpolative Decomposition. Consider the task of constructing a low rank
approximation of Kαβ ∈ Cnα×nβ , the block of K corresponding to interactions between tree
nodes α and β.

A rank-r column ID of a matrix Kαβ takes the form

Kαβ ≈ KαβS
c
αβP

c
αβ , (2.1)

where Scαβ ∈ Rnβ×r is a column submatrix of a permutation matrix and P cαβ ∈ Cr×nβ . The
product KαβS

c
αβ is a column submatrix of Kαβ , and matrix Scαβ may be viewed as selecting

a subset of the columns of Kαβ to use as a basis. The selected columns are referred to
as skeleton columns. Then the entire decomposition may be viewed as an expansion of
each column of Kαβ in the column basis KαβS

c
αβ , where matrix P cαβ encodes the expansion

coefficients. Definitions of the ID in other works often use two terms rather than three,
combining the product KαβS

c
αβ into a single term. Writing the decomposition with three

terms is equivalent and leads to clearer exposition in following sections.
Similarly, a rank-r row ID of Kαβ takes the form

Kαβ ≈ P rαβSrαβKαβ , (2.2)

where Srαβ ∈ Rr×nα is a row submatrix of a permutation matrix and P rαβ ∈ Cnα×r.
A column ID and row ID of Kαβ may be combined to form a two-sided ID by a simple

substitution:

Kαβ ≈ KαβS
c
αβP

c
αβ ≈ P rαβSrαβKαβS

c
αβP

c
αβ (2.3)

Storage of this decomposition only requires 2rn values for P cαβ and P rαβ , and 2r indices to
encode the columns/rows selected by Scαβ and Srαβ .
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The algorithm for constructing an ID is given in Algorithm 5. Given some overall error
tolerance εc, the goal is to construct an ID for submatrix Kαβ with an adaptively-chosen
rank r that is less than or equal to the maximum allowed rank s such that the approximation
satisfies some accuracy requirement. If such an approximation cannot be found, the matrix
block is deemed incompressible. Entries belonging to an incompressible block may still be
approximated if they also belong to a different block that is compressible. Otherwise, they
are computed exactly. The majority of the computational cost comes from a rank-revealing
QR factorization (RRQR) and a triangular solve. In order to reduce the computational
cost, we use a sampled ID, in which only a small subset of the columns or rows are used in
computing the results S, P [11]. The sample submatrix is selected using using neighbor-based
importance sampling [9].

Algorithm 5 Construct a sampled Interpolative Decomposition of matrix Kαβ

procedure Column id(Kαβ)
γ =Importance sample(α)
Q,R,Π =RRQR(Kαγ)

r = min

(
{i : ‖R[i :, i :]‖ <

√
|α||γ|
n εc}

)
if r > s then

return fail

end if
S = Π[:, : r]
R11 = R[: r, : r]
R12 = R[: r, r :]
P =

[
I R−1

11 R12

]
Π−1

return S, P
end procedure
procedure Row id(Kαβ)

S, P = Column id(KT
αβ)

return ST , PT

end procedure

2.3. Compression. Constructing interpolative decompositions independently for each
block Kαβ would be inefficient and would lead to inefficiency in the evaluation phase. Instead,
we construct these approximations using a recursive approach based on the cluster tree. For
each tree node β, we define the column off-diagonal block of β to be submatrix Kβ̄β , and the

row off-diagonal block of β to be submatrix Kββ̄ , where β̄ = {1, . . . , n} \ β denotes the set of
points not in β. During compression, we construct approximations for these column and row
off-diagonal blocks. These approximations are later used during evaluation to approximate a
compressible block Kαβ with a two-sided ID using the row ID of Kαᾱ and the column ID of
Kβ̄β .

For a leaf node β, we define the column skeletonization of β to be a low-rank approxima-
tion of β̄ using the ID

Kβ̄β ≈ Kβ̄βSβ̄βPβ̄β . (2.4)

We define the row skeletonization of β similarly:

Kββ̄ ≈ Pββ̄Sββ̄Kββ̄ . (2.5)
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For an internal node α, we only compute a column ID using columns that are skeletons
of the children of α, That is, a column ID is computed for the submatrix Kᾱα′ , where α′ ⊂ α
denotes the set of skeleton columns of the child nodes l, r of α:

Kᾱα′ ≈ Kᾱα′Sᾱα′Pᾱα′ , where Kᾱα′ = Kᾱα

[
Sl̄l

Sr̄r

]
. (2.6)

This will be combined with the IDs of the children of α to implicitly define an ID for the entire
off-diagonal block of α. The skeletons satisfy the nesting property : the skeleton columns of
α are a subset of the skeleton columns of its children. The nesting property is important for
achieving O(n) work complexity in the evaluation stage.

Due to the nesting property, we can use (2.6) together with the column IDs of the child
nodes to implicitly define a column ID of the full block Kᾱα:

Kᾱα ≈ Kᾱα

[
Sl̄l

Sr̄r

] [
Pl̄l

Pr̄r

]
≈ Kᾱα′

[
Pl̄l

Pr̄r

]
≈ Kᾱα′Sᾱα′Pᾱα′

[
Pl̄l

Pr̄r

]
≈ Kᾱα

[
Sl̄l

Sr̄r

]
Sᾱα′Pᾱα′

[
Pl̄l

Pr̄r

]
This defines a column ID of the full off-diagonal block Kᾱα = SᾱαPᾱα with telescoping
expressions for Sᾱα and Pᾱα:

Sᾱα =

[
Sl̄l

Sr̄r

]
Sᾱα′ , Pᾱα = Pᾱα′

[
Pl̄l

Pr̄r

]
(2.7)

We never explicitly form Pᾱα, but instead use the telescoping expression to apply Pᾱα
to a vector during evaluation. The row skeletonization of interior node α is carried out
analogously, using the row skeletons of the children of α.

Compression consists of skeletonizing each node in the cluster tree. The tree nodes are
skeletonized following a post-order tree traversal in order to satisfy data dependencies. The
compression algorithm is outlined in Algorithm 6.

2.4. Evaluation. Once the compressed representation has been constructed, we seek
to apply the compressed matrix to weight vector w to compute the product vector u ≈ Kw.
We refer to this step as evaluation. Suppose the block Kαβ may be approximated with a
two-sided ID as in (2.3) using the skeletonizations constructed in §2.3. We seek to apply it
to the appropriate subvector wβ and add the contribution Kαβwβ to uα. This is done in
three steps: we first compute the skeleton weights w̃β = Pβ̄βwβ , then the skeleton products
ũα = SαᾱKαβSβ̄βw̃β , and finally add to the products uα += Pαᾱũα. Computing the skeleton
products consists of a single matrix-vector product using the submatrix of Kαβ selected by
Sαᾱ and Sβ̄β , rather than separately applying the three matrices.

We make a few observations that lead to an efficient implementation. First, the matrix
blocks whose columns are indexed by β all belong to the column off-diagonal block of β, so
they share the same skeleton weights Pβ̄βwβ . Similarly, the matrix blocks whose rows are
indexed by α all apply the same matrix Pαᾱ to their skeleton products, so we may sum their
skeleton products before applying Pαᾱ and apply Pαᾱ a single time to the summed skeleton
products. With this perspective, we define the skeleton weights of node β to be the skeleton
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Algorithm 6 Compress the matrix by skeletonizing each tree node

procedure Compress()
Skeletonize(root)

end procedure
procedure Skeletonize(α)

if Is leaf node(α) then
Sᾱα, Pᾱα = Column id(Kᾱα)
Sαᾱ, Pαᾱ = Row id(Kαᾱ)

else
Skeletonize(α.left child)
Skeletonize(α.right child)
α′ = α.left child.skeleton ∪ α.right child.skeleton

Sᾱα′ , Pᾱα′ = Column id(Kᾱα′)
Sα′ᾱ, Pα′ᾱ = Row id(Kα′ᾱ)

end if
end procedure

weights associated with all sub-blocks of its column off-diagonal blocks, and the skeleton
products of α to be the skeleton products summed over the sub-blocks of its row off-diagonal
block.

We also observe that as a consequence of the nesting property and telescoping expres-
sion (2.7), there is significant overlap in the computation of an interior node’s skeleton
products and the computation of its children’s skeleton products. That is, once the skeleton
products of the children are known, the skeleton products of the parent may be computed
with a single additional matrix-vector product. Similarly, in computing products, rather than
applying the full telescoping expression to its skeleton products, a parent node α may apply
a single matrix-vector product and “pass down” the partial result Pα′ᾱũα to its children,
which add the appropriate parts to their skeleton products.

The evaluation algorithm is outlined in Algorithm 7. In order to satisfy data dependen-
cies, the computation of skeleton weights is structured as a post-order tree traversal, the
computation of skeleton products is structured as a visitation of tree nodes in any order,
and the computation of products is structured as a pre-order tree traversal. Under suitable
assumptions on the low-rank structure of K, the computational complexity of evaluation is
O(n). Detailed cost breakdown along with some other discussion can be found in [18].

2.5. Accelerated GMRES.

2.5.1. Analysis. To accelerate GMRES, we construct a compressed operator K̃ and
substitute it for the uncompressed operator K throughout GMRES. This leads to two
different kinds of residual: we define the relative residual of x in the compressed operator to
be ‖K̃x− b‖/‖b‖ and the relative residual of x in the uncompressed operator or true residual
to be ‖Kx− b‖/‖b‖. These two residuals may be different, and in the accelerated algorithm,
only the residual in the compressed operator is available. The following theorem gives upper
bounds for the solution error and the true residual in terms of the residual in the compressed
operator, the error in the compression, and the condition number of K.

Theorem 2.1. For matrix K and right hand side b, let x be the solution of Kx = b, and
x̃ be an approximate solution of K̃x̃ ≈ b with residual r = K̃x̃− b. Assume K is nonsingular,
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Algorithm 7 Apply the compressed matrix to a vector w.

procedure Evaluate(w)
Compute skeleton weights(root)
Compute skeleton products()
Compute products(root)

end procedure
procedure Compute skeleton weights(α)

if is leaf node(α) then
w̃α = Pᾱαwα

else
l = α.left child

r = α.right child

Compute skeleton weights(l)
Compute skeleton weights(r)

w̃α = Pᾱα′

[
w̃l

w̃r

]
end if

end procedure
procedure Compute skeleton products()

for α ∈ tree do
ũα =

∑
β∈α.interaction list SαᾱKαβSβ̄βw̃β

end for
end procedure
procedure Compute products(α)

if is leaf node(α) then
uα = Pαᾱũα

else
l = α.left child

r = α.right child[
w̃l

w̃r

]
+= Pα′ᾱũα

Compute products(l)
Compute products(r)

end if
end procedure

‖K̃ −K‖ < εc‖K‖, ‖r‖ < εr‖b‖, and εccond(K) < 1. Then

‖x̃− x‖
‖x‖ <

(εr + εc) cond(K)

1− εccond(K)

and

‖Kx̃− b‖
‖b‖ < εr + εccond(K)

1 + εrcond(K)

1− εccond(K)
.

Proof. First, we bound ‖x̃‖/‖x‖. Define δK = K̃ −K. It follows from the definitions
that

(K + δK) x̃ = b+ δb
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I +K−1δK

)
x̃ = x+K−1r

x̃ =
(
I +K−1δK

)−1 (
x+K−1r

)
Matrix I +K−1δK is invertible since ‖K−1δK‖ < εccond(K) < 1. Taking norms and using

the Neumann series bound of
(
I +K−1δK

)−1
,

‖x̃‖ ≤ ‖x‖+ ‖K−1r‖
1− ‖K−1δK‖

‖x̃‖
‖x‖ ≤

1 + εrcond(K)

1− εccond(K)
(2.8)

To bound ‖x̃− x‖/‖x‖, we observe from the definitions that x̃− x = K−1r −K−1δKx̃.
Taking norms,

‖x̃− x‖
‖x‖ ≤ ‖K

−1r‖
‖x‖ +

‖K−1δKx̃‖
‖x‖

≤ εrcond(K) + εccond(K)
‖x̃‖
‖x‖

Combining this with 2.8 yields the first inequality.
To bound ‖Kx̃− b‖/‖b‖, we observe from the definitions that Kx̃ = r − δKx̃. Taking

norms,

‖Kx̃− b‖
‖b‖ ≤ ‖r‖‖b‖ +

‖δKx̃‖
‖b‖

≤ εr + εc
‖K‖‖x‖
‖b‖

‖x̃‖
‖x‖

< εr + εccond(K)
‖x̃‖
‖x‖ .

Combining this with 2.8 yields the second inequality.

2.5.2. Trilinos Implementation. Trilinos [5] is a large open-source software project
consisting of a collection of packages for solving large-scale numerical problems arising
in computational science and engineering. The Belos package [2] provides a number of
iterative solvers, including an implementation of GMRES, which we combine with the
hierarchical compression algorithm to create an accelerated linear solver. Trilinos is designed
to support modularity of components via the use of abstract interfaces. In particular,
the GMRES implementation operates on abstract classes for operator and multivector
types. Swapping out different implementations of the abstract classes does not require
any changes to the solver, and the user is free to implement any operator and multivector
types that satisfy the abstract interfaces. The operator interface is defined in the Belos
source file BelosOperator.hpp and the multivector interface in BelosMultiVec.hpp. Simple
unoptimized example implementations are located in MVOPTester/ in the Belos test directory.

We implement a new operator to support hierarchical approximation of operator K. The
new operator type creates a compressed representation of a given matrix when its constructor
is called. Subsequent calls to apply the operator execute the compressed matrix-vector
product of Algorithm 7.

Compared to the reference algorithm that uses an uncompressed matrix-vector product,
the accelerated algorithm has an additional startup cost associated with compression. In
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order to achieve speedup in total runtime, the savings due to the compressed matrix-vector
product must overcome the cost of compression. For suitable problems, the compressed
matrix-vector product is asymptotically faster, even accounting for compression, and therefore
will be faster given a large enough problem. We empirically compare the accuracy and
convergence of the accelerated algorithm against the reference algorithm in §3.

3. Experiments. The compression and evaluation algorithms of §2 were implemented
in the GOFMM codebase and integrated with the GMRES solver of Trilinos. Experiments
were conducted on a server equipped with dual Intel Xeon Platinum 8160 CPUs for a total
of 48 physical cores and 192 GB of memory. Though the GOFMM library includes support
for distributed-memory parallelism, we run these experiments only on a single compute node,
using OpenMP for shared-memory parallelism.

3.1. Performance Impact of Nonsymmetry. We first examine the performance
overhead incurred by the additional work for nonsymmetric compression. The nonsymmetric
algorithm computes two approximations for each node β: a column ID of column off-diagonal
block Kβ̄β and a row ID of row off-diagonal block Kββ̄ . The symmetric algorithm only has
to compute one of these and takes the transpose to get the other. We compare the results for
the symmetric and nonsymmetric algorithms both applied to a symmetric problem. In these
experiments, the operator is a kernel matrix K ∈ Rn×n, n = 50000, with entries defined
by Kij = K(xi, xj), where K is a Gaussian kernel function with bandwidth h = 0.05 and
points {xi} are randomly drawn from a uniform distribution over the unit hypercube in four
dimensions. Matrices such as this one appear in kernel methods in machine learning and their
hierarchical rank structure has been demonstrated, for example in citeJLL:march2017far.
The distribution of points and kernel bandwidth parameter are chosen so that the matrix is
compressible, but not trivially so.

Table 3.1 shows performance results of the symmetric and nonsymmetric algorithms for
various settings of the maximum approximation rank and leaf size.

When the approximation rank and leaf size are large, the cost of compression is dominated
by the low-rank approximation of off-diagonal blocks, and the nonsymmetric compression
takes roughly twice as long as the symmetric compression. As the approximation rank and
leaf size are decreased, the low-rank approximation represents a smaller portion of the total
compression time, and the penalty for nonsymmetric compression is much less than a factor
of two. Setting these parameters too small results in poor performance due to increased
costs of other steps. For the following experiments we use an approximation rank and leaf
size of 256 unless otherwise noted.

While the nonsymmetric algorithm requires additional work for compression, it does not
require any additional work for evaluation of the matrix-vector product. As expected, we
observe no significant difference in evaluation times between the two algorithms.

3.2. Electromagnetic scattering on thin-slot geometry. Next, we consider a
linear system generated by Eiger from an electromagnetic scattering problem on the thin-slot
geometry shown in Figure 3.1 with n = 15565 unknowns. We compute approximate solutions
to the system using GMRES with a compressed operator and with an uncompressed operator.
The two algorithms were run until the relative residual was less than 1e−5. In the algorithm
that uses the compressed operator, the convergence test uses the relative residual in the
compressed operator ‖K̃x̃−b‖/‖b‖. After the algorithm terminates, either due to satisfaction
of the convergence condition or reaching the maximum number of iterations, the true relative
residual is computed using the uncompressed operator ‖Kx̃− b‖/‖b‖.

Table 3.2 shows results for a right-hand side that was generated by applying the operator
to a random vector drawn from a uniform distribution over [−1, 1]n. For this problem, the
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Fig. 3.1: Geometry of the thin-slot EM scattering problem [7].

Table 3.1: Timings of symmetric and nonsymmetric algorithms for compressed matrix-vector
product of a (symmetric) Gaussian kernel matrix with a random vector (n = 50000, εc = 1e−3,
budget = 0.05). The compressed algorithms use the same value for both the maximum rank
and maximum leaf-size parameters. The time for an uncompressed matrix-vector product is
given for reference. Timings in seconds are reported separately for compression(Algorithm 6)
and evaluation (Algorithm 7).

Rank/leaf size Compress time Evaluate time Rel. error
Symmetric 128 7.51 2.54 1.1e-3
Nonsymmetric 128 7.70 2.50 1.7e-3
Symmetric 256 1.42 0.62 1.5e-2
Nonsymmetric 256 1.62 0.58 1.4e-2
Symmetric 512 2.54 0.42 3.2e-2
Nonsymmetric 512 3.64 0.40 3.8e-2
Symmetric 1024 9.84 0.41 7.1e-2
Nonsymmetric 1024 19.80 0.44 6.0e-2
Uncompressed 2.15

algorithm using the compressed operator took 0.35 seconds for compression and 0.72 seconds
for 102 iterations of GMRES to reach a relative residual of 1e−5 in the compressed operator,
corresponding to a relative residual of 3e−4 in the uncompressed operator. GMRES using
the uncompressed operator completed after 101 iterations in 6.28 seconds, taking 8.8× longer
per GMRES iteration and 5.9× longer in total runtime than the compressed algorithm. The
two algorithms took nearly the same number of iterations to converge, but the GMRES
iterations of the compressed algorithm were much faster.

Table 3.3 shows results for a given right-hand side of practical interest. In this case, both
algorithms reached the limit of 200 iterations before convergence of the residual. For the com-
pressed algorithm, the relative residual in the compressed operator reached 1e−2, but the true
residual was 1.5. This discrepancy is caused by a large condition number (cond(K) = 6.7e8)

compared to the relative error of the approximation
(
‖K − K̃‖/‖K‖ = 2.7e−4

)
, and by the

particular choice of b. The analysis in §2.5.1 shows that the discrepancy can be controlled
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Table 3.2: GMRES applied to the linear system Kx = b, where K is the matrix from the
thin-slot scattering problem and b is set to be product of K applied to a random vector drawn
from a uniform distribution over [0, 1]n. The table reports compression time in seconds,
GMRES time in seconds (excluding compression), the number of GMRES iterations, and
relative residual in the uncompressed operator.

Compress time GMRES time # iter True residual
Compressed 0.35 0.72 102 3e-4
Uncompressed 0 6.28 101 1e-5

Table 3.3: GMRES applied to the linear system Kx = b, where K is the matrix from the
thin-slot scattering problem and b is a given right-hand side of practical interest. The table
reports compression time in seconds, GMRES time in seconds (excluding compression), the
number of GMRES iterations, and relative residual in the uncompressed operator.

Compress time GMRES time # iter True residual
Compressed 0.36 2.1 200 1.5
Uncompressed 0 12.3 200 6e-3

by ensuring εccond(K) is much less than 1, which is not satisfied.
A possible remedy would be to compress the matrix to higher accuracy, but attempts

to tighten the error tolerance parameter failed to produce a more accurate compression.
The cause of this failure is likely to be poor quality of the samples used in the sampled ID,
which were selected at random due to the absence of geometric information. Geometric
information can be easily incorporated into the compression algorithm, but it must first
be extracted during construction of the discretized problem, and such information was not
available at the time of writing. To demonstrate this, we run the algorithm with sampling
and without sampling over a range of values for the error tolerance parameter as shown in
Table 3.4. The error decreases along with the error tolerance for the unsampled algorithm but
not for the sampled algorithm. The unsampled algorithm gives better convergence for this
problem, but it is not practical due to its expensive compression phase, which requires O(n2)
operations. For example, with εc/‖K‖ = 1e−9 ≈ cond(K), the compression time without
sampling is 70.5 seconds, which is enough time to run thousands of GMRES iterations
using the uncompressed operator. Though we cannot know the extent to which geometric
information would improve sampling, it has been observed that the sampling scheme we
use generally works well on a range of practical problems, and uniform random sampling
generally performs poorly [9].

3.3. Helmholtz kernel. We consider another problem for which geometric information
is available. In these experiments, we use a kernel matrix defined by the three-dimensional
Helmholtz kernel

K(xi, xj) =
e−ik‖xi−xj‖2

‖xi − xj‖2
, (3.1)

where the points {xi}ni=1 are drawn from a uniform distribution on [0, 1]3. A large wave
number k in the kernel function produces a highly oscillatory kernel function, resulting in a
matrix that is difficult to compress. We solve the regularized linear least squares problem
(DK + λI)x = b, where D is a diagonal matrix with diagonal entries drawn randomly from
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Table 3.4: Comparison of compression accuracy using a sampled ID versus an unsampled ID
for the scattering problem. The first column reports the relative error tolerance, and the
second and third columns report the relative error of the compressed operator constructed
using either sampled IDs or unsampled IDs.

Rel. error tolerance Sampled ID rel. error Unsampled ID rel. error
1e-4 3e-4 3e-4
1e-5 3e-4 1e-4
1e-6 1e-3 3e-5
1e-7 1e-3 6e-7
1e-8 2e-3 2e-8
1e-9 4e-3 9e-10
1e-10 4e-3 7e-11

Table 3.5: Matrix-vector product (DK + λI)x, where K is the Helmholtz kernel matrix and
x is drawn from a uniform distribution over [0, 1]n. The first column reports the relative
error tolerance, the second and third columns report timings in seconds for compression and
evaluation, and the fourth column reports the relative error of the compressed operator.

Rel. error tolerance Compress time Evaluate time Rel. error
1e-1 1.51 0.024 4e-1
1e-2 1.53 0.025 6e-2
1e-3 1.76 0.028 2e-2
1e-4 1.84 0.031 1e-3
1e-5 1.92 0.048 9e-5
1e-6 2.05 0.073 6e-6
1e-7 2.23 0.116 1e-6
1e-8 2.33 0.253 2e-7
1e-9 2.69 0.369 4e-8
1e-10 3.10 0.577 1e-8
Uncompressed 0.252

a uniform distribution on [0, 1] and λ ∈ R is a regularization term. The purpose of applying
D is to make the matrix DK + λI nonsymmetric, and the regularization term is chosen to
control the rate of convergence of GMRES. In these experiments, n = 32768, λ = 300.

Table 3.5 shows performance and accuracy of the matrix-vector product for a range
of error tolerances. As the error tolerance is decreased, the approximation error of the
compressed operator decreases accordingly, and costs increase for both compression and
evaluation. Nearly every case demonstrates speedup over the uncompressed matrix-vector
product.

Table 3.6 shows performance and accuracy of GMRES applied to the linear system
(DK+λI)x = b, where b is defined to be the product of DK+λI applied to a random vector
drawn from a uniform distribution over [0, 1]n. The problem is solved using an compressed
operator for a range of error tolerances and with the uncompressed operator. We report the
final relative residual both in the compressed operator and in the uncompressed operator. In
cases with larger error tolerance, the residual in the uncompressed operator remains large
even after convergence in the compressed operator due to error in the compression. For more
accurate compressed operators, this discrepancy diminishes, and the two residuals reach
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Table 3.6: GMRES applied to the linear system (DK + λI)x = b, where K is the Helmholtz
kernel matrix and b is set to be product of DK + λI applied to a random vector drawn from
a uniform distribution over [0, 1]n. The table reports the relative error tolerance, compression
time in seconds, GMRES time in seconds (excluding compression), relative residual in
the compressed operator, and the true residual (the relative residual in the uncompressed
operator).

Rel. err. tol. Compress time GMRES time Comp. resid. True resid.
1e-1 1.5 3.0 6e-4 2e-1
1e-2 1.5 3.3 3e-5 4e-2
1e-3 1.8 3.8 2e-5 2e-2
1e-4 1.8 4.7 2e-5 3e-3
1e-5 1.9 5.7 2e-5 4e-4
1e-6 2.0 11.5 2e-5 7e-5
1e-7 2.2 16.8 1e-5 2e-5
1e-8 2.3 30.0 2e-5 2e-5
1e-9 2.7 36.8 2e-5 2e-5
1e-10 3.1 45.4 2e-5 2e-5
Uncompressed 25.6 2e-5 2e-5

agreement.

4. Conclusions and Future Work. We present an algorithm for compressing and
applying rank-structured nonsymmetric matrices such as those arising from applying the
method of moments to the combined field integral equation. We integrate the compression
scheme with an iterative solver and apply it to an electromagnetic scattering problem,
demonstrating significant speedup over an iterative solver that uses direct matrix-vector
products. We also explore cases for which the algorithm performs poorly, for example, in the
absence of geometric information and for a system with a right-hand side that is difficult to
solve. Directions for further development include tighter integration between the GOFMM
and Eiger (or the new Gemma) codes so that the problem can be solved in a matrix-free
manner, applying a preconditioner or scaling rows and columns to solve the problem faster
and more robustly, the use of inexact Krylov methods for further speedup, and using the
distributed-memory algorithm [19] to solve much larger problems.
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ON DIFFERENTIABLE LINEARITY AND LOCAL BOUNDS
PRESERVING STABILIZATION METHODS FOR FIRST ORDER

CONSERVATION LAW SYSTEMS

JESUS BONILLA∗, SIBUSISO MABUZA† , JOHN N. SHADID‡ , AND SANTIAGO BADIA§

Abstract. In this work, a new stabilized continuous finite element scheme for first order conservation
laws is presented. The proposed method is shown to be local bounds preserving for first order conservation
law systems. In addition, it is also shown to satisfy the discrete maximum principle (DMP) for steady scalar
convection equations. This scheme is based on the combination of an artificial diffusion operator and a
differentiable, linearity preserving shock detector in what is usually termed algebraic flux correction (AFC).
This work extends some ideas on differentiable nonlinear stabilization, which have been recently developed for
scalar transport problems. The behavior of the numerical scheme is analyzed qualitatively and quantitatively
for scalar convection and a very preliminary solution for a steady Euler equation problem.

1. Introduction. Hyperbolic conservation laws such as Euler equations are expected to
satisfy constraints such as the positivity of the density and the internal energy. Discretizations
that do not satisfy these constraints may yield non-physical solutions. Constructing robust
and flexible stabilized schemes that satisfy the above conditions continues to be a challenge.
A number of stabilized schemes have been considered in the context of finite volume [14],
discontinuous Galerkin (DG) [1] and continuous finite element (FE) [10] methods. Finite
volume methods become complex when trying to achieve high order convergence with large
element stencils involved. However, this problem can be addressed using arbitrarily high
order DG methods. Recent progress has been made in stabilized FE schemes by making use
of FCT algorithms [10,15–17],VMS [5], SUPG [8] and entropy viscosity [7] among others. In
this context FCT methods have shown promise. In [8] these methods were shown to perform
better than residual based schemes such as SUPG, constraining the problem in a way that
preserves positivity for scalar transport problems.

In this work, we are interested in designing a stabilized scheme that will be robust for
steady and transient shock hydrodynamics problems. In particular, we focus on fully implicit
problems that will involve nonlinear solution strategies. The fully discrete problem may
be solved using Newton’s method. We therefore consider that the stabilization part of the
scheme needs to be smooth enough for convergence of the nonlinear solver to be achieved
easily. One solution for this is differentiable AFC stabilization. Recently, differentiable
AFC stabilization based on limited artificial diffusion has been successfully applied to scalar
problems discretized with continuous Galerkin and DG methods [2,3]. The results showed
improved convergence of the nonlinear solver. In this work, we extend the above ideas to
the linearity preserving AFC stabilization presented in [9] and the new scheme is applied to
steady convection and first order conservation law equations.

This paper is structured as follows: In section 2 we present the CG discretization
for scalar convection and Euler equations. Section 3 is devoted to the differentiable AFC
stabilization term. Then, in section 4 we present some numerical results. Finally, we present
the conclusion and summary in section 5.

2. Preliminaries.
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2.1. Continuous problem. Let Ω be an open, bounded and connected subset of Rd,
where d is the number of spatial dimensions. Let ∂Ω be the boundary which is Lipschitz
continuous. Consider a first order hyperbolic system given by


∂tu−∇ · f(u) = g, in Ω× (0, T ],

uβ(x, t) = ūβ(x, t), on Γβin × (0, T ], β = 1, ...,m,

u(x, 0) = u0(x), x ∈ Ω,

(2.1)

where u = {uβ}mβ=1 are m ≥ 1 conserved variables, f is the physical flux. Note that

f : Rm → Rm×d, f = {f i}di=1 and f i : Rm → Rm. ūβ(x, t) are the boundary values for
the βth-component of u, u0(x) are the initial conditions, and g(x, t) is a function defining

the body forces. The inflow boundary for component β is defined as Γβin
.
= {x ∈ ∂Ω :

λβ(f ′(u) · n∂Ω) ≤ 0}, where n∂Ω is the unit outward normal to the boundary, and λβ is

the βth-eigenvalue of the flux Jacobian. We define the outflow boundary as Γβout
.
= ∂Ω\Γβin.

We will also consider the steady counterpart of (2.1), that is obtained by dropping the
time derivative term and the initial conditions. Note that if m = 1, and f(u)

.
= vu

with v a divergence-free convection field, we recover the well known scalar convection
problem. On the other hand, Euler equations are recovered when we define u

.
= [ρ,m, ρE]T ,

f i
.
= mi[1,v, E] + p[1, δ1i, . . . , δdi, vi], and g

.
= [0, b, b · v + r], where ρ is the density, E is

the total energy, p is the pressure, m = {m1, . . . ,md}, where mi = ρvi, is the momentum,
v = {v1, . . . , vd} is the velocity, b = {b1, . . . , bd} are the body forces, r is the heat supply
per unit mass, and δij is the well known Kronecker delta.

2.2. Discretization. Let Th be a conforming partition of Ω into elements, K . The set
of interpolation nodes, i, at coordinates, xi, of mesh Th is represented by Nh, whereas the
set of nodes belonging to a particular element is defined as Nh(K )

.
= {i ∈ Nh : xi ∈ K}.

Moreover, Ωi is the macroelement composed by the union of elements that contain node i,
that is, Ωi

.
=
⋃
K∈Th, xi∈K K. To simplify the discussion below, we abuse notation and use i

for both the node and its associated index.
We define the finite element space as V p

h
.
=
{
vh ∈ (C0)m : vh|K ∈ (Pdp )m,∀K ∈ Th

}
for simplex partitions of Ω or V p

h
.
=
{
vh ∈ (C0)m : vh|K ∈ (Qdp)

m,∀K ∈ Th
}

for d-cube
partitions, where d is the number of dimensions and m the number of components of u.
Further, we define the space V p

h0
.
= {vh ∈ V p

h | vh(x) = 0 ∀x ∈ Γin}. We restrict the
present work to first order finite elements, i.e. p = 1. Henceforth we drop the exponent p
form the finite element spaces. Also, denote by Vh the space V h when m ≡ 1. The functions
vh ∈ V h can be constructed as a linear combination of the basis {ϕi}i∈Nh and nodal values
vi, where ϕi is the shape function associated to the node i. Hence, vh =

∑
i∈Nh ϕivi.

The L2(ω) scalar product is denoted by (·, ·)ω for ω ⊂ Ω, however we omit the subscript
for ω ≡ Ω. The L2(Ω) norm is denoted by ‖ · ‖. Furthermore, we denote by 1 the function
that is equal to 1 in Ω; 1(x) = 1 ∀x ∈ Ω.

The semi-discrete form of problem (2.1) reads:

Find uh ∈ V h such that uβh = ūβh on Γβin, uh = u0h at t = 0, and

(∂tuh,vh) + (uh,f
′(uh) : ∇vh)− (uh,nΓout

· f ′(uh)vh)Γout
= (g,vh), for all vh ∈ V h0,

(2.2)

where ūβh and u0h are finite element approximations of ūβ and u0 such that the DMP is
satisfied.

For the sake of brevity, we only consider backward Euler time discretization (BE). Higher
order SSP RK time integration can also be used [6]. In that case, a prerequisite for satisfying
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monotonicity properties is that CFL-like conditions be fulfilled [11, 13]. Consider a partition
of the time domain (0, T ] into nts sub-intervals of length (tn, tn+1]. Then, for every time
step, n, we solve

MδtU
n+1 + KUn+1 = G (2.3)

where Un+1
j is the vector of nodal values at time t = tn+1, δt(·) .

= ∆t−1
n+1((·)n+1 − (·)n), and

∆tn+1
.
= |tn+1−tn|. The m×m-matrices relating nodes i, j are given by Mij

.
= (ϕj , ϕi)Im×m,

Kβγij
.
= (ϕjδβξ,f

′(uh)ξηk ·∂kϕiδηγ)−(ϕjδβξ, nk ·f ′(uh)ξηk ϕiδηγ)Γout
, where β, γ, ξ, η = 1, . . . ,m

are the component indices, and Gi
.
= (g, ϕi) for i, j ∈ Nh.

2.3. Monotonicity properties. In this section, we define all the properties that we
demand our FE scheme to fulfill. Let us firstly introduce them for the case of a scalar
problem (i.e. m = 1).

Definition 2.1 (Local Discrete Extremum). The function vh ∈ Vh has a local discrete
minimum (resp. maximum) on i ∈ Nh if ui ≤ uj (resp. ui ≥ uj) ∀j ∈ Nh(Ωi).

Definition 2.2 (Local DMP). A solution uh ∈ Vh satisfies the local discrete maximum
principle if for every i ∈ Nh

min
j∈Nh(Ωi)\{i}

uj ≤ ui ≤ max
j∈Nh(Ωi)\{i}

uj . (2.4)

Definition 2.3 (LED). A scheme is local extremum diminishing if, for every ui that is
a local discrete maximum (resp. minimum),

dui
dt
≤ 0,

(
resp.

dui
dt
≥ 0

)
, (2.5)

is satisfied.
In the case of vector problems, Defs. 2.1–2.2 are simply applied for every component.

E.g. uh ∈ V h will have an extremum at component β if Def. 2.1 is satisfied for some uβi .
However, Kuzmin and co-workers [10] propose another definition of LED in the case of vector
valued problems. This definition is extended from the LED theory for scalar problems. It is
known that a scheme with a positive diagonal mass matrix and a stiffness matrix with the
M-matrix property (e.g. Kij ≤ 0 for j 6= i, and Kii ≥

∑
j 6=i−Kij) is LED (see [13]). In an

attempt to enforce Def. 2.3 for every characteristic variable of the vector problem, the LED
property is redefined as:

Definition 2.4 (LED adapted from [10]). A problem is said to be LED if for every
i, j ∈ Nh, the off-diagonal blocks, i.e. j 6= i, of the stiffness matrix are negative semi-definite,
and the mass matrix is diagonal.

It is worth noting that the above definition of LED is less restrictive for vector problems.
As opposed to Def. 2.3, the definition above does not imply that all extrema are diminishing
in terms of the unknown, uh. If Def. 2.4 is satisfied, then the characteristic variables of the
linearized problem satisfy Def. 2.3. Hence, only local bounds are preserved. See [10] for
details.

Finally, let us define linearity-preservation, which is a property required to achieve
optimal convergence rates in smooth regions see [12].

Definition 2.5 (Linearity-preservation). A stabilization term, say Bij(uh), is said to

be linearity-preserving if for all β ∈ C, uβh ∈ Pd1 (Ω), then Bij(uh) = 0, where C is the set of
components used to detect inadmissible values of uh.
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3. Nonlinear stabilization. In this section we define a stabilization term, Bij(uh),
to be added to the discrete problem (2.2) such that it satisfies Def. 2.2 for steady scalar
problems, Def. 2.3 in the case of transient scalar problems, and Def. 2.4 for a hyperbolic
system of equations. Furthermore, we enforce that it;

1. has compact support: Bij = 0 if j 6∈ Nh(Ωi),
2. is symmetric: Bij(uh) = Bji(uh),
3. is conservative:

∑
j 6=i Bij(uh) = −Bii(uh),

4. is linearity-preserving (see Def. 2.5),

5. is twice-differentiable
∂2Bij(uh)

∂u2
h
∈ C0.

In order to achieve these requirements we present a stabilization term constructed in the
following way: First, we define a shock detector based on the design in [9], and use the ideas
in [2] to improve its nonlinear convergence. In this, we regularize non-differentiable functions
in stabilization term to obtain a twice differentiable version.

Recall the set of regularized functions used in [2] to satisfy requirement (5) in the
previous list. Absolute values are regularized as follows

|x|1,εh =
√
x2 + εh, |x|2,εh =

x2

√
x2 + εh

. (3.1)

Note that |x|2,εh ≤ |x| ≤ |x|1,εh . Next, we define a smooth maximum function, max σh(·), as

max σh{x, y}
.
=
|x− y|1,σh

2
+
x+ y

2
, (3.2)

We also use the following function to limit the value of any given quantity to one

Z (x)
.
=

{
2x4 − 5x3 + 3x2 + x, x < 1,
1, x ≥ 1.

(3.3)

Finally, we define Hτh
0 (x) as a regularized version of the well known Heaviside function,

Hτh
0 (x)

.
=


1, if x ≥ τh,

6
τ5
h

(x− 1
2τh)5 − 5

τ3
h

(x− 1
2τh)3 + 15

8τh
(x− 1

2τh), if 0 < x < τh,

0, if x ≤ 0.

(3.4)

The proposed stabilization term is given by

Bh(wh;uh,vh)
.
=

∑
Ke∈Th

∑
i,j∈Nh(Ke)

νeij(wh)`(i, j)vi · Im×muj , (3.5)

for any uh ∈ V h and vh ∈ V h0. Here, `(i, j)
.
= 2δij − 1 is a graph Laplacian operator as

defined in [2], and νeij(wh) is the element-wise artificial diffusion defined as

νeij(wh)
.
= αe(wh) max σh{λmax

ij , λmax
ji }, for j ∈ Nh(Ωi)\{i},

νeii(wh)
.
=

∑
j∈Nh(Ωi)\{i}

νeij(wh), (3.6)

where, λmax
ij is the spectral radius of the elemental matrix relating nodes i, j ∈ Nh. This

artificial diffusion is based on Rusanov scalar diffusion [10]. We denote by αe(wh) the shock
detector used for computing the artificial diffusion parameter. The idea behind the definition
of this detector is ensuring that Def. 2.2–2.5 are satisfied using minimal amount of artificial
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diffusion. This αe(wh) must be a positive real number which takes value 1 when uh(xi) is
an inadmissible value of uh, and smaller than 1 otherwise. To this end, we define

αe
.
= minσ{Φβi }β∈Ci∈Nh(Ke), (3.7)

where C is the set of components that are used to detect inadmissible values of uh, e.g.
density and total energy in the case of Euler equations. For simplicity, we restrict ourselves
to the components of uh, however derived quantities such as the pressure can be used. The
nodal detector, Φβi , is defined as

Φβi (uh)
.
=

Z

∣∣∣∑j∈Nh(Ωi)\{i} ω

β
ij(u

β
i − uβj )

∣∣∣
1,εh

+ γh∑
j∈Nh(Ωi)\{i} ω

β
ij

∣∣∣uβi − uβj ∣∣∣
2,εh

+ γh



q

, (3.8)

where q is a parameter to modulate the amount of diffusion added –the higher is q the less
diffusion is added, see Sect. 4 or [2, 3] for experimental analysis of the effect of q–, ωβij is a
correction factor used to satisfy linearity-preservation (see Def. 2.5), and it reads

ωβij
.
=
Hτh

0 (gβi · (xi − xj))
Sβ+ +Hτh

0 (−Sβ+ + τh)
+
Hτh

0 (−gβi · (xi − xj))
Sβ− +Hτh

0 (−Sβ− + τh)
(3.9)

+Hτh
0 (gβi · (xi − xj) + τh)Hτh

0 (−gβi · (xi − xj) + τh), (3.10)

where

Sβ+
.
=

∑
j∈Nh(Ωi)

Hτh
0 (gβi · (xi − xj))gβi · (xi − xj), (3.11)

Sβ−
.
=

∑
j∈Nh(Ωi)

−Hτh
0 (−gβi · (xi − xj))gβi · (xi − xj), (3.12)

and gβi is the lumped mass L2 projection of the gradient of uβh, defined by gβi
.
=

1
(1,ϕi)

(∇uβh, ϕi).

In addition to limiting the artificial diffusion, we do a selective lumping of the mass
matrix associated with the time derivative. This selective lumping is driven by the same
shock detector used in the artificial diffusion operator, Bh(uh;uh,vh). This is achieved
by replacing M in (2.3) by M̃ = {M̃ij}ij defined by M̃ij(uh)

.
=
∑
Ke∈Th

∑
i,j∈Nh(Ke)(1 −

αe)(ϕj , ϕi)Im×m + αe(1, ϕi)Im×m.
The final stabilized problem in matrix form reads:
Find uh ∈ V h such that uh = uh on ∂Ω, uh = u0h at t = 0, and

M̃δtU
n+1 + K̃ij(u

n+1
h )Un+1 = G (3.13)

for n = 1, ..., nts, where K̃ij(uh)
.
= Kij+Bij(uh), and Bij(uh) = Bh(uh;ϕj , ϕi), for i, j ∈ Nh.

We will now show that the stabilization term defined in (3.5) satisfies all properties
defined in Sect. 2.3.

Lemma 3.1. The shock detector defined in (3.7) is αe = 1 if component β ∈ C of uh
has a local discrete extremum at xi for i ∈ Nh(Ke), and otherwise is valued 0 ≤ αe < 1 if
εh → 0 and γh → 0.

Proof. Let us start proving that the shock detector is equal to 1 if uβh has an extremum

at xi for i ∈ Nh(Ke). It is obvious that if Φβ
i = 1 for uh with an extremum at xi then
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αe = 1, thus it is enough to prove the former. To this end, it is useful to prove that ωβij > 0

for all i, j ∈ Nh. By definition 0 < Hτh
0 (ξ) ≤ 1 for ξ > 0, then it is easy to see that Sβ+ ≥ 0

and Sβ− ≥ 0. Further, it can be seen that all terms in the definition of ωβij are nonnegative.
Moreover, it is easy to check that for any combination of ij at least one of its terms is not
null, hence ωβij > 0.

Without loss of generality, let us assume that uβh has a local discrete maximum at xi,

i.e. uβi ≥ uβj for j ∈ Nh(Ωi), then∑
j∈Nh(Ωi)\{i}

ωβij

∣∣∣uβi − uβj ∣∣∣
2,εh
≤

∑
j∈Nh(Ωi)\{i}

ωβij |uβi − uβj | =
∑

j∈Nh(Ωi)\{i}

ωβij(u
β
i − uβj )

(3.14)

=

∣∣∣∣∣∣
∑

j∈Nh(Ωi)\{i}

ωβij(u
β
i − uβj )

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
j∈Nh(Ωi)\{i}

ωβij(u
β
i − uβj )

∣∣∣∣∣∣
1,εh

. (3.15)

Therefore, the quotient in (3.8) is larger or equal to 1. This quotient is the argument of

function Z (x), which is bounded above by 1 (see (3.3)). Thus, Φi = [Z (x)]q = 1 if uβi is

a maximum. Proceeding analogously for a minimum we conclude that Φi = 1 if uβi is a

local discrete extremum. Otherwise, if uβh does not have an extremum at xi for i ∈ Ke and
εh → 0,

lim
εh→0

∑
j∈Nh(Ωi)\{i}

ωβij

∣∣∣uβi − uβj ∣∣∣
2,εh

=
∑

j∈Nh(Ωi)\{i}

ωβij |uβi − uβj | (3.16)

>

∣∣∣∣∣∣
∑

j∈Nh(Ωi)\{i}

ωβij(u
β
i − uβj )

∣∣∣∣∣∣ = lim
εh→0

∣∣∣∣∣∣
∑

j∈Nh(Ωi)\{i}

ωβij(u
β
i − uβj )

∣∣∣∣∣∣
1,εh

. (3.17)

Hence, if εh → 0 and γh → 0, the numerator of (3.8) is smaller than 1. Therefore, Φi < 1
and thus αe < 1 as εh and γh tend to 0.

Lemma 3.2. (Def. 2.5) The stabilization term Bh(uh;uh,vh) defined in (3.5) is weakly

linearity-preserving, i.e. if uβh ∈ Pd1 (Ω) for all β ∈ C, then

lim
γh,τh→0

Bh(wh;uh,vh) = 0 (3.18)

Proof. It is easy to see that if the shock detector αe is equal to 0, then the artificial
diffusion, and thus the stabilization term, vanishes (see (3.5)–(3.6)). Therefore, it is sufficient

to show that αe vanishes for uβh ∈ Pd1 (Ω) with β ∈ C. First, if component β of the solution
is linear then its gradient is constant, hence

gβi =
1

(1, ϕi)
(∇uβh, ϕi) =

∇uβh
(1, ϕi)

(1, ϕi) = ∇uβh. (3.19)

Moreover, ∇uβh ·(xi−xj) = gβi ·(xi−xj) = uβi −uβj . LetA .
= {j ∈ Nh(Ωi) : gβi ·(xi−xj) > τh}

and B .
= {j ∈ Nh(Ωi) : gβi · (xi − xj) < −τh}. Then, as τh → 0, all pairs ij will either be

part of A ∪ B or (uβi − uβj ) = 0, and the weights become

ωβij =
1

Sβ+
∀j ∈ A ωβij =

1

Sβ−
∀j ∈ B. (3.20)
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By the definition of Sβ+ and Sβ−, the numerator of Φβi becomes

∑
j∈A

1

Sβ+
(uβi −uβj )+

∑
j∈B

1

Sβ−
(uβi −uβj )+γh =

∑
j∈A

Sβ+

Sβ+
+
∑
j∈B

−Sβ−
Sβ−

+γh = 1−1+γh = γh. (3.21)

Therefore, as γh → 0, the numerator of Φi, and hence Φi will be zero. Since this is true
for all i ∈ Nh, it follows that Bh(uh;uh,vh) = 0 as τh, γh → 0 provided uβh ∈ Pd1 (Ω), for all
β ∈ C.

Finally, we show that problem (3.13) is LED (i.e. satisfy Def. 2.4), and its scalar steady
counterpart

K̃(uh)U = G, (3.22)

satisfies the DMP in Def. 2.2.
Theorem 3.3 (DMP). The scalar steady discrete problem (3.22) satisfies the DMP in

Def. 2.2 if g = 0 in Ω.
Proof. From [4, Th. 1] we know that if for every degree of freedom i ∈ Nh, such that

ui is a local discrete extremum its value can be expressed as a convex combination of its
neighbors. That means the following holds:

K̃ij(uh) ≤ 0, ∀ j ∈ Nh(Ωi) if j 6= i, and
∑

j∈Nh(Ωi)

K̃ij(uh) = 0, (3.23)

then uh satisfies the local DMP in Def. 2.2. Therefore, it is enough to prove that above
properties are satisfied by problem (3.22). From Lm. 3.1, we know that if ui is a local
extremum then αe = 1 for all elements Ke in Ωi. Moreover, since for the scalar case
λmax
ij = |Keij |, we see that

max σh{λmax
ij , λmax

ji } = max σh{|Keij |, |Keji|} ≥ Keij ∀j 6= i, (3.24)

where, Keij is the elemental stiffness matrix. Thus, νeij ≥ Keij for any j 6= i. Hence, by

definition of Bij and `(i, j), it is easy to see that K̃eij = Keij + Beij ≤ 0 for all j 6= i, which

imply that this is also true for the fully assembled matrices, i.e. K̃ij = Kij + Bij ≤ 0 ∀j 6= i.
Further, by construction

∑
j∈Nh(Ke) Beij = 0, thus

∑
j∈Nh Bij = 0. It is well known that∑

j∈Nh(Ωi)
Kij = 0, therefore

∑
j∈Nh(Ωi)

K̃ij = 0. Hence, it has been proven that conditions

(3.23) are satisfied for any i ∈ Nh, such that ui is a local discrete extremum, and this closes
the proof.

Corollary 3.4 (Scalar LED). The scalar counterpart of the discrete problem (3.13) is
LED as defined in Def. 2.3 if g = 0 in Ω.

Proof. From [2, Th. 4.1] it is known that the scheme is LED if for every ui that is a
extremum, M̃ = miδij and conditions (3.23) hold. From above Thrm. 3.3, we know that
conditions (3.23) do hold. From Lm. 3.1 we know that if ui is a extremum, then αe = 1
for all elements Ke in Ωi. Therefore, by definition of M̃ij(uh) =

∑
Ke∈Th

∑
i,j∈Nh(Ke)(1−

αe)(ϕj , ϕi) + αe(1, ϕi) =
∑
Ke∈Th

∑
i,j∈Nh(Ke)(1, ϕi) = miδij .

Theorem 3.5 (LED). The discrete problem (3.13) is LED as defined in Def. 2.4 if g = 0
in Ω and, given an arbitrary vector n, λmax

j ‖n‖ is the maximum eigenvalue of f ′(uj) · n,

where f ′(uj) are flux Jacobians.
Proof. Let us assume that component β ∈ C of uh has an extremum at xi. Then, from

Lm. 3.1 we know that αe = 1 for all elements Ke in Ωi. Therefore, it is easy to see that in
this case M̃ij(uh) =

∑
Ke∈Th

∑
i,j∈Nh(Ke)(1, ϕi)Im×m.
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Let us now analyze how the elemental stiffness matrices are constructed. On the one
hand, for the pair i, j ∈ Nh after linearizing the flux Jacobian with respect to uj , i.e.
f ′(uh) ' f ′(uj), we have that the elemental stiffness matrix can be computed as

Ke
βγ

ij
.
=(ϕjδβξ,f

′(uj)
ξη
k · ∂kϕiδηγ)Ke − (ϕjδβξ, nk · f ′(uj)ξηk ϕiδηγ)Ke∩Γout

(3.25)

=δβξf
′(uj)

ξη
k δηγ(ϕj , ∂kϕi)Ke − δβξf ′(uj)ξηk δηγ(ϕj , nkϕi)Ke∩Γout (3.26)

=f ′(uj)
βγ
k [(ϕj , ∂kϕi)Ke − (ϕj , nkϕi)Ke∩Γout ] (3.27)

=f ′(uj)
βγ · ceij , (3.28)

where ceij
.
= (∇ϕj , ϕi)Ke . Hence, Kij =

∑
e Keij = f ′(uj) ·

∑
e c

e
ij .

On the other hand, we know that given a vector, n, ρ(f ′(uj) · n) = λmax
j ‖n‖. Thus,

ρ(Keij) = λmax
j ‖ceij‖, and ρ(Kij) = λmax

j ‖cij‖. Further, since cij =
∑
e c

e
ij , we have that∑

e

ρ(Keij) =
∑
e

λmax
j ‖ceij‖ ≥

∑
e

λmax
j ‖cij‖ = ρ(Kij). (3.29)

For j 6= i, by definition of νeij it can be seen that
∑
e ν

e
ij ≥

∑
e ρ(Keij) ≥ ρ(Kij). Hence,

since K̃ij = Kij + Bij and Bij =
∑
e Beij =

∑
e−νeijIm×m for all j 6= i, this yields that the

maximum eigenvalue of K̃ij is non-positive, and this closes the proof.
It is important to mention that the Euler equations are a particular case for the theorem

presented above. All parameters used for regularizing purposes, i.e. τh, σh, γh, and εh,
should be properly scaled, and must be dimensionally correct. Otherwise, spatial convergence
problems might arise, as well as the inconvenience of having to tune them for each problem
and particular mesh. In the present work, we scale these parameters as follows:

σh = σ|v|2h4L−2 τh = τh2L−2 εh = ε γh = γ, (3.30)

where v is the convection in the scalar case, and ‖v‖+ c for Euler equations. Note, that for
the definition of αe in (3.7), we do not use σh, but directly σ since all Φi are dimensionless
and mesh-independent. When using uniform Cartesian meshes, the scheme becomes linearity
preserving without the usage of the weights in (3.9). If these weights are not included then
the parameter scaling must be redefined to εh = εh4L−4, and γh = γhL−2.

4. Numerical experiments. In this section we present some numerical experiments
showing the behavior of the scheme previously introduced. First, a convergence analysis is
performed in order to assess the correctness of the proposed scheme and its implementation.
Then, we assess the performance of the proposed stabilization method. First, for scalar
convection and finally for Euler.

4.1. Convergence analysis. To begin with, we perform a convergence analysis of
the stabilized scheme proposed in the previous section. The following steady scalar pure
convection problem is solved in successively refined meshes.{

v ·∇uh = 0 in Ω = [0, 1]2

uh(x, y) = sin
(
2π
(
x− y

tan θ

))
on Γin

, (4.1)

where v = (cos θ, sin θ), and θ = π/3. The obvious analytical solution of above problem
corresponds to the translation of the prescribed profile in the direction of the convection, v,
i.e. u(x, y) = sin

(
2π
(
x− y

tan θ

))
. It is worth mentioning that even though the continuous

problem is linear, due to the stabilization terms, the discrete problem is nonlinear. We
use a uniform Cartesian mesh of Nx = {36, 48, 72, 96, 144, 192} elements in each direction.
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We compare the convergence in the L2 norm for two different choices of the stabilization
parameters. On the one hand, we use ε = τ = σ = 0, hence the nonlinear problem is not
differentiable everywhere, but the scheme is linearity preserving (see Lm. 3.2). On the other
hand, we choose ε = 10−3, τ = 10−5, σ = 10−7, γh = 10−14, and thus the nonlinear problem
is twice differentiable, but only weakly linearity preserving. For both sets, we compare the
effect of choosing the parameter q = 4 or q = 10.

36 48 72 96 144 192
Nx

10−3

10−2

10−1

‖u
−
u
h
‖/
‖u
‖

2
1

ε = 10−3, τ = 10−5, σ = 10−7

ε = τ = σ = 0

(a) Results for q = 4.

36 48 72 96 144 192
Nx

10−3

10−2

10−1

‖u
−
u
h
‖/
‖u
‖

2
1

ε = 10−3, τ = 10−5, σ = 10−7

ε = τ = σ = 0

(b) Results for q = 10.

Fig. 4.1: Convergence of the relative error in the L2 norm using different sets of stabilization
parameters and choices of q.

Fig. 4.1 shows that regardless of the chosen stabilization parameters, the scheme achieves
the theoretical convergence rates of a first order finite element scheme. However, it can
be observed that as we increase ε, τ , or σ, the relative errors are increased too. For the
parameter q, the behavior is analogous, its values does not affect to the convergence rate.
However, the relative error is higher as q is reduced.

4.2. Effect of regularization parameters. In the previous test, we showed that the
choice of the parameters has no effect on the convergence rates. However, they do affect the
value of the error. In this test, we do an in-depth analysis of their influence on the error and
also their effect on the computational cost. To this end, we solve the following steady pure
convection problem in Ω

.
= [0, 0.5]2,{

v ·∇uh = 0 x ∈ Ω
uh = uD x ∈ Γin

, (4.2)

where v
.
= (y,−x). Its analytic solution reads,

u(x, y) =

 cos2( 10
3 π(

√
x2 + y2 − 0.4)),

√
x2 + y2 ∈ [0.075, 0.225],

1,
√
x2 + y2 ∈ [0.275, 0.425],

0, otherwise,

(4.3)

and obviously boundary conditions are defined by uD(y) = u(0, y). As in the previous
experiment, although the continuous problem is linear, the discrete problem is nonlinear.

In order to perform the comparison, we use the following sets of parameter values: q =
{1, 2, 5, 8, 10, 12, 15}, ε = {10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8}, τ = ε10−2, σ = ε10−4,
and γ = 10−14. A 64× 64 Q1 FE mesh is used. We compare, the L1 norm of the error at
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the outflow boundary ‖u− uh‖L1(y=0), and the computational cost in terms of the number
of nonlinear iterations required to converge. An Anderson accelerated fixed point iteration
scheme is used. We let it iterate until it satisfies: 1

N

N∑
i=1

(
Uki − Uk−1

i

10−4|Uk−1
i |+ 10−6

)2
1/2

< 1,

where U is the unknown vector and N is the number of unknowns. We also impose that the
residual must satisfy ‖F‖k/‖F‖0 < 10−3. We consider that the scheme does not converge
when it reaches 400 iterations.

In Fig. 4.2 we depict, for particular values of ε, the number of iterations required to
converge and the relative error ‖u− uh‖L1(y=0)/‖u‖L1(y=0) as a function of q. It also shows
both values for the non-differentiable scheme, i.e. ε = τ = σ = γ = 0. In general, it can be
observed that as q increases or as ε decreases, the error decreases, but the computational
cost increases. It can also be observed that for the same level of accuracy, the differentiable
scheme requires fewer iterations to converge. This becomes especially evident for very small
values of the stabilization parameters, e.g. Fig. 4.2 (d).
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(b) ε = 10−5
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(c) ε = 10−6

1 2 5 8 10 12 15
q

0.60

0.65

0.70

0.75

0.80

‖u
−
u
h
‖ L

1
/‖
u
‖ L

1

L1 err. (D)

L1 err. (ND)

# it. (D)

# it. (ND)

0

100

200

300

400
#

it
er

at
io

n
s

(d) ε = 10−7

Fig. 4.2: Comparison of the relative error at the outlet (‖u− uh‖L1(y=0)/‖u‖L1(y=0)) as a
function of q, for the differentiable stabilization (D) with different parameter values and the
non-differentiable stabilization (ND).

4.3. Scramjet. Finally, we apply the method to the solution of the Euler equations
as a proof-of-principle. In particular, we solve the M = 3 scramjet problem [10]. The
benchmark consists of a steady flow entering in a narrowing channel with two sharp-cornered
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internal obstacles. This results in multiple shock reflections. We use two different meshes,
the one in Fig. 4.3 (16320 Q1 elements), and a uniformly refined version of it (65280 Q1

elements). Currently the exact Jacobian cannot be constructed due to implementation
restrictions. Hence, we use an inexact Newton’s method for solving the arising nonlinear

problem. We iterate until

(
1
N

∑N
i=1

(
Uki−U

k−1
i

10−3|Uk−1
i |+10−3

)2
)1/2

< 10−1 is satisfied, and also

‖F‖k/‖F‖0 < 10−3, or until it reaches 400 iterations.
The variables that we use to detect possible inadmissible values of the unknown are

the density and the pressure. The stabilization parameters used are ε = 10−4, τ = ε10−2,
σ = ε10−4, γ = 10−14, and q = 10.

Figs. 4.4 and 4.5 show the results when we solve directly for the steady Euler equations.
Although the tolerance on the relative residual reduction is not fully satisfied, results show
a good agreement with the ones in [15, 17] with well resolved shocks. Fig. 4.6 shows the
relative residual evolution at every nonlinear iteration. We observe that for a coarse mesh
both methods behave similarly. However, when the mesh is refined, the non-differentiable
stabilization is unable to converge. As opposed, the differentiable version is able to reach the
same residual reduction as for the coarse mesh.

Fig. 4.3: Coarse mesh used for the scramjet test. 16320 Q1 elements

Fig. 4.4: Mach contours when the coarse mesh is used.

Fig. 4.5: Mach contours when the fine mesh is used.
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Fig. 4.6: Evolution of the relative residual at each nonlinear iteration for the differentiable
and non-differentiable stabilization, and the coarse and fine meshes used.

5. Conclusion. In this work, we developed a differentiable stabilization for Euler
equations and scalar transport problems. This was constructed using a differentiable shock
detector, Rusanov artificial diffusion and some partial mass lumping of the time derivative
term. The resulting method was shown to be LED for scalar problems and first order
conservation law systems. Further, the solution of the steady scalar transport problem is
proven to satisfy the local DMP. The main novelty here was the smoothing of the linearity-
preserving limiter from [9] and its use as a shock detector, which improved the nonlinear
convergence. Numerical results demonstrate this. However, the proposed method is only
linearity-preserving in a weak sense. In particular, it is linearity-preserving when stabilization
parameters γh, τh → 0. The numerical results for Euler equations show that the method is
able to achieve good resolutions for problems with complex shock profiles. Future work will
consist of in-depth analysis of the effect of using differentiable stabilization operators for
Euler equations. In particular, if more sophisticated nonlinear solvers are used, e.g. Newton’s
method with an exact Jacobian.
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A SCALABLE APPROACH FOR SOLVING STOCHASTIC INVERSE
PROBLEMS BASED ON PUSH-FORWARD MEASURES AND BAYES’

RULE

BRAD MARVIN ∗, TIM WILDEY † , AND TAN BUI-THANH ‡

Abstract. We present a scalable approach to the solution of linear and nonlinear stochastic inverse
problems using the recently developed consistent Bayesian method. The use of kernel density estimation
in the consistent Bayesian method can result in poor scaling with the dimensionality of the data. Our
approach avoids the need for density estimation and is therefore scalable with the data dimension. We adapt
a randomized dimension reduction technique developed for the classical Bayesian maximum a posteriori
(MAP) point method to develop a consistent Bayesian MAP point method which scales with the data, state,
and parameter dimensions. Additionally, we investigate the relationship between the consistent Bayesian
and classical Bayesian techniques for linear inverse problems. We show that from a deterministic point
of view, the MAP point of the consistent Bayesian method is similar to a truncated SVD approach, and
that the consistent Bayesian method applies regularization only in directions uninformed by the data. We
demonstrate our scalable approach on a linear inverse problem governed by an advection-diffusion equation
and a nonlinear inverse problem governed by a hyperelasticity equation.

1. Introduction.

The recently developed consistent Bayesian approach for stochastic inverse problems
developed in [3] solves the following problem: given data with a known distribution and
a computational model which maps parameters to observables, find a distribution in the
parameter space such that the push forward distribution matches the given data distribution.
This is not necessarily the same setup as the classical Bayesian approach to inverse problems
[2, 10, 14], since the classical Bayesian posterior is not necessarily consistent with the model
and the data, i.e. the push forward of the posterior via the parameter-to-observable map
does not necessarily match the distribution of our data. As noted in [3], the lone exception
is the case where the push-forward of the prior is a uniform distribution. In that case, the
classical and consistent Bayesian approaches give identical results. In the classical Bayesian
approach, if we select a highly informative prior distribution the resulting posterior may be
overly influenced by the prior and drastically inconsistent with the data. On the other hand,
the consistent Bayesian posterior will always be consistent with our data under the mild
assumption that the distribution of the data is absolutely continuous with respect to the
push forward of the prior.

While this consistency property may be attractive for real world application when
our choice of prior may be highly arbitrary, computing the consistent Bayesian posterior
requires an additional complication that the classical Bayesian technique does not. The
consistent Bayesian method requires estimating the push forward of the prior density via the
parameter-to-observable map which can be accomplished by kernel density estimation (KDE)
or parametric density estimation using a set of samples from the prior distribution. If we
estimate the push forward of the prior via kernel density estimation (KDE), the push forward

density will converge uniformly at a rate O
(

lnn
n

p/(d+2p))
, where d is the dimension of the data

space and p is the kernel order [7]. If our data are high dimensional or computing the push
forward of a sample is computationally expensive then KDE may become computationally
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intractable. In particular, if our parameter-to-observable map requires the solution of a
partial differential equation (PDE) then computing the push forward of a single sample from
the prior may require significant computational resources. If we attempt to estimate the
push forward of the prior via parametric density estimation, we risk introducing significant
error if the true density is not well approximated by our assumed family of distributions.

The outline of this paper is as follows. In Section 2 we review a particular scalable
approach for the classical Bayesian inverse problem, in particular the maximum a posteriori
(MAP) point estimation technique. This is followed by a review of the consistent Bayesian
method in Section 3. In Section 3.1 we investigate how the prior influences the consistent
Bayesian posterior and connect the consistent Bayesian method to the classical Bayesian
technique using regularization based on truncated singular value decomposition (SVD) as
described in [5, 8, 9]. In Section 4 we present a novel MAP point estimation technique
for the solution of linear inverse problems with the consistent Bayesian method. Our new
approach avoids the need for density estimation and utilizes a low-rank approximation
method developed for the classical Bayesian method [2,13] to achieve scalability with the
dimension of the data and parameter spaces. We demonstrate our technique by solving a
linear inverse problem governed by an advection-diffusion equation. In Section 5 we extend
our approach to nonlinear inverse problems by introducing an iterative linearization technique
and demonstrate by inverting for a parameter in a hyperelasticity equation. Finally, we
summarize and conclude our discussion in Section 6.

2. A Scalable Approach for the Classical Bayesian Inverse Problem.
In this section we provide the requisite background material to support our analysis in Section
3.1 and our scalable approach for consistent Bayesian inverse problems in Sections 4 and 5.
We start by summarizing scalable techniques for finding the MAP point and approximating
the covariance operator for the classical Bayesian inverse problem.

2.1. Determining the MAP Point. Consider the abstract variational problem:
Given λ in a Hilbert space Λ, find u∗ ∈ V such that:

u∗(λ) = argmin
u∈V

Π(u, λ). (2.1)

In addition, assume we have point observations {yi}d1 for some quantities of interest (QoI)
{Bi}d1, where each Bi maps u∗(λ) 7→ Bi(u

∗(λ)) ∈ R. We define a parameter-to-observable
map f to be the composition f = B ◦ u∗.

We assume a Gaussian prior with mean µpr and covariance Γpr and a Gaussian noise
model on the data with mean y and covariance Γn. With these assumptions the maximum
a posteriori (MAP) point of the classical Bayesian posterior can be found by solving the
deterministic optimization problem: find λMAP ∈ Λ which minimizes:

J(λ) =
1

2
||Γ−1/2

n (Bu∗(λ)− y)||2Rd +
1

2
||Γ−1/2

pr (λ− µpr)||2L2(Ω).

= Jmisfit(λ) + Jreg(λ)

To handle the potentially nonlinear coupling between the state u∗ and parameter λ we
introduce the Lagrangian form:

L(λ, u, p) =
1

2
||Γ−1/2

n (Bu− y)||2Rd +
1

2
||Γ−1/2

pr (λ− µpr)||2L2(Ω) +DupΠ(u, λ),

where Dup denotes the Gâteaux derivative with respect to u in a direction p. We solve
the inverse problem by seeking a point (λMAP, uMAP, pMAP) which satisfies the first order
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optimality conditions:

Dpp̂L = 0 ∀p̂ ∈ V0

DuûL = 0 ∀û ∈ V0

Dλ
λ̂
L = 0 ∀λ̂ ∈ Λ

In practice we set variations with respect to u and p equal to zero explicitly and perform the
optimization in the parameter space to find λMAP. i.e. for each optimization iteration we
solve the following system:

Dpp̂L = Dup̂Π(u, λ) = 0 ∀p̂ ∈ V0

DuûL =

∫
Ω

ûB∗Γ−1
n (Bu− y) dx+DuûDupΠ(u, λ) = 0 ∀û ∈ V0

Dλ
λ̂
L =

∫
Ω

λ̂Γ−1
pr (λ− µpr) dx+Dλ

λ̂
DupΠ(u, λ) =

∫
Ω

λ̂G(λ) dx ∀λ̂ ∈ Λ.

where G is the gradient in the reduced space. In addition we would like to utilize Hessian
information to accelerate the convergence of the optimization procedure. To find the
Hessian-action we introduce the meta-Lagrangian:

L̃(λ, u, p, λ̃, ũ, p̃) = Dup̃Π(u, λ) +

∫
Ω

ũB∗Γ−1
n (Bu− y) dx

+DuũDupΠ(u, λ) +

∫
Ω

λ̃Γ−1
pr (λ− µpr) dx+Dλ

λ̃
DupΠ(u, λ)

The Hessian-action can be found by solving the following system:

Dpp̂L̃ = DuũDup̂Π(u, λ) +Dλ
λ̃
Dup̂Π(u, λ) = 0 ∀p̂ ∈ V0

DuûL̃ =

∫
Ω

ũB∗Γ−1
n Bû dx+DuûDup̃Π(u, λ)

+DuûDλλ̃D
u
pΠ(u, λ) +DuûDλλ̃D

u
pΠ(u, λ) = 0 ∀û ∈ V0

Dλ
λ̂
L̃ =

∫
Ω

λ̃Γ−1
pr λ̂ dx+Dλ

λ̂
Dup̃Π(u, λ) +Dλ

λ̂
DuũDupΠ(u, λ)

+Dλ
λ̂
Dλ
λ̃
DupΠ(u, λ) =

∫
Ω

λ̂H(λ)λ̃ ∀λ̂ ∈ Λ

2.2. A Scalable Approximation of the Covariance. After solving for the MAP
point we can construct a low-rank approximation of the posterior covariance. We first
introduce a linearization of the parameter-to-observable map about the MAP point:

f(λ) ≈ f(λMAP) + F (λ− λMAP).

With this linearization the posterior covariance can be expressed as:

Γpost = H−1(λMAP) = (F>Γ−1
n F +MΓ−1

pr )−1,

where M is the mass matrix from the finite element discretization of the parameter space.
In practice explicitly inverting the Hessian matrix is computationally intractable so instead
we use the low-rank approximation described in [2, 13] which exploits the low-rank structure
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of the prior-preconditioned linearized forward map F>Γ−1
n F for efficient inversion. To

summarize this method let us first introduce the generalized SVD:

ΓprF
∗Γ−1/2

n = UΣV > (2.2)

st. U∗Γ−1
pr U = I.

Note that throughout this paper we use the superscript ∗ to denote the adjoint with respect
to the parameter and data spaces. i.e. F ∗ = M−1F> and U∗ = U>M where M is the
mass matrix from the discretization of the parameter space. With this decomposition the
linearized Hessian simplifies to:

H = MΓ−1
pr UΣ2U∗Γ−1

pr +MΓ−1
pr −MΓ−1

pr UU
∗Γ−1

pr ,

and can be inverted via the Woodbury Identity:

Γpost = H−1 = ΓprM
−1 − UGU>

G = diag
{Σ2

ii − 1

Σ2
ii

}
.

It was shown in [13] that this particular low-rank decomposition is optimal in the sense that
it minimizes the Förstner metric and Kullback-Leibler divergence between the true and
approximate posterior covariances for linear inverse problems.

In practice rather than solve the generalized SVD we solve the generalized Hermitian
eigenvalue problem (GHEP):

ΓprF
∗Γ−1

n FΓpr = UΛU> (2.3)

st. U∗Γ−1
pr U = I.

We can solve this GHEP efficiently using matrix-free randomized algorithms such as [6, 12].
The number of matrix-vector products required for these methods scales linearly with
the desired rank of the decomposition. It was shown in [2] that the effective rank of the
prior-preconditioned forward map depends on the information content of the data and is
independent of the size of the forward problem. For PDE constrained inverse problems the
dimension of the data is typically much smaller than the dimension of the parameter space.
In such a case the decomposition (2.3) can be approximated with only a small number of
matrix-vector products.

This Laplace approximation allows us to avoid sampling from the posterior which in
turn improves scalability with respect to the parameter and state dimensions. In Section 4
and 5 we discuss how to extend this procedure for the consistent Bayesian method.

2.3. A Note on Prior Selection.
We conclude this section with a brief explanation of our prior selection. If the forward
problem is governed by a PDE and the parameter resides in a function space then it is
more appropriate to define the prior in the function space setting to avoid issues with mesh
dependence. In addition, defining our prior in the infinite dimensional setting allows us to
discretize with an appropriate finite-element method which leads to a sparse representation
of our prior covariance. To this end, a Gaussian prior was selected for infinite-dimensional
well-posedness and follows [2, 14]. Suppose our parameter space is L2 on some domain Ω,
then we select a prior covariance operator Γpr defined by the biharmonic operator:

Γpr = A−2 = (δI + γ∇ · (Θ∇))−2,
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where the domain of A is given by:

D(A) = {λ ∈ H2(Ω) : γΘ∇λ · n = 0}.

and a prior mean µpr in D(A). The scalar hyperparameters δ and γ control the magni-
tude and length scale respectively and the tensor Θ models anisotropy in the covariance kernel.

The finite-dimensional representation of Γpr is given by:

Γpr = K−1MK−1M where

Kij =

∫
Ω

δφi(x)φj(x) + γ(Θ∇φi(x)) · ∇φj(x)dx

Mij =

∫
Ω

φi(x)φj(x)dx,

where φi and φj are basis vectors for the finite-element representation of our parameter

space. Note that the discrete form of the prior is easily invertible and that half powers Γ
1/2
pr

and Γ
−1/2
pr are easy to compute.

3. A Consistent Bayesian Solution to the Stochastic Inverse Problem.
In this section we summarize the consistent Bayesian method for stochastic inverse problems
presented in [3]. The stochastic inverse problem we seek to solve can be stated as follows:
given a measure of our observations denoted µy, construct a posterior measure µpost in Λ
such that the push-forward of µpost via f matches the observed measure µy. i.e.

µy(A) = µpost(f
−1(A)) ∀A ∈ BD (3.1)

As in the classical Bayesian approach, the construction of µpost is ill-posed, i.e., in general
there exist many probability measures that push forward to the given measure on the
observations. We introduce a prior measure µprior in order to make the problem well-defined.
It was shown in [3] that, given a prior measure µprior in Λ , a posterior measure given by:

P post
Λ (A) =

∫
D

(∫
A∩f−1(d)

πprior
Λ (λ)

πyD(f(λ))

π
f(prior)
D (f(λ))

dµΛ,d(λ)
)
dµD(d)

satisfies 3.1, under the assumption that the observed measure be absolutely continuous with
respect to the push-forward of the prior, i.e. µy � µf(prior). This posterior is the result of
applying the disintegration theorem described in [4] to the prior measure and followed by an
application of Bayes’ theorem. Note that evaluation of the posterior density:

πpost
Λ = πprior

Λ (λ)
πyD(f(λ))

π
f(prior)
D (f(λ))

requires either parametric or kernel density estimation for the push-forward of the prior in
the denominator. As mentioned in Section 1, parametric density estimates can result in
significant error if the true density does not reside in the parametrized family of distributions,
and kernel density estimates scale poorly with the data dimension.

3.1. Connections with Data-Informed Regularization.
In this section we draw a connection between the consistent Bayesian method and regular-
ization by truncated SVD (TSVD) based approaches as described in [5, 8, 9]. For now let
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us assume that the parameter-to-observable map is linear and that the prior and observed
measures are Gaussian. The MAP point cost functional can be written as:

J(λ) =
1

2
||Γ−1/2

n (Fλ − y)||2Rd +
1

2
||Γ−1/2

pr (λ − µpr)||2L2(Ω) −
1

2
||A−1/2(Fλ − Fµpr)||2Rd

Let us consider the Hessian of the cost functional given by

H = F>Γ−1
n F +MΓ−1

pr − F>(FΓprF
∗)−1F

= MΓ−1/2
pr [QQ∗ + I −Q(Q∗Q)−1Q∗]Γ−1/2

pr ,

where the common factor Q = Γ
1/2
pr F ∗Γ

−1/2
n Now denote the reduced SVD of the common

factor Q as Q = UΣV >. In addition insist that U∗U = I, V >V = I and V V > = I. The
Hessian becomes

H = MΓ−1/2
pr (UΣ2U∗ + I − UU∗)Γ−1/2

pr .

We can do some more manipulation to get

H = MΓ−1/2
pr Ũ

{[ Σ2 0
0 0

]
+
[ 0 0

0 I

]}
Ũ∗Γ−1/2

pr ,

where Ũ = [U,W ] and W is an orthonormal extension of U such that WW ∗ = I − UU∗. If
we compare this with a similarly derived expression for the classical Bayesian approach

HSB = MΓ−1/2
pr (UΣ2U∗ + I)Γ−1/2

pr = MΓ−1/2
pr Ũ

{[ Σ2 0
0 0

]
+
[ I 0

0 I

]}
Ũ∗Γ−1/2

pr ,

we can see that the contribution of the prior-preconditioned misfit Hessian (first term) is
the same and that the regularization (second term) is different. The consistent Bayesian
method applies regularization only along directions spanned by W which form the nullspace

of Γ
1/2
pr F ∗Γ

−1/2
n . The classical Bayesian method applies regularization in all directions, i.e.,

it allows the prior to influence the data-informed directions.
Now consider the posterior for the consistent Bayesian method given by

ΓCBpost = H−1
CB = ΓprM

−1 − Γ1/2
pr UGU

∗Γ1/2
pr M

−1.

G = diag
{Σ2

ii − 1

Σ2
ii

}
The consistent Bayesian method updates the prior in the directions V which span the data
informed subspace. Note that the posterior can be broader than the prior along data informed
directions if Σ2

ii < 1. This happens when, for example, the prior is too confident in these
data-informed directions with large noise. For the classical Bayesian method, on the other
hand, the inverse of the Hessian is given by

ΓSBpost = H−1
SB = ΓprM

−1 − Γ1/2
pr UDU

∗Γ1/2
pr M

−1.

D = diag
{ Σ2

ii

Σ2
ii + 1

}
Notice that the posterior is always narrower than prior, independent of the noise level. As a
result, the solution of the classical Bayesian approach can be overconfident.
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4. A Scalable Solution for Linear Inverse Problems.
In this section we extend the scalable methodology for the classical Bayesian inverse
problem summarized in Section 2 to the consistent Bayesian method for linear inverse
problems. When the parameter-to-observable map is linear, the MAP point of the
consistent Bayes inverse problem can be written as a deterministic optimization problem.
In this case the procedure for finding the MAP point follows the classical Bayesian
approach using low-rank approximation. When the parameter-to-observable map is
nonlinear, the addition of the push forward of the prior prevents us from writing the
MAP point as the solution of a deterministic optimization problem. However, The MAP
point can still be approximated through a partial linearization approach described in section 5.

Consider the case of a linear parameter-to-observable map and denote the linear map
as f(λ) = Fλ. Assuming a Gaussian prior and observed density, the MAP point of the
consistent Bayesian posterior can be written as a the solution of a deterministic optimization:
find λMAP which minimizes the cost functional:

J(λ) =
1

2
||Γ−1/2

n (Fλ − y)||2Rd +
1

2
||Γ−1/2

pr (λ − µpr)||2L2(Ω) −
1

2
||A−1/2(Fλ − Fµpr)||2Rd

(4.1)

where A = (FΓprF
∗). If we use the prior described in Section 2.3 then the self-adjoint

Hessian operator is given by:

H = F ∗Γ−1
n F + Γ−1

pr − F ∗(FΓprF
∗)−1F,

where F ∗ is the adjoint of the forward operator. After discretization the resultant symmetric
Hessian matrix is given by:

H = F>Γ−1
n F +MΓ−1

pr − F>(FΓprF
∗)−1F.

The last term in the Hessian, introduced by the push forward of the prior, greatly increases
the cost of each Hessian vector product. Rather than computing the Hessian action exactly
we instead use the low-rank decomposition described in Section 2. When we apply the
generalized SVD (2.2), the Hessian matrix simplifies to:

H = MΓ−1
pr +MΓ−1

pr U(Σ2 − I)U∗Γ−1
pr

which can be inverted via the Woodbury matrix identity.

H−1 = Γpost = ΓprM
−1 − UGU> (4.2)

G = diag
{Σ2

ii − 1

Σ2
ii

}
The action of the approximate inverse Hessian can be computed at relatively little cost
if the rank of the decomposition is small. We minimize the cost functional 4.1 using an
inexact-Newton method. The details of the optimization are presented in the next section.

4.1. Application to Linear Advection-Diffusion.

Consider the advection-diffusion equation

∂u

∂t
− κ∆u+ v · ∇u = 0 ∀(x, t) ∈ Ω× (0, T ),
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∇u · n = 0 ∀(x, t) ∈ ∂Ω× (0, T ),

u(·, 0) = λ ∀x ∈ Ω,

where κ is a diffusion coefficient and v is a non time-varying velocity field. Our problem
is as follows: given 100 pointwise observations of u at t = 3 with added noise, infer the
initial condition λ. Figure 4.1 shows the propagation of u from the initial condition to
the final time. The dimension of both the discretized parameter and state spaces is 7863.
We solve the inverse problem with both the classical Bayesian approach and the consistent

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

Fig. 4.1: λtrue and observations at t = 3

Bayesian approach in Python using FEniCS [1,11] and hIPPYlib [15]. The optimization was
performed using inexact-Newton globalized with backtracking line search. The Newton step
was computed using the approximate inverse Hessian given by (4.2). Figure 4.2 summarizes
these results. Note that the classical and consistent Bayesian methods produced similar
λMAP. We take advantage of this similarity for the nonlinear approach presented in Section
5.

(a) Consistent λMAP (b) Consistent FλMAP (c) Classical λMAP (d) Classical FλMAP

Fig. 4.2: Linear Inversion Results

The low-rank decomposition described in section 4 was used in both methods. Based
on the rapid eigenvalue decay of the prior-preconditioned map (shown in Figure 4.3), 50
eigenpairs were used in the decomposition.
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Fig. 4.3: Generalized Eigenvalues of (Hmis,MΓ−1
pr )

5. A Scalable Iterative Approach for Nonlinear Inverse Problems.
Now let us examine the case of a nonlinear parameter-to-observable map. If we try to naively
apply MAP point estimation we run into a major obstacle. That is, the consistent Bayesian
MAP point cannot be written as the solution of a deterministic optimization problem due to
the addition of the nonlinear push forward of the prior. In addition, applying the linearization
strategy used in Section 2 requires prior knowledge of the MAP point which we do not
know. Our proposed solution is to linearize the consistent Bayesian regularization around the
classical Bayesian MAP point, i.e., we first solve the classical Bayesian MAP point problem,
which gives us λ̃MAP that is, as we saw in Section 4.1, close to the consistent Bayesian MAP
point. Next we linearize the parameter-to-observable MAP about λ̃MAP:

f(λ) ≈ f(λ̃MAP) + F (λ− λ̃MAP).

We use this linearization only to construct the push forward of the prior, leaving the misfit
term Jmisfit fully nonlinear. The result is the following cost functional:

JPL(λ) =
1

2
||Γ−1/2

n (f(λ)− y)||Rd +
1

2
||R1/2(λ− µpr)||L2(Ω),

R = MΓ−1
pr − F>(FΓprF

∗)−1F

Rather than construct F explicitly, we use the action of Hmis(λ̃MAP ) to solve the GHEP
(2.3) and use the generalized eigenpairs to construct a low-rank version of the regularization
matrix. From there we use the same optimization strategy described in Section 2. Algorithm
5.1 summarizes this procedure.

5.1. Application to Hypereleasticity.
In this section we apply our partial linearization approach to a particular nonlinear inverse
problem. Consider the displacement of a compressible Mooney-Rivlin solid which can be
found by solving the following nonlinear minimization problem:

min
u∈V

Π(u) =

∫
Ω

ψ(u) dx−
∫

Ω

B · u dx−
∫
∂Ω

T · u dS,

ψ(u) = C1(I1 − 3) + C2(I2 − 3) + C3(J − 1)2,
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Fig. 5.1: Partial Linearization Approach

I1 = J−2/3 tr(C), I2 = J−4/3
(1

2
tr(C)2 − 1

2
tr(C2)

)
,

J = det(F ), C = F>F, and F = I +∇u.

Given observations of the boundary displacement we wish to infer the first coefficient in
the strain-energy density C1. In addition we wish to enforce positivity by setting λ = log(C1).
The true coefficient is piecewise constant with value of 0.3 inside a small inclusion and 0.1
everywhere else in the domain. Our primary interest is to detect the location of the inclusion
without prior knowledge of its existence.

We use Algorithm 5.1 to solve for the consistent Bayes MAP point. The dimension of
the discretized parameter and state spaces is 36905 and 14487 respectively. The optimization
was carried out with an inexact-Newton conjugate gradient (CG) algorithm globalized with
a backtracking line search. Figure 5.2 shows the results of the optimization.
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(a) λtrue = e0.2 contour (b) λMAP = e0.2 contour

(c) f(λtrue) (d) f(λMAP)

Fig. 5.2: Inversion results

Only 60 eigenpairs were needed for the low-rank decomposition despite the fact that the
dimension of the data space is relatively high (2778). Figure 5.3 shows the rapid decay in
the eigenvalues of the prior-preconditioned misfit Hessian.

Fig. 5.3: Generalized Eigenvalues of (Hmis(λ̃map),MΓ−1
pr )

6. Conclusion.
In this report we presented novel techniques for solving linear and nonlinear stochastic
inverse problems with consistent Bayesian inference. These techniques avoid the need for
kernel density estimation, thereby greatly improving scalability with respect to the data
dimension. In addition a connection was drawn between the consistent Bayesian method and
the classical Bayesian method with regularization by truncated SVD. We presented a MAP
point estimation technique for linear inverse problems with consistent Bayesian inference
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that utilized a low-rank decomposition of the parameter-to-observable map to reduce the
cost of Hessian based optimization. This approach was demonstrated for a PDE-constrained
linear inverse problem with a parameter dimension of 7863 and data dimension of 100.
For nonlinear inverse problems with consistent Bayesian inference, the MAP point is no
longer a solution of a deterministic optimization problem. In order to overcome this issue,
we constructed an approximation of the consistent Bayesian MAP point which could be
written as a deterministic optimization problem. This approach was demonstrated with a
PDE-constrained nonlinear inverse problem with a parameter dimension of 36905 and data
dimension of 2778.
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COMPARING MCMC DIAGNOSTICS AND STOPPING RULES

NATHAN L. ROBERTSON∗, MOHAMMAD KHALIL† , AND BRIAN M. ADAMS‡

Abstract. Markov chain Monte Carlo (MCMC) sampling is an important tool in Bayesian analysis
for conducting inference about parameters of interest. The distributions of interest are often challenging
to sample from and sometimes MCMC samplers fail to accurately capture the information of interest due
to either a failure of the sampler to capture the distribution of interest or not enough samples being taken.
Several tools to diagnose these problems exist in various settings and types of MCMC samplers. This work
compares several tools designed to work for general MCMC samplers to determine recommendations for
diagnostic implementation in the Dakota software developed at Sandia National Laboratories.

1. Introduction. Markov chain Monte Carlo (MCMC) techniques are tools to draw
correlated samples from an approximate probability distribution of interest. These techniques
are often utilized in the Bayesian setting when approximating quantities from a posterior
distribution which may be intractable to construct directly. Bayesian techniques enjoy great
flexibility in model specification, the ability to specify prior information to guide an analysis
and the ability to output distributions. One application is model calibration for quantifying
uncertainty in input parameters such as used in the Dakota software [1] developed at Sandia
National Laboratories. This study is motivated by the goal of determining which measures
of quality to convey to users of Dakota when MCMC simulations are performed.

Bayesian methods combine a prior belief about some parameters with information
obtained from data to update a belief about the parameters. Take f(θ) to be the prior
distribution, that is some distribution which represents the current knowledge of θ, and
f(D|θ), the likelihood of the data given the parameter values. The posterior distribution
f(θ|D) represents the new belief about θ given what we have observed

f(θ|D) =
f(D|θ)f(θ)∫
f(D|θ)f(θ)dθ

. (1.1)

This approach differs from the frequentist approach which focuses primarily on the likelihood.
In practice Bayesian models are often complicated versions of (1.1) with high dimension and
dependencies between parameters.

MCMC works by constructing a Markov chain with invariant distribution equal to the
distribution of interest, which in the Bayesian setting is the posterior distribution. The
Markov chain is used to construct a sample which will be approximately distributed according
to the invariant distribution. One may then use this sample to analyze the distribution,
however there are challenges. The samples will be correlated and as such inference must take
this correlation into account. Some questions this raises are “Does the sample accurately
reflect the distribution of interest?”, “How good is the estimate?” and “How many samples
are enough?”

Some methods that attempt to answer these questions are the Gelman-Rubin diagnostic
[8], Geweke diagnostic [9], Heidelberger-Welch diagnostic [12], Raftery-Lewis diagnostic [18]
and relative metric fixed-volume sequential stopping rules [20] which will subsequently be
referred to as sequential stopping rules. Other diagnostics exist to address these questions
and were studied by Cowles and Carlin [4] who concluded that each was limited in the scope
of which problems with a sampler it could detect. However, many are graphical tools or only
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‡Sandia National Laboratories, briadam@sandia.gov
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apply to certain types of MCMC samplers such as the Gibbs sampler and were thus not
considered.

This analysis will primarily focus on addressing the quality of estimates and how
informative each considered method is to determining how many samples should be drawn.
Sequential stopping rules represent advances in MCMC theory while the other methods
predate the influential work of Meyn and Tweedie [15] which laid the foundation for current
MCMC output analysis. Sequential stopping rules, Raftery-Lewis diagnostic and Heidelberger-
Welch diagnostic all attempt to place an error bound on the quantity of interest in addition to
determining how many samples is enough by terminating the simulation once this error drops
below some threshold. The Gelman-Rubin diagnostic runs multiple chains starting from
“overdispersed” values and monitors the between chain variance compared to the within chain
variance. Once the values become sufficiently close the chain may be considered “converged”.
The Geweke diagnostic compares the means of values early in the chain compared to the
second half of the chain and considers the chain “converged” once the values are sufficiently
close. Raftery-Lewis and sequential stopping rules consider the estimation of quantiles while
the other methods and sequential stopping rules can consider the estimation of expectations.

This report is constructed as follows. First, an overview of MCMC theory is presented
to lay the foundations for the various diagnostics and what they attempt to address. Next, a
brief overview of the theory for each diagnostic is given as well as a list of pros and cons. A
simulation study is then performed for which a summary of outcomes are included. Finally,
recommendations for when to consider each diagnostic are offered as well as some concluding
remarks.

2. MCMC Theory. Consider a probability distribution π over the support X ∈ Rd.
We may be interested in estimating some quantity of interest θ defined as for a function
g : X→ Rp

Θ = Eπ[g(X)] =

∫
X

g(X)π(dx). (2.1)

The flexible nature of g allows for Θ to represent various quantities of interest such as
moments or probabilities. To evaluate Θ we may turn to MCMC sampling.

Consider a Markov transition kernel P (x, dy) on a general state space (X,B(X)) with
associated Harris Ergodic Markov chain X = {Xi : i = 0, 1, ...} as defined in [15] and
invariant distribution π. Let the n−step Markov transition kernel be denoted Pn(x, dy) for
n ∈ N. Then for x ∈ X and A ∈ B(X)

Pn(x,A) = P (Xi+n ∈ A|Xi = x), (2.2)

and for an initial probability measure λ(·)

Pn(λ,A) =

∫
X

Pn(x,A)λ(dx). (2.3)

The convergence of interest is

||Pn(λ, ·)− π(·)|| n→∞−→ 0, (2.4)

where || · || is the total variation norm [15]. The rate of this convergence measures how
quickly the Markov transition kernel approaches the invariant distribution and is usually
quantified by a bound such as M(x)γ(n) where different forms of the functions M and γ
indicate the speed of convergence. When γ(n) = tn for some t < 1 the chain is referred
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to as being geometrically ergodic. The chain is uniformly ergodic if γ(n) = tn and M is
bounded. The chain is polynomial ergodic of order m for m ≥ 1 if γ(n) = n−m. A discussion
of results and conditions for the various forms of ergodicity are also provided by Meyn and
Tweedie [15].

Concerns about convergence of an MCMC sampler are referring to the convergence stated
in equation (2.4). Several diagnostics aim to diagnose whether this convergence has occurred.
Caution should be used with those that claim convergence of a chain as occurring after some
number of samples are drawn. Each sample after “convergence” is still a correlated draw
from the same Markov chain with stationary transition probabilities and as such should not
be discarded for reasons of convergence.

2.1. Estimation of Expectations and Markov chain Central Limit Theorem.
Θ may be estimated with

Θ̂ =
1

n

n∑
i=1

g(Xi). (2.5)

Under suitable regularity conditions, which are generally a form of ergodicity and a
moment condition as discussed in [13, 14, 20], there exists a Markov chain central limit
theorem (CLT) such that

√
n(Θ̂−Θ)→ Np(0,Σ), (2.6)

where Σ = Cov(g(X1), g(X1)) +
∑∞
j=1 [Cov(g(X1), g(X1+j)) + Cov(g(X1), g(X1+j))

′] . Esti-
mation of Σ is challenging in that it includes the covariance of the distribution of interest as
well as the lag covariance between draws from the Markov chain. Some techniques which
address this estimation include spectral variance estimators, batch means estimators and
regenerative sampling as discussed in [19–21] respectively. The implementations of the
methods we consider in this study will use batch means estimators or spectral variance
estimators. In general batch means estimators are much faster to compute but converge more
slowly than spectral variance estimators. Batch means estimators calculate the variance
between the means of batches while spectral variance estimators calculate a weighted sum of
estimates of autocovariances over lag windows.

Several diagnostics considered will be based on quantifying the variability in Θ̂ using
(2.6). Additionally, the diagonal entries of Σ may be used to compute Monte Carlo standard
errors for each dimension of Θ.

2.2. Estimation of Quantiles and Markov chain Central Limit Theorem. Let
W ∼ π and h : X→ R. Then for V = h(W ) let FV and fV be continuous distribution and
density functions of V . The qth quantile of V is defined as

ξq = F−1
V (q) = inf{v : FV (v) = q}. (2.7)

This definition allows for quantiles of the marginal distributions of π. Applications may
include finding credible intervals for quantities of interest.

A consistent estimator for ξq is

ξ̂q = h(X)dnqe:n, (2.8)

the nqth order statistic of h(X).
Under regularity conditions discussed in [5] there exists a CLT such that

√
n(ξ̂q − ξq)→ N

(
0,

σ2
q

(fV (ξq))2

)
, (2.9)
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where

σ2
q = V ar(h(X)1) + 2

∞∑
j=1

Cov(h(X)1, h(X)1+j). (2.10)

Results for a quantile Markov chain CLT are used in the same way as the version for
expectations as detailed in Section 2.1.

2.3. Burn-in. A common practice with MCMC sampling is to discard an early portion
of the chain or burn-in. Theoretical justifications for discarding burn-in are somewhat
missing. In practice it can be used to start the analysis in a region of higher probability for
the distribution of interest or to reduce starting value bias. In theory these are unnecessary
as the starting value bias is asymptotically zero and the regions of low probability will
eventually be visited in a chain of infinite length. However, these conditions are not always
reasonable and burn-in may be one method to improve the quality of estimates when samples
are limited. Another way to address these concerns without discarding samples is to be more
selective with the choice of starting values such as using a maximum a posteriori (MAP)
estimate as a starting value. In some cases burn-in can be a more efficient choice and should
be looked into on a case-by-case basis.

3. Diagnostics Considered. For this analysis four diagnostics that are commonly
used are examined as well as sequential stopping rules which represent a newer application
of MCMC theory. The diagnostics and what they consider the estimation of are:

1. Geweke Diagnostic
2. Gelman-Rubin Diagnostic
3. Raftery-Lewis Diagnostic (Quantiles)
4. Sequential Stopping Rules (Expectations and Quantiles)
5. Heidelberger-Welch Diagnostic (Expectations)

3.1. Geweke Diagnostic. Geweke’s diagnostic [9] compares a mean from early samples
in a Markov chain with a mean from the later samples in the Markov chain. The idea is that
in a converging chain the estimated mean of some function of the chain should take a similar
value over different portions of the sample. A test is conducted to determine if there is a
significant difference between the means in which case the chain may be failing to converge.

Take Θ as defined in equation (2.1) with d = 1. For n samples from the Markov chain
X, let A ∈ N and B ∈ N be two values such that (A+B)/n < 1. Let

θ̂A =
1

A

A∑
i=1

g(Xi), (3.1)

and

θ̂B =
1

B

n∑
i=n−B+1

g(Xi), (3.2)

be the estimates of θ based on the first A and final B samples respectively. Let ŜA(0)
and ŜB(0) be consistent spectral variance estimates of {g(Xi), i = 1, ..., A} and {g(Xi), i =
n − B + 1, ..., n}. Consistency results about univariate spectral variance estimators are
available in [7]. Then when a CLT holds,

θ̂A − θ̂B
ŜA(0)
A + ŜB(0)

B

n→∞−→ N(0, 1). (3.3)
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A hypothesis test may then be conducted with large values providing evidence that the mean
estimate has not stabilized.

While the theory allows for many choices of A and B, Geweke suggested the use of
setting A = .1n and B = .5n.

Pros:
• Checks that the estimate of θ stabilizes

Cons:
• Does not quantify the error of estimation
• Requires choice of rejection region
• May disregard large portions of the chain in diagnosing convergence
• Requires choice of which proportions of the chain to use
• Without correction appears heavily influenced by starting values

3.2. Gelman-Rubin Diagnostic. The Gelman and Rubin diagnostic [8] attempts to
diagnose convergence as when the variances across m independent chains appear to stabilize
to an overall variance after starting at “overdispersed” starting values. Consider a posterior
mean x of interest. Simulate m independent chains Xi of length 2n and discard the first
n samples of each chain. Using the remaining n samples, the variance between sequence
means, B/n, is

B

n
=

1

m− 1

m∑
i=1

(x̄i. − x̄..)2, (3.4)

where x̄i. is the mean of sequence i and x̄.. is the overall mean across all the chains. Let s2
i

be the within-sequence variance estimate for sequence i. Then the average within-sequence
variance, W , is

W =
1

m

m∑
i=1

s2
i . (3.5)

The overestimate of the target variance is

σ̂2 =
n− 1

n
W +

1

n
B, (3.6)

and is asymptotically unbiased. Under the assumption that x is Normal, a t distribution
may be used as a conservative estimate with center x̄.., scale

V̂ = σ̂2 +
B

nm
(3.7)

and degrees of freedom df = 2V̂ 2/ ˆvar(V̂ ). The potential scale reduction factor (PSRF) is
defined as √

R̂ =

√
V̂

W

df

df − 2
. (3.8)

A large scale reduction factor indicates that inference about x may be improved by taking
additional samples.

This procedure is suggested to be run for each quantity of interest until each PSRF is
sufficiently small. Brooks and Gelman [3] develop a refined version√

R̂C =

√
df + 3

df + 1

V̂

W
, (3.9)
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and develop a multivariate extension.
Pros:
• Takes advantage of parallel computing
• Can detect prescence of a local mode

Cons:
• Requires multiple chains (and requires choice of how many chains)
• Discards more samples than probably reasonable
• Requires “overdispersed” starting values
• Does not control for quality of estimation
• Does not inherently address question of how many samples are required

3.3. Raftery-Lewis Diagnostic. Raftery and Lewis developed a procedure for esti-
mating a quantile based on two-state Markov chain theory [18]. Consider a φ−mixing Markov
chain X as described in [2], quantile of interest ξq, an error tolerance r and a probability s.
The goal is to estimate ξq and determine a total number of samples N and an amount of
burn-in samples M such that

P (|P̂ (g(X) < ξq)− q| < r) = s, (3.10)

where

P̂ (g(X) < ξq) =
1

N −M
N∑

i=M+1

I(g(Xi) < ξ̂q). (3.11)

Using notation from (2.2), this is setting s equal to the probability the difference between
the estimated CDF of V evaluated at the qth quantile and q is less than r.

Letting Zi = I(g(Xi) < ξq) and Z
(k)
i = Z1+(i−1)k yields a binary process {Z(k)

i } which

will approximately be a Markov chain for sufficiently large k. If Zi is ergodic, then {Z(k)
i } is

close to a first order Markov chain. This allows for the use of two-state Markov chain theory
with transition probabilities α and β. Taking k as a thinning rate and ε as an error tolerance

between P (Z
(k)
m = i|Z(k)

0 ) and the equilibrium distribution, the corresponding burn-in is

M = k
log
(

ε(α+β)
max(α,β)

)
log(1− α− β)

. (3.12)

The required sample size is then

N = k

αβ(2−α−β)
(α+β)3{
r

Φ( 1
2 (1+s))

}2 , (3.13)

where Φ(·) is the standard normal CDF. k may be found by taking the smallest k ∈ N
such that the first-order Markov chain model is preferred over a second-order Markov chain
model for some model selection criteria. Often the optimal k is 1 and in other cases k is not
required to be considered.

Pros:
• Gives bounds on error amount
• Provides amount of burn-in that should be discarded

Cons:
• Comparatively slow computation for a given number of samples taken
• Error bounds are on the CDF, not the quantile of interest
• Error of quantile is heavily tied to shape of posterior (how heavy tails are)
• Starting values may affect estimation adversely for larger error tolerances
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3.4. Sequential Stopping Rules. Vats et al. [20] consider a vector Θ as defined in
equation (2.1). Assume the existence of a functional CLT, which is established under the
same conditions as (2.6), and a strongly consistent estimator for Θ and Σ. The procedure
evaluates the estimated pth volume of a (1− α)100% confidence region and terminates once
this value becomes suitably small. Under these assumptions the confidence region is

Cα(n) = {Θ ∈ Rp : n(Θ̂−Θ)′Σ̂−1(Θ̂−Θ) < T 2
1−α,p,df}, (3.14)

where T 2
p,df is a Hotelling’s T 2 distribution with degrees of freedom p and df determined by

the choice of estimator for Σ̂. The accompanying volume is

V ol(Cα(n)) =
2πp/2

pΓ(p/2)

(
T 2

1−α,p,df

n

)p/2
|Σ̂|1/2. (3.15)

The stopping time is then defined as

T (ε) = inf{n ∈ N : (V ol(Cα(n)))1/p + a(n) ≤ εK(X)}, (3.16)

where a(n) is some function of o(n) which prevents termination before some prespecified
simulation effort, ε > 0 and a metric of the estimation process K(X) with K̂(X) a strongly
consistent estimator. A common choice is to set a(n) = εK(X)I(n ≥ n∗) + 1

n where n∗ is a
minimum sample size. K(X) may be thought of as a weighting on the volume to scale what
may be considered suitably small. If K(X) is set to 1 a fixed volume sequential stopping
rule is emitted. Other suggested choices for K(X) are a relative magnitude K(X) = ||Θ̂||,
the Euclidean norm of the estimate of Θ or a relative covariance K(X) = |Λ̂|1/2p where Λ̂ is
the estimated posterior covariance based on X. These choices of K(X) work from the idea
that the tolerance for error should be based on how much variability is in the distribution of
interest.

When a quantile ξq as defined in (2.7) is of interest, Doss et al. [5] develop a univariate
procedure which is based on the length of the resulting confidence interval. Assume the
existence of a functional CLT, which is established under the same conditions as (2.9), and
strongly consistent estimators for ξq, fV (ξq), σ

2
q and k(X), a metric of the estimation process.

Under these assumption the relative metric sequential stopping time is

tε = inf

{
n ∈ N : Z1−α/2

σ̂q√
nf̂V (ξ̂q)

+ a(n) ≤ εk(X)

}
, (3.17)

where a(n) and ε are defined as in the case of expectations. A choice of k(X) = 1 yields a

fixed-width sequential stopping rule while other choices of k(X) may be |ξ̂q| or λ̂ where λ is
the posterior covariance.

As ε→ 0 these stopping times yield asymptotic coverage probabilities of 1−α as desired.
In the rest of this report the batch means estimator for Σ and σ2

q will be used although any
strongly consistent estimator is valid.

Pros:
• User controlled error tolerance
• Asymptotic coverage probabilities
• Diagnostic is cheap to compute when using batch means variance estimator
• Univariate or multivariate for expectations
• Handles expectations of functions and quantiles

Cons:
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• Requires choice of ε with smaller choices yielding better results but more samples,
results can become poor when ε taken to be too large

• Starting values can greatly influence how many samples must be taken
• Batch means variance estimator is slow to converge
• Checking ergodicity assumption is not simple. Generally must rely on previously

studied methods/samplers

3.5. Heidelberger-Welch Diagnostic. Heidelberger and Welch develop a two stage
procedure for the estimation of a steady state mean [12]. The first stage tests for stationarity
of the process while the second stage compares the length of a confidence interval to a
prespecified error tolerance weighted by the value of the mean estimate. This second stage is
a special case of sequential stopping rules. Slightly different assumptions are required as the
method is not designed for the MCMC context.

The stationarity test assumes a φ-mixing covariance stationary process and defines a
quantity which converges in distribution to a Brownian bridge. This is then able to be
tested using a statistic such as the Cramer-von Mises statistic to detect an initial transient
state. This test is conducted using the entire sample. If it fails, then a beginning portion of
the samples are ignored and the remaining portion is retested. The procedure is repeated
until either a large amount of the samples are ignored in which case more samples must be
generated or the test passes. Stationarity is not actually required in the MCMC setting as a
LLN and CLT may exist without this assumption as discussed in [10]. Some may use this
test as a method to check whether burn-in should be discarded, but this is unnecessary as
discussed in Section 2.

The second stage of the process uses a relative magnitude sequential stopping rule with
a spectral variance estimator. Conditions for which this procedure are asymptotically valid
were later proved in [11] which included a FCLT and strongly consistent estimator for the
limiting variance. The stopping time may be defined as,

τε(n) = inf

{
n ∈ N : Z1−α/2

σ̂
√
n|θ̂|

< ε

}
. (3.18)

Pros:
• Standard errors to quantify estimate
• Can scale error tolerance to scale of quantity of interest
• Can adjust for poor starting values

Cons:
• Requires choice of ε which can lead to poor results for large ε
• May discard large amounts of samples
• If quantity of interest is 0 causes division by ≈ 0
• Variance in quantity of interest should be related to magnitude of quantity of interest

4. Simulation Study. To measure the effectiveness of each diagnostic as a stopping
rule two kinds of measures are considered. The first measure is of the quality of estimation
in which the sum squared Monte Carlo error (SSMCE =

∑
(θ̂j − θ)2) based on replicated

simulations is considered as well as empirical coverage probabilities for methods that generate
confidence regions. Sum absolute Monte Carlo error was also considered, but in practice this
did not provide much information beyond what SSMCE provided. A smaller value of SSMCE
represents less error in the estimation and is preferred. The second measure is simulation
effort for which the total time of the simulation and the average sample size at the stopping
time are recorded. In general these are highly dependent, however there are some situations
in which a method may take a longer simulation time but have less samples taken.
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The implementation of MCMC methods in Dakota only uses Metropolis-Hastings Random
Walk algorithms and as such this study will restrict itself to versions of this sampler. The
Metropolis-Hastings Random Walk algorithm used may be described as follows.

For a target distribution π and a symmetric increment distribution fε, transition from
Xi to Xi+1 as follows:

1. Sample ε ∼ fε
2. X∗ = Xi + ε

3. a = min
{

1, π(X∗)
π(Xi)

}
4. Let Xi+1 =

{
X∗ w.p. a
Xi w.p. 1− a

5. Increment i
The particular settings examined are
S1: π = N(2, 2); ε ∼ N(0, 1/2)
S2: π(x) = .3f1(x)+.5f2(x)+.2f3(x), A mixture of three univariate normal distributions:

f1 = N(1, 2.5), f2 = N(5, 4), f3 = N(11, 3); ε ∼ N(0, 9)

S3: π = Nd(0,Σ = MM ′), where M is a d× d matrix with each entry
i.i.d.∼ N(0, 1); ε ∼

Nd

(
0, 2.382

d Σ
)

where each distribution is parameterized by its variance or covariance matrix.
These are all fairly well behaved samplers and should not fail the diagnostics checks

unless a poor increment distribution is chosen. As such this study is mostly informative in
determining the effectiveness of the criteria as a stopping condition. The Geweke diagnostic
and Gelman-Rubin diagnostic are not intrinsically stopping rules but will be considered for
this analysis as they have been used in this manner.

In the following tables RL, Seq Q, Seq E, Gelman, Geweke and Heidel with stand
for Raftery-Lewis diagnostic, sequential stopping rules for quantiles, sequential stopping
rules for expectations, Gelman-Rubin diagnostic, Geweke diagnostic and Heidelberger-Welch
diagnostic respectively.

4.1. Computing Time. To measure the computation time of each diagnostic indepen-
dent of sampling time a data set of 10,000,000 univariate independent identically distributed
random variables was generated. Each diagnostic was applied using the default settings
in the packages “coda” [16] and “mcmcse” [6] from the statistical software R [17] to an
increasing portion of the data sequentially in batches of 1,000,000 observations. The time is
reported after 5,000,000 samples are included, denoted “Half”, and after all 10,000,000 have
been included, denoted “Full”. The results are reported in Table 4.1.

RL Seq Q Seq E Gelman Geweke Heidel
Half 32.540 1.8212 0.37541 4.5266 16.687 39.629
Full 133.790 6.7323 1.45627 16.5546 68.193 169.713

Table 4.1: Simulation times in seconds for diagnostics applied to i.i.d. data.

The sequential stopping rules are incredibly quick to compute compared to the other
methods. This is largely explained by the use of a batch means estimator compared to
the spectral variance estimators used in the Geweke and Heidelberger-Welch approaches.
The Heidelberger-Welch method has a two-stage approach in which the first stage should
be responsible for the majority of the simulation time. In actual applications one would
generally expect the time it takes to sample to be the largest simulation cost, but there is
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potential for some circumstances under which another diagnostic may take less simulation
effort with more samples taken.

4.2. Replicated Study. The following are a selection of some simulation results, with
the full results being available upon request. Table 4.2 contains results of simulation setting
S1 when estimating the mean of the distribution. Sequential rules provide the smallest
number of error but take the largest amount of samples, especially in the case of a “poor”
starting value. A poor starting value includes when the initial sample is far from the mass of
the distribution of interest. Gelman-Rubin is able to provide a reasonable estimate when the
starting values become extreme enough, but these also add substantially to the simulation
time. Additionally, the number of samples taken is actually m times the reported value as
these are the number of samples per chain while there are m chains. In simple cases this
diagnostic appears to have a tendency to terminate simulation very early and the error in the
estimate suffers greatly. Heidelberger-Welch also takes a small number of samples leading to
a larger error, but the error quantification it calculates provides close to correct coverage
probabilities (1 − α). The estimation for Geweke suffers when the starting value is poor.
Additionally, Geweke terminates close to the minimum simulation effort of 10000 samples.

method SSMCE mean n time controls
Seq E .9508519 45423 9.65 ε = .05, α = .1
Seq E .7206755 64791 15.4 ε = .05, α = .05
Seq E .6303106 203716 60.6 ε = .05, α = .05, x[1]=50

Gelman 24.51837 1441 .960 m=3, start=(20,-15,0)
Gelman 9.289586 1028 2.27 m=10
Gelman 4.632762 7569 5.67 m=3, start=(100,-1000,1000)
Gelman 0.645138 71021 82.4 m=3, start=(10000,-1000,1000)
Gelman 0.625250 71033 59.9 m=3, start=(10000,-1000,0)

Heidel 10.46866 4687 2.12 ε = .1, (α = .05), coverage=.941
Heidel 9.933048 5926 3.21 ε = .1, (α = .05), coverage=.928, x[1]=50
Heidel 2.60037 17653 10.4 ε = .05, (α = .05), coverage=.95
Heidel 2.70864 19550 14.6 ε = .05, (α = .05), coverage=.947, x[1]=50

Geweke 4.102102 14411 13.9 α = .25
Geweke 185.7301 10000 3.26 α = .25, x[1]=50
Geweke 4.330774 10205 2.19 α = .025

Table 4.2: Results for 1000 simulated replications of Metropolis-Hasting Random Walk with
Normal(2,2) target distribution. Time is reported in minutes.

Table 4.3 contains results from estimating quantiles using simulation setting S2. Raftery-
Lewis requires a fairly strict error tolerance to match sequential stopping rules with ε = .05.
Particularly of interest is that sequential stopping rules are actually faster in time although
requiring more samples to achieve a smaller error. This is due to the expense of calculating
Raftery-Lewis being much larger than sequential stopping rules. Also of interest is that the
distribution being sampled is not symmetric and the effort to calculate quantiles with similar
tail probabilities differs greatly. Raftery-Lewis performs better the closer the tails are to
that of a Normal distribution.

Table 4.4 provides results for 100 replications of a 10-dimensional Normal distribution
under simulation setting S3. For each dimension of the distribution a 95% credible interval
is estimated resulting in a p = 20 dimensional problem. The choice of a 95% credible interval
is incredibly favorable to Raftery-Lewis as this requires quantiles heavily in the tails of the
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method SSMCE mean n time controls
.1 quantile

Seq Q 0.97707 86259.5 53.4 ε = .05, α = .1
RL 1.597042 53970 109.9 r=.005, s=.9

.9 quantile
Seq Q 1.021776 320717.5 — ε = .05, α = .1

RL 3.477389 91684 — r=.005, s=.9

Median
Seq Q 1.029267 193431.5 175.0251 ε = .05, α = .1

RL 2.850999 66096.5 188.9548 r = .01, s = .9
RL 13.95706 14293.5 10.27 r = .02, s = .9

Table 4.3: Results for 1000 simulated replications of Metropolis-Hasting Random Walk with
target distribution a mixture of Normal distributions. Time is reported in minutes.

distribution resulting in less samples. Hence, the performance should decrease for shorter
credible intervals. Additionally, the normality of the marginal posterior distributions should
yield the smallest amount of error in the quantile estimation. Distributions with heavier tails
should yield higher amounts of error. Sequential stopping rules achieve the desired coverage
probability and the error amount may be considered acceptable based on the dimensionality
of the problem. Expectations for the same distribution are also considered in Table 4.5 where
the mean and variance of each dimension are estimated. Sequential stopping rules perform
better than they did in the case of quantiles. Heidelberger-Welch runs into problems with
its marginal approach and would crash on certain replicates causing the reporting of only
the 38 replicates which occurred before the crash. This crash likely occurred due to memory
limitations and with more careful planning should be avoidable. When it does not crash
the marginal levels are restrictive enough to yield very good estimates, but this is arguably
too restrictive in high dimensional problems. Additionally, Heidelberger-Welch falls short
enough from its desired coverage probability that it may be considered an issue.

method tr(SSMCE) mean n time(hours) controls

RL 1.872033 1025000 12.54828 r = .005, s = 1− .05/p
Seq Q 102.8902 3615000 37.73158 C = .92, ε = .1, α = .1

Table 4.4: 100 replications of a 10-dimensional Normal distribution. A .95 credible interval is
estimated for each dimension leading to p = 20 quantiles being estimated. Time is reported
in hours.
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method tr(MSMCE) coverage mean n time/rep reps controls

Seq E 1.295256 .89 2275000 .2313 100 ε = .1, α = .1
Heidel .2346839 .8421 3223684 .4857 38 ε = .1, α = .1

Table 4.5: Replications of a 10-dimensional Normal distribution. The mean and variance is
estimated for each dimension leading to p = 20. Results are reported in a per replication
scale as the Heidelberger-Welch simulation would crash multiple attempts. Time is reported
in hours.

5. Conclusions. Questions to to consider when choosing a stopping criteria include:
• What is/are the quantity(ies) of interest?
• How many parameters are of interest?
• How much variability in the estimation is acceptable?
• Are extra samples expensive to compute?
• How important is speed of getting an estimate?
• How many computing resources are available?
• Is a reasonable starting value available?
• Is the quantity of interest close to 0?

Some of these questions are at odds with each other. A faster estimate is going to come
with more variability in the estimation and may be at odds with interpretability of the
error. If certainty in the estimate is of primary importance, then sequential stopping rules or
Heidelberg-Welch should be the preferred methods with Heidelberg-Welch yielding larger
amounts of error but being the faster method. If quantiles are of interest, then Raftery-Lewis
is the better method for a quick estimate while sequential rules will yield more certainty and
may be faster for higher levels of certainty when samples are cheap. If computing resources
are plentiful (parallel computing available), then Gelman-Rubin may be considered. However,
it may be best to combine Gelman-Rubin with another method, such as sequential stopping
rules which may incorporate parallel chains into its procedure, for estimation purposes as
Gelman-Rubin tends to terminate too early and does not provided an error estimate. If a
starting value is known to be reasonable, then methods such as Gelman-Rubin or Geweke are
not particularly useful and a method focused on estimation should be used as no burn-in will
be required. If estimating a quantity close to 0, then Heidelberg-Welch should be avoided.
When the dimension of the chain starts to become large, the conservative nature of marginal
approaches starts to become problematic and sequential results should be used as they apply
to the entire sampler. Raftery-Lewis may be preferred for error rates per sample when
considering quantiles on the tail of a normal distribution but lose precision when the target
distribution deviates from normality. In multivariate cases this allows it to sometimes greatly
outperform sequential stopping rules in favorable conditions.

In general, sequential stopping rules for expectations yield useful results in a variety of
settings and are the most flexible indicating that this would be a reasonable choice with
a default setting with 90% confidence and ε = .05 in low dimensions and ε = .1 in high
dimensions. If quantiles are of interest, Raftery-Lewis appears to be a reasonable choice if
normality of the target distribution is reasonable. When the target is not normal sequential
stopping rules may be more appropriate.
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EXPLORING APPLICATIONS OF RANDOM WALKS ON SPIKING
NEURAL ALGORITHMS

LEAH E. REEDER∗, AARON J. HILL † , JAMES B. AIMONE ‡ , AND WILLIAM M. SEVERA§

Abstract. Neuromorphic computing has many promises in the future of computing due to its energy
efficient and scalable implementation. Here we extend a neural algorithm that is able to solve the diffusion
equation PDE by implementing random walks on neuromorphic hardware. Additionally, we introduce four
random walk applications that use this spiking neural algorithm. The four applications currently implemented
are: generating a random walk to replicate an image, finding a path between two nodes, finding triangles in
a graph, and partitioning a graph into two sections. We then made these four applications available to be
implemented on software using a graphical user interface (GUI).

1. Introduction. There is growing interest in computing fields to utilize neural ap-
proaches; the importance of neuromorphic computing is growing, especially with its potential
in beyond-Moore’s Law techniques [8, 12]. Neuromorphic computing connects computing
systems to neural systems in two ways: by using hardware to emulate the way the brain
behaves and by using new architectures and paradigms that are brain inspired. The primary
motivator for neuromorphic computing is to achieve high energy and volume efficiency,
similar to human brains [4, 10].

In terms of power consumption and energy usage, nontraditional hardware is at a
serious advantage in comparison to other traditional computing platforms [5, 9]. For random
processes specifically, it can be seen that in some applications GPUs are more desirable than
CPUs [17]. However, a recent paper showed that GPUs fall short on random simulations that
are highly task-parallel rather than highly data-parallel [2]. Neuromorphic architectures can
excell where GPUs fall short as they have similar parallelization capabilities but outperform
energy-wise for random processes [6].

IBM’s TrueNorth chip and the University of Manchester’s SpiNNaker chip are two of the
most popular neural-inspired hardwares. TrueNorth has a full custom application specific
integrated circuit (ASIC) design that is highly optimized for a fixed spiking neuron model.
Conversely, SpiNNaker is optimized for communication of the spike-based network and is
flexible regarding the neuron model used. SpiNNaker, however, uses more energy than
TrueNorth but still significantly less than traditional von Neumann architectures [10].

On the other side of neuromorphic computing are neural-inspired algorithms. Spiking
neural algorithms for a specific random process, markov chain random walks, have been
developed previously [1,11]. It has been shown that the small neural circuits created from
these algorithms are able to handle random walk simulations both efficiently and scalably.
These algorithms were designed specifically to be used on neuromorphic architecture (both
TrueNorth and SpiNNaker) in order to perform energy efficient simulations.

We present in this paper an extension to one of the algorithms previously developed as well
as several important random walk applications utilizing the algorithm. Once these simulations
are running on neuromorphic architecture, there will be significant power consumption
advantages. Additionally, we will describe resulting visualizations of each application on an
easy to use graphical interface that utilizes the spiking neural algorithm. Lastly, we will
discuss hopes for further developments of the applications.

2. Background.

∗Colorado School of Mines, lreeder@mines.edu
†Sandia National Laboratories, ajhill@sandia.gov
‡Sandia National Laboratories, jbaimon@sandia.gov
§Sandia National Laboratories, wmsever@sandia.gov
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2.1. Introduction to Random Walks. Random walks are heavily studied stochastic
processes and are well defined models of the motion a particle takes in a diffusion scheme. A
1-dimensional random walk without interactions is defined as a function τ : N→ Z where

P(τ(n+ 1) = x+ 1|τ(n) = x) := p (2.1)

and

P(τ(n+ 1) = x− 1|τ(n) = x) = 1− p := q (2.2)

Essentially, a particle at position x moves to the right (x+ 1) with probability p and to
the left (x− 1) with probability 1− p = q. After n timesteps, the position of the particle
is defined to be at some distance m(t) from the origin. The 1-dimensional random walk
generalizes easily to higher dimensions and ultimately to walks on general graphs [3, 15].

2.2. Diffusion Equation and Random Walks. The motivation for the random walk
algorithms mentioned earlier was to solve partial differential equations (PDEs). As random
walks model the motion of diffusion, they inherently solve the well known diffusion PDE. A
derivation of the 1-dimensional diffusion equation as the limit of a random walk is outlined
in Chapter 5 of [14]. We will summarize those steps here.

Assume a particle begins at the origin and has a step length of ∆x and a timestep of ∆t.
Furthermore, assume that p is the probability that the particle moves ∆x to the right and
q = 1− p is the probability that it moves ∆x to the left. Let the probability event that the
particle is at position x = m(∆x) with m steps to the right at time t = n(∆t) after n time
periods be denoted as:

p(m,n) = probability of r steps right =
(
n
r

)
prqn−r, where r = 1

2 (n−m).

This is the binomial distribution, and can be approximated by a normal distribution
using the Central Limit Theorem.

Let the function u(x, t) represent the probability that the particle lies in an interval
centered at x at time t with width 2∆x. Then, we can denote u(x, t) as the space- and
time-scaled probability function, appropriately discretized as

u(x, t) =
p( x

∆x ,
t

∆t )

2(∆x)
. (2.3)

It can be shown that this simplifies nicely to the Gaussian distribution,

u(x, t) =
e−

x2

4Dt√
4πDt

(2.4)

where D is the diffusion coefficient and is defined as

D =
∆x2

2(∆t)
. (2.5)

The function u(x, t) satisfies the following PDE (the diffusion equation)

∂u

∂t
= D

∂2u

∂x2 . (2.6)
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Thus, the diffusion equation can be derived from a 1-dimensional random walk. As
stated previously, this case is easily generalizable to higher dimensions, which is critical for
generating random walks on arbitrary graphs.

2.3. Introduction to Spiking Algorithm. The spiking neural algorithm discussed
here was first presented in [11]. This paper presents two spiking algorithms for random
walks, the particle method and the density method. The goal of these algorithms is to
solve the diffusion equation PDE stochastically using random walks without interaction on
neuromporhic architecture. We will focus on the density method only.

In the density method, rather than tracking each individual walker’s position at any
given point in time, we can instead keep track of the nodes on the graph and count how
many walkers are at each node at any given point in time. When we are running the spiking
simulation, we embed a spiking circuit that is located at each node in the graph. An outline
of a frame of the random walk simulation utilizing the density method is described below.

1. An injected current starts initial walkers at a given node in graph by sending signals
to walker generator neurons and walker counter neurons

2. Walkers are distributed throughout the circuit at that node through excitatory
signals from the walker generator neurons

3. When a signal is received by output gate neurons, their potentials are modified
4. If the output gate neuron’s thresholds are met, the output gate neurons determine

whether or not to spike based off of a certain probability (discussed in next section)
5. If the neurons spike, a signal is sent from the output gate neurons in the current

circuit to the determined walker generator neurons and walker counter neurons at
the neighboring node’s circuit

This process is followed generally in each timestep until there are walkers spread out over
all circuits throughout the graph. Originally, the code only supported up to 2 (1-dimensional
graphs) or 4 (2-dimensional graphs) output neurons per circuit, which corresponds to only 2
or 4 neighbors on a graph. However, this has been extended to support arbitary graphs with
any number of neighbors. This extension is outlined in the next section.

The density method is implemented on TrueNorth. It currently supports only 4 neighbors,
but we are working on extending it to support arbitrary graphs. This method implemented
on TrueNorth has been shown to have significant power advantages compared to random
walk codes on traditional architectures [1].

3. Extending the Current Algorithm.
In order to make the code generalizable to more than just 1D and 2D graphs, more

neighbors needed to be supported. This is useful for applications such as social network
graphs, where each node has significantly more connections than just 4.

We were able to develop a stochastic algorithm that supports any number of neighbors.
The direction that a neuron is going to take is determined stochastically through a probability
tree. Once a certain type of neuron is signalled to the root node in the tree, walkers are
subsequently propagated down through the tree. This probability tree works by always
receiving a spike through a walker generator neuron. The generator neuron then has
connections with stochastic neurons that randomly spike. If a stochastic neuron spikes, it
sends excitatory signals to the left half of the tree and inhibitory signals to the right half.
These types of signals propagate throughout the tree until they reach output signals at the
bottom of the tree.

Each stochastic neuron in the probability tree has two outputs (excitatory and inhibitory),
meaning the algorithm currently best supports base 2 number of output directions. That
is, graphs with base 2 number of neighbors (2, 4, 8, etc.) are optimal. If the graph has
a differing number of neighbors, there will always be more output neurons than needed.
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Fig. 3.1: A probability tree with 8 output gate neurons (8 directions). The walker generator
neuron is depicted in dark grey and labeled as A, the random gate neurons are depicted in
grey and are labeled as B-H, and the output gate neurons are depicted in light grey and are
labeled as I-P. The connections are colored as follows: excitatory connections with delay 1
are black (blue with higher delays), inhibitory connections with delay 1 are red (dashed red
with higher delays)

This has potential memory cost limitations as there often will be non-optimal numbers of
neighbors, but has relatively low impact on the rest of the simulation.

A B C D E F G H I J K L M N O P Direction
1 1 1 0 1 0 - 0 1 0 - 0 - - - 0 Direction 1
1 1 1 0 * 0 - 0 - 1 - 0 - - - 0 Direction 2
1 1 * 0 - 1 - 0 - - 1 0 - - - 0 Direction 3
1 1 * 0 - * - 0 - - - 1 - - - 0 Direction 4
1 0 - 1 - - 1 0 - - - - 1 0 - 0 Direction 5
1 0 - 1 - - * 0 - - - - - 1 - 0 Direction 6
1 0 - * - - - 1 - - - - - - 1 0 Direction 7
1 0 - * - - - * - - - - - - - 1 Direction 8

Table 3.1: A schematic of the probability tree with 8 directions. The walker generator
neuron is labeled as A, the random gates are labeled as B-H and the output gate neurons are
I-P. Each output gate neuron corresponds to a different direction. If a neuron recieves an
excitatory signal and spikes, it is denoted by a ‘1’. If a neuron recieves an inhibitory signal
and does not spike, it is denoted by a ‘0’. If a neuron recieves an excitatory signal but does
not spike, it is denoted by a ‘*’. Nodes that do not recieve a signal or spike are denoted by a
‘-’.

An example of a probability tree with 8 output gate neurons can be seen in Figure 3.1
and a supplementary schematic can be seen in Table 3.1. This is especially useful to see
what combination of random neurons are needed in order for each output neuron to spike.

4. Applications of Random Walks. After running a random walk simulation, the
resulting walk can be used in applications such as social network analysis and graph theory.
Data analytics is difficult on large graphs. It can be shown that some of the more traditional
graph algorithms do not scale well on larger graphs due to being sequential in nature [7]. We
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expect that it could be beneficial to analyze the results of the random walk simulation rather
than the actual graph. By generating these applicatons on a random walk, we can instead
implement these algorithms in a nontraditional approach. Here we present four applications
that we have implemented using the spiking neural algorithm introduced earlier, instead of
using the graph dataset.

4.1. Using an image as underlying graph structure. The first application we
implemented was using an image as the mesh. Instead of running the simulation on a graph
with arbitrary probabilities, the probabilities are determined by the color of each pixel in the
image. A noise constant can be used that serves to decrease the variation in each probability
without changing the underlying structure.

One application that this method is particularly useful for is defining energy landscapes.
For example, if the different colors in the image correspond to an energy gradient, then the
directional probabilities assigned to each pixel in the graph would define the resulting energy
landscape. When the random walk is generated, there is a higher number of walkers at the
ideal energy levels. The pseudocode is listed in Algorithm 8 and an example of the output is
depicted in Figure 5.4.

Algorithm 8 Image to Walk

1: read in image file
2: specify initial walker starting points
3: specify noise constant
4: convert file into matrix (each pixel in image is converted to a number based on color)
5: for each entry in matrix do
6: determine 4 neighboring entry locations (up, down, left, right)
7: determine 4 neighboring entry values (number corresponding to color)
8: calculate probabilities for all 4 neighboring entries
9: the probability is determined by the value of the neighboring entries

10: (the darker the pixel, the more likely the walker will go to that pixel)
11: end for
12: generate random walk

4.2. Path finding on network graphs. The second application that is implemented
is the classic path finding algorithm. Given two specified nodes, this algorithm can determine
if there is a path between them using the random walk simulation data.

Finding paths in graphs is commonly used in road networks to find directions from
point A to point B. It can also be used for flight path connections between different airports.
Overall, this application is best used on arbitrary network graphs. The pseudocode is listed
in Algorithm 9 and an example of the output is shown in Figure 5.6.

4.3. Triangle Finding on Network Graphs. The third application that is imple-
mented is an algorithm that finds triangles on an arbitrary graph. Given a specific dataset,
a random walk is generated for each node in the graph. Using the data from the random
walk simulation, it can determine whether or not there was a triangle at each node.

Triangle finding can be used to find close-knit communities with obvious links between
them. Many social network sites can use found triangles to suggest ‘friends’ or ‘connections’.
Many traditional triangle finding or counting algorithms utilize the square of adjacency or
incidence matrices [16]. With arbitrary graphs especially, these matrices can get very large
and costly quickly. Utilizing random walks to find triangles can help in this regard as this
nontraditional triangle finding algorithm does not deal with adjacency or incidence matrices.
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Algorithm 9 Path Finding

1: read in network data
2: initialize graph from data
3: specify source and target nodes
4: for each node in graph do
5: determine the number of neighbors that node has
6: the probability is proportional to the number of neighbors that node has (assuming

all edges have equal weights)
7: assign probability to each neighboring node
8: end for
9: generate random walk with initial walkers at source node

10: for all timesteps in simulation do
11: if neurons at target node spiked at time then
12: there is a path from source to target
13: else
14: there is not a path from source to target
15: end if
16: end for

The pseudocode is listed in Algorithm 10 and an example of the output is shown in Figure
5.9.

Algorithm 10 Triangle Finding

1: read in network data
2: initialize graph from data
3: for each node in graph do
4: for each node2 in graph do
5: determine the number of neighbors that node2 has
6: the probability is proportional to the number of neighbors that node2 has (as-

suming all edges have equal weights)
7: assign probability to each neighbor of node2
8: end for
9: generate random walk with initial walkers at node

10: if neurons at node spiked at time=0 and time=3 then

11: node is in a triangle
12: end if
13: to find other nodes in same triangle, look through spike log to see which neurons sent

and recieved the spikes starting at time=0 through time=3
14: end for

4.4. Graph Partitioning on Network Graphs. The fourth application that is
implemented is an algorithm that partitions a graph into two parts. Given a specific dataset,
a random walk is generated that starts at the first node in the set. Using the data from the
random walk simulation, the time at which neurons at each node spiked can be determined.
If it took walkers a ‘long’ time (above a certain threshold) to get to a certain section of the
graph, then the nodes in that section become their own partition.
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A common application of graph partitioning is image segmentation [13]. To segment an
image, often there are clear sections that correspond to different parts of the image. Once
these segmentations are partitioned, the image (or graph) is segmented. This is useful to
identify certain parts of the image as being different from others. The pseudocode is listed
in Algorithm 11 and an example of the output is shown in Figure 5.11.

Algorithm 11 Graph Partitioning

1: read in network data
2: initialize graph from data
3: specify threshold
4: for each node in graph do
5: determine the number of neighbors that node has
6: the probability is proportional to the number of neighbors that node has (assuming

all edges have equal weights)
7: assign probabilities to each neighboring node
8: end for
9: generate random walk with initial walkers at initial node

10: for all neurons at each node do
11: determine the time at which each neuron first spiked (if at all)
12: if time at which they spiked is greater than the threshold then
13: node is put into second partition
14: end if
15: end for

5. A Graphical User Interface for Applications of Random Walks. Here we
present a Graphical User Interface (GUI) for users to be able to use a plethora of applications
of random walks on our spiking neural framework. This is a nice, clear way to see the useful
applications of random walks.

The visualizations shown in three of the GUI applications (Path Finding, Triangle
Finding, and Graph Partitioning) depict the user-specified graphs. The nodes are sized and
colored based on howmany connections they have (unless the color is otherwise specified on
the legend).

The main menu, with the four random walk applications can be seen below.
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Fig. 5.1: Main menu: Gives four application options, with summaries of each

5.1. Image to Walk. The first application, Image to Walk can be seen below. The
user is asked to upload the image in array form. This is because there are many different
ways to convert an image into an array with various condensing techniques. By letting the
user convert the image themselves, they can control what kind of condensing they will get.
A pop-up message indicates when the simulation is complete that specifies the name of the
resulting file to view the results. This file is stored in the same directory as the GUI files.
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Fig. 5.2: Image to walk menu: allows user
to specify array, initial walker locations/size,
noise constant

Fig. 5.3: Pop-up message that indi-
cates when simulation is complete/
where output file is stored

Fig. 5.4: Resulting image from Image to Walk application at last timestep

5.2. Path Finding. The second application, Path Finding, can be seen below. The
user is asked to choose the file that the graph data set is in, specify the source node, and
specify the target node. Once the simulation is done running, if there is a path from the
source node to the target node, a visualization of the data set showing the path from the
source to the target node pops up onto the screen.
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Fig. 5.5: Path finding menu: al-
lows user to choose dataset file
and specify source/target nodes

Fig. 5.6: An example of a visualization of a path.
This dataset is Zachary’s Karate Club [18]

5.3. Triangle Finding. The third application, Triangle Finding, can be seen below.
The user is asked to choose the file that the graph data set is in. Once the simulation is
complete, a visualization of the data set and all of the triangles in it pops up onto the
screen. Note that since the triangle finding algorithm is done on the random walk, it often
does not find all triangles in the dataset, just some. This is because walkers will not go in
all directions every time the simulation is run. A limitation with this application is that
sometimes the nodes are in multiple triangles and the visualization does not support that
case. In this case, that node only shows one of the triangles that it is in, not both. As this
application generates a random walk for each node in the graph, it takes a while to run.
There is a popup message before the application starts running to warn the user that it will
take a while.

Fig. 5.7: Triangle finding menu: allows
user to choose dataset file

Fig. 5.8: Pop up message before applica-
tion starts to run, warning user of long
runtime
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Fig. 5.9: An example of a visualization of one triangle in a dataset. This dataset is Zachary’s
Karate Club [18]

5.4. Graph Partitioning. The last application, Graph Partitioning, can be seen below.
The user is asked to choose the file that the graph dataset is in. Once the simulation is
complete, a visualization of the two partitions pops up onto the screen. As the partition
algorithm runs on the random walk output on an undirected and unweighted graph, the
graph gets partitioned differently every time. A limitation of this is that occasionally it
would be better for the graph to be partitioned into three or four graphs, and the algorithm
only splits it into two partitions.

Fig. 5.10: Graph partitioning
menu: allows user to choose data
set file

Fig. 5.11: An example of a visualiza-
tion of a partitioned dataset. This
dataset is Zachary’s Karate Club [18]

6. Future Work. In the future, it would be advantageous to generate even more
random walk applications to use with the spiking neural algorithm. One specific application
that would be useful is image segmentation. Another important next step is getting all of the
applications up and running on TrueNorth, a neuromorphic chip. Although the applications
work on the software by themselves, we can really see vast performance advantages on
neuromorphic hardware [6]. If we could get these applications running on the hardware, we
could potentially have the user specify on the GUI whether they would like to run the random
walk application on the spiking software, or the spiking hardware available (TrueNorth,
SpiNNaker, Loihi, etc). This would be particularly useful to compare the performance of the
different platforms.

7. Conclusion. With these applications implemented on a neural algorithm, they have
the potential to be more energy-efficient and have less power-consumption compared to their
traditional counterparts. Once implemented on neural hardware, there will be significant
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performance advantages, even without being seriously optimized. It is important to consider
these non-neural applications that utilize neural frameworks in order to promote more use of
nontraditional architectures.
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PARTIALLY STRUCTURED AGGREGATION FOR MULTIGRID

PETER OHM∗, LUC BERGER-VERGIAT† , AND RAY TUMINARO‡

Abstract. Multigrid methods have been developed for both structured and unstructured grids [3].
Unstructured meshes are often favored in simulations as they more easily represent complex geometries.
However, mesh structure can often be exploited by the solver for better performance. In many circumstances
an may only require complex unstructured meshes in small sub-regions of the overall domain. For these
applications, we have developed an aggregation based multigrid method that preserves local structure,
allowing the local use of structure specific methods.

1. Introduction. This paper considers the implementation of multigrid as a precondi-
tioner for applications where the underlying mesh contains both structured and unstructured
regions. In particular, we focus on the development of coarsening techniques for these
partially structured grids. Some examples of these partially structured grids are shown in
Figure 1.1, and such grids arise naturally in many applications. Despite having regions of
structure, they must overall be treated as an unstructured mesh.

Multigrid methods have been developed for both structured and unstructured grids
[3]. Unstructured meshes are often favored in simulations as they more easily represent
complex geometries. However, mesh structure can often be exploited by the solver for better
performance. This includes as structure specific smoothing, such as line smoothers, or
structure specific coarsening such as geometric multigrid or black box algebraic multigrid [4].
An advantage of using structured coarsening is the preservation of the mesh structure on
each level of the multigrid hierarchy. Then having a structured mesh on each level makes it
easy to apply structured techniques, such as line smoothing, on each level of the hierarchy.
These advantages are demonstrated in [7].

Here, we introduce a hybird aggregation scheme for semi-structured meshes that contain
both regions of structured mesh and regions of unstructured mesh. The intent is to use
structure-based algorithms to build the multilevel interpolation operator in the structured
regions and to use unstructured or algebraic algorithms in the unstructured regions. The
result is a multigrid method that preserves the partially structured nature of these meshes.

Fig. 1.1: Radial tri-section mesh (left), unstructured region attached to an HHG mesh
(middle), interface with cut element mesh (right).

The rest of the paper is outlined as follows. Section 2 discusses a hybrid aggregation for
partially structured meshes. Section 3 covers the implementation of this hybrid aggregation

∗Tufts University, peter.ohm@tufts.edu
†Sandia National Laboratories, lberge@sandia.gov
‡Sandia National Laboratories, rstumin@sandia.gov
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in MueLu [5, 9], a multilevel solver package for Trilinos. Finally concluding remarks are
given in Section 5.

2. Hybrid Aggregation. The driving idea behind hybrid aggregation is to aggregate
regionally based on the local structure of the region. Throughout this paper we use the term
“aggregate” in a loose sense to mean the collection of fine degrees of freedom that contribute
to a coarse node in a multigrid framework. This allows us to discuss both geometric and
algebraic multigrid methods in the same setting.

Hybrid aggregation is based on a regional approach that heavily borrows from multigrid
solvers for hierarchical hybrid grids (HHGs) [1,2]. HHGs are formed by the regular refinement
of an initial coarse grid, resulting in a grid hierarchy containing regions of structured mesh,
even if the initial coarse mesh is unstructured. The multigrid interpolation operators are
then constructed regionally on the HHG hierarchy, allowing for structured multigrid methods
to be used locally.

Given a fine mesh that can be decomposed into regions of structured mesh and regions
of unstructured mesh, such as in Figure 2.1, one can regionally construct the multigrid
interpolation operators based on the structure of the local region. Specifically, if the region is
structured one uses a structure-based aggregation method, and if the region is unstructured
then a standard aggregation method is used. In Figure 2.1, the left half of the mesh forms a
structured region, the right half of the mesh forms a unstructured region, and the two regions
share an interface in the middle of the mesh. For the most part, the multigrid interpolation
operator for each region can be constructed independently of neighboring regions, however,
special care may be needed on the interfaces between adjacent regions in order to ensure
that the resulting coarse interface between adjacent regions remains a conforming mesh on
the coarse level.

Fig. 2.1: Example of hybrid aggregation on a partially structured mesh. The left half of the
mesh is structured, while the right half of the mesh is unstructured. In the structured region
the points show the coarse nodes and the thick rectangles represent the structured aggregates.
The more organic shapes represent the aggregates on the unstructured region. The interface
between structured and unstructured regions can require special treatment. In the image
above, the degrees of freedom on the interface are duplicated between the structured and
unstructured regions, so special treatment is needed. The ellipses along the interface are
special aggregates on the unstructured region, ensuring a conforming coarse mesh.

2.1. Shared Interfaces. A concern with the hybrid aggregation method is how to
handle interfaces between regions using a structured multigrid algorithm and regions using
an unstructured algorithm. This is primarily a concern when one wants or needs degrees
of freedom to be duplicated or shared on or across regional interfaces. Differing relative
coarsening rates between regions or disagreement in coarse node selection on an interface
between regions may result in a coarse level mesh that is no longer conforming.
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The primary way to ensure alignment of the interface nodes on the coarse meshes is
to force the aggregation of the interface nodes to match on the interface between adjacent
regions. For example, if nodes i and j are nodes on the shared interface between region A
and region B, and are part of the same aggregate on region A, then i and j will also be part
of the same aggregate on region B. Forced interface agreement is demonstrated in Figure 2.1.
The degrees of freedom, element vertices, on the shared interface are duplicated between the
structured and unstructured region. The ellipses show the required interface aggregates on
the unstructured region to produce a conforming coarse level mesh. Since it is preferable to
preserve the structure on the structured regions, the structured aggregates on the interface
are used as guides to influence which interface nodes should be aggregated together on the
unstructured region. Hence the logical structure on the structured region is preserved and
the coarse mesh will be conforming across the interface.

3. MueLu Implementation. A hybrid aggregation scheme is implemented in the
MueLu package for Trilinos, which serves as a multigrid solver library. A general outline for
the setup of a MueLu operation is shown by the diagram in Figure 3.1. Setup for MueLu
begins with the creation of the smoother, or relaxation method, for the current level of the
multilevel hierarchy, followed by the construction of the transfer operators. The transfer
operators are then used by the RAP factory to project the current solution to the coarse
level. Finally there is rebalancing to calculate load balancing for parallel runs.

Smoother

Aggregation

Prolongation Factory

Prolongator Smoothing/
Energy Minimization

RAP

Rebalancing

Unstructured

Structured*

Hybrid*

Tentative

Geometric
Interpolation*

Semi Coarsening

Black Box*

Transfer Factories

Aggregates/CRS graph*
Transfer
Operator

Construction

Fig. 3.1: Diagram of MueLu setup structure. (*) indicates aspects that are touched on in
this paper.

Here, we focus on the transfer operator construction, which is comprised of three
primary stages. The first stage is the aggregation factory, where the fine level is aggregated
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into the coarse degrees of freedom. This is followed by the transfer factory, where the
prolongation and restriction operators are constructed from the aggregates. The final step is
optional enhancement of the prolongation and restriction operators, such as through energy
minimization [6, 8] or smoothing for smoothed aggregation [10,11].

MueLu has existing aggregation factories for both matrix-based aggregation, such as
smoothed aggregation AMG, as well as mesh-structure based aggregation, which mimics a
geometric multigrid approach. As discussed in section 2, the goal of hybrid aggregation is to
aggregate on a regional scale, using the most ideal aggregation method for each region. To
accomplish this, we implement a hybrid aggregation factory within the aggregation factory
to perform region-based aggregation.

The hybrid aggregation factory takes a user provided region type and performs the
appropriate aggregation for the region. The aggregation types currently supported by
the hybrid aggregation factory are matrix-based uncoupled aggregation and structured
aggregation. The setup is similar to the corresponding aggregation factory and the aggregation
is preformed in ordered phases. The aggregation phases for hybrid aggregation are the same
phases used by the structured aggregation factory or the uncoupled aggregation factory, and
the hybrid aggregation factory arranges these existing aggregation phases to be compatible
with the region type. The idea behind this construction is that in cases where structured
information is needed, the structured aggregation phases are run first and the information from
that phase is extracted and used in later aggregation phases, such as interface aggregation.

Fig. 3.2: A visualization of the hybrid aggregation. The bottom left and top right regions use
structured aggregation while the top left and bottom right regions use uncoupled unstructured
aggregation.

An example illustrating such an approach is seen in Figure 3.2. A uniform square
domain is divided into four regions, where the top left and bottom right reigons are flagged
as unstructured mesh regions, for which the hybrid aggregation scheme uses uncoupled
unsmoothed aggregation. The top right and bottom left regions are treated as structured,
and use an uncoupled geometric piece-wise constant interpolation scheme to construct
aggregates. Since we are using uncoupled and unsmoothed aggregation with no node
duplication on the shared interface, we do not have to worry about coarse node agreement
on the interfaces between regions.

As mentioned in section 2.1, interfaces that are shared between regions can be problematic.
As a step to alleviate these problems, we have implemented an interface aggregation factory.
The interface aggregation factory is used to aggregate nodes on a shared interface so that
the coarse level of adjacent regions still match on the shared interface. Since the coarse
level from the structured aggregation factory is determined by the structure of the mesh,
and is in turn structured, we do no want to change the structured aggregates. Thus, the
interface aggregation factory is intended to be used as an aggregation phase during uncoupled
aggregation. The interface aggregation factory takes a list that specifies which nodes are on
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the interface and a list that says which of the interface nodes should be aggregated together.
The lists agree with the aggregates from the neighboring structured region that lie on the
interface. This interface aggregation phase is preformed before the aggregation phases for
uncoupled aggregation, ensuring that the aggregates on the interface match the aggregates
of the neighboring region.

A comparison between using interface aggregation to help ensure agreement and doing
fully uncoupled aggregation can be seen in Figures 3.3a and 3.3b. Although the resulting
aggregates using interface aggregation are not as uniform, they preserve properties that can
be more important, such as agreement of coarse nodes on shared interfaces.

(a) No Interface Aggrega-
tion

(b) Interface Aggrega-
tion

Fig. 3.3: Comparison between using interface aggregation and not using interface aggregation.
In Figure 3.3b five root nodes are specified on leftmost edge.

Further ideas that have not yet been implemented are other interface correction methods.
It may be necessary or desirable to implement some post-processing of the transfer operators
so that the transfer operators on the shared interface agree with each other. Currently,
the interface aggregation only results in agreement in the sparsity pattern of the transfer
operators on the shared interface. Different approaches can be used to reach interface
operator agreement, such as averaging the transfer operators on the shared interface or
simply choosing to use the interface transfer operator from one region on both.

The current implementation is limited to one region per rank, meaning only one mesh
type per rank. For a given rank, the mesh must be treated as either fully structured or fully
unstructured. Future work seeks to expand this to allow multiple regions and mesh types
per rank, meaning a single rank could contain both unstructured and structured regions.

4. Numerical Results. For a test problem we use hybrid aggregation multigrid to
precondition a GMRES solve for a 3D poisson problem on the unit cube with a uniform hex-
ahedral mesh and 106 degrees of freedom. The domain was divided into two regions. Three
different transfer operators were considered. First, an entirely structured operator, meaning
that structured aggregation was used in both regions. Next, a hybrid structured-unstructured
operator, meaning that one region used structured aggregation while the other region used
an unstructured aggregation algorithm. Finally, an entirely unstructured operator, using un-
structured aggregation in both regions. For all the tests the structured aggregation algorithm
uses uncoupled piece-wise constant geometric interpolation and the unstructured aggregation
uses uncoupled piece-wise constant aggregation. The smoother is a symmetric Gauss-Seidel
method. The exact problem used was HybridIntrepidPoisson3D Pamgen Tpetra from the
scaling examples in the trilinoscoupleings package. The parameter XML file used was
muelu hybrid aggregation 3D.xml, with the mesh size modified. The number of iterations
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Structured-
Structured

Structured-
Unstructured

Unstructured-
Unstructured

Iterations 28 29 30

Avg. convergence rate 0.519 0.536 0.545

Table 4.1: Iteration counts for different meshing approaches. 3D poisson problem run on
two ranks. The labels indicate what multigrid method was used on what rank.

to reach a relative residual of 10−8 were recorded, and results from these tests are shown in
Table 4.1. We can see that all three aggregation techniques perform similarly.

5. Conclusions. In this document we have discussed the implementation of a hybird
multigrid method for partially structured meshes. Hybrid aggregation, building upon ideas
from multigrid on HHG, aggregates regionally based on the local structure of the region.
Interfaces between unstructured and structured meshes may require special treatment to
ensure the resulting coarse mesh is conforming across the shared interface. The primary way
to enforce interface agreement is for interface nodes in the same aggregate in the structured
region to be aggregated together in the unstructured region.

A hybrid aggregation scheme has been implemented in MueLu. The implementation
utilizes existing MueLu aggregation algorithms to construct aggregates based on the local
regional structure. When used for piece-wise constant interpolation the hybrid aggregation
method’s performance is comparable to a purely algebraic or a purely geometric method.
Hybrid aggregation grants the flexibility of algebraic multigrid along with the algorithmic
advantages of structured multigrid with no negative impact on performance.
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LAGRANGIAN PARTICLE METHODS FOR THE SHALLOW WATER
EQUATIONS IN VARIED GEOMETRIES

NICHOLAS H. NELSEN∗ AND PETER A. BOSLER†

Abstract. We introduce a meshless Lagrangian particle-based numerical method inspired by vortex
methods to solve the shallow water equations. Spatial discretization of differential operators on scattered
particle distributions is performed using extensions of particle strength exchange and generalized moving least
squares. Conservation of the discrete equations is emphasized; by construction, our method exactly conserves
mass and maintains stationary flow states. We show that free space Green’s functions for the Poisson
equation can be used to recover the fluid flow velocity in the presence of challenging physical boundaries
such as a moving wet/dry line, which hints at future applications in ocean modeling.

1. Introduction. Particle methods are a broad class of numerical schemes for the
solution of partial differential equations (PDE). In these methods, the computational elements
are particles—Dirac measures that carry system properties [12, 21]. To ease analysis and
implementation in some applications, point particle approximations of the underlying field
may be replaced by smoothed, regularized kernels that approximate the delta distribution in
the limit of decreasing kernel radius [4].

Particles are advected along trajectories by the flow map,

X(t; ·) : Rd → Rd (1.1a)

ξ 7→X(t; ξ) , (1.1b)

where X(τ ; ξ) = (X1, X2, . . . , Xd)
T is the physical location of a particle at time t = τ that

was initially located at the point X(0; ξ) = ξ = (ξ1, ξ2, . . . , ξd)
T at time t = 0. We note the

plethora of notational choices for the flow map and refer the reader to common references,
e.g., [9, 28, 45], for clarity. This reference frame is Lagrangian in the sense that it moves
with the local flow velocity, as opposed to Eulerian fixed-grid schemes. The trajectories of
particles x(t) = X(t; ξ) are evolved in time along characteristics via the nonlinear ordinary
differential equation (ODE)

d

dt
X(t) = u(X(t), t) (1.2a)

X(0) = ξ , (1.2b)

where the initial point ξ is called the Lagrangian particle marker, the position variable
in Lagrangian space, and u is the velocity field. Once the Lagrangian formulation of
the governing PDE has been written, a solution is often obtained from a method-of-lines
discretization of the remaining ODE with any standard time integrator.

Purely Lagrangian particle methods allow for large time steps due to their lack of an
advective CFL condition; advection error is independent of spatial resolution. Another
advantage arising from the Lagrangian framework is the efficient placement of particles on
compact subsets of the computational domain, for example, only on the locations where
vorticity is nonzero [23] or, in this work, where mass is positive. However, computation of
spatial derivatives can be more complicated in Lagrangian methods due to the generally
nonuniform distribution of particles in physical space. Further, an unfortunate side effect of
the Lagrangian frame is that particles tend to become distorted over time due to excessive
flow strain. Frequently, such distortion leads to a loss of accuracy [6, 33]. Several successful

∗Division of Engineering and Applied Science, nnelsen@caltech.edu
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remedies have been proposed to correct this, including remeshing schemes [10], particle
insertion and merging [2, 18], and radial basis function adaption [3].

Many modern numerical schemes incorporate a Lagrangian component, including
smoothed particle hydrodynamics [32], immersed boundary methods [34], and vortex meth-
ods [21]. Vortex methods are concerned with the two and three-dimensional Euler vorticity
equation of incompressible fluid flow. It is well known that in 2D, the flow kinematics are
completely specified by an elliptic problem. Vortex particle methods use the Green’s function
of this elliptic problem along with the Biot–Savart law to invert the curl operator to recover
velocity from vorticity. Thus, velocity is computed from the action of a nonlocal operator on
a secondary variable instead of directly from the discretized momentum equation. Along with
a rigorous convergence theory [19], vortex methods have had success modeling challenging
flow phenomena, such as the vortex sheet simulations of Krasny [22, 23]. Comprehensive
reviews of vortex and other particle methods may be found in [21,26].

In this work, to better demonstrate their potential, we exploit the advantages of particles
and vortex methods to develop a purely Lagrangian 1D vortex-type particle method for
simulation of fluid flows in complex physical geometries. Governed by the shallow water
equations, these problems are naturally expressed by the flow of mass-carrying particles, and
this is reflected in the simple treatment of moving boundaries. Such an interpretation is also
relevant to scientific fields that emphasize conservation, such as atmospheric and climate
dynamics.

The remainder of this paper is as follows. The definition and properties of the shallow
water equations are introduced in Sec. 2. In Sec. 3, we detail our meshfree Lagrangian
particle method. Sec. 4 introduces the method of particle strength exchange for spatial
discretization of differential operators, and we provide an alternative means of computing
derivatives on scattered nodes via generalized moving least squares. Results are displayed
and discussed in Sec. 5 for a variety of geometries and test problems in one spatial dimension.
Finally, we conclude in Sec. 6 with a thorough summary and ideas for continued work.

2. Shallow Water Equations. The shallow water equations (SWE) are a system of
hyperbolic conservation laws that model a 3D incompressible fluid under the shallow water
assumption: vertical variability in the solution is asymptotically smaller than its horizontal
variation. Hence, the full 3D flow is well approximated by a single thin layer of 2D fluid.
The system is derived by applying the hydrostatic approximation to the 3D incompressible
Euler equations of gas dynamics [45]. The resulting equations are two-dimensional in space
and formally identical to the 2D isentropic Euler equations [27].

In advective form, which requires the solutions h and u to be sufficiently smooth, the
SWE are defined by the system of nonlinear partial differential equations

Dh

Dt
=
∂h

∂t
+ u · ∇h = −h(∇ · u) (2.1a)

Du

Dt
=
∂u

∂t
+ u · ∇u = −fu⊥ − g∇h , (2.1b)

where u(x, t) = (u(x, t), v(x, t))T is the 2D velocity, f(x) is the Coriolis parameter (which is
nonzero for rotational flow problems), g is the gravity constant, and h(x, t) is the depth of
the fluid. D/Dt = ∂t + u · ∇ denotes the material derivative and u⊥ = (−v, u)T represents
rotation of u by π/2. Note that the divergence of the 2D velocity, ∇ · u, is possibly nonzero.
The model (2.1) may be interpreted as a thin fluid of constant density with variable depth
over a 2D spatial domain. The free surface height of the fluid is denoted s(x, t). Bottom
topography (or bathymetry) is defined by a function sB(x) so that h(x, t) = s(x, t)− sB(x),
as shown in Fig. 2.1. The effect of a spatially varying bathymetry is the addition of a source
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z = 0

h(x, t)

s(x, t)

sB(x)

H

Fig. 2.1: Physical interpretation of the shallow water fluid domain. The vertical coordinate
extends from z = 0 to z = s at the fluid surface.

term −g∇sB in the momentum equation of the shallow water system (2.1). Note that for
the common case of sB(x) = 0, we have h(x, t) = s(x, t). The Lagrangian formulation of the
SWE is obtained by supplementing Eqn. (2.1) with the flow map (1.2).

As with the Euler equations from which they are derived, the SWE have several conserved
quantities. Let Ω ⊆ R2 denote the problem domain; then, it is straightforward to derive the
statements of mass and energy conservation,

d

dt

∫
Ω

h dA = 0 ,
d

dt

∫
Ω

1

2

(
h|u|2 + gh2

)
dA = 0 , (2.2)

respectively. The above conservation equations describe integral invariants. The SWE also
have a material invariant quantity, the potential vorticity Ξ = (ζ + f)/h, which satisfies
DΞ/Dt = 0, where ζ = (∇× u) · e3 is the relative vorticity in 2D [45]. Furthermore, the
SWE admit gravity waves. Dispersion analysis of the linearized equations or applying the
shallow water assumption to the full water wave equations [41] yields a wave speed c =

√
gh,

which is frequently approximated by c ≈ √gH where the constant H is the mean fluid
surface height, seen in Fig. 2.1.

The SWE have garnered much interest in atmospheric and oceanic modeling applications
as well as the numerical analysis community, particularly in the development of improved
numerical methods for property preservation and application-based modeling. A high-
order finite volume scheme with the exact conservation property (C–property) maintained
stationary flow states in [48]. In [49], model reduction was successfully applied to the
SWE with realistic bathymetry profiles and passed a set of standard test problems. Within
the related realm of atmospheric modeling, solution of the SWE on the sphere is of great
interest [25, 45]. The ability of particle methods to inherently treat advection has lead to
Lagrangian methods for tracer transport in atmospheric flows [7]. Further, Bosler et al. [6]
implemented a vortex method for the barotropic vorticity equation on a rotating sphere as
a promising prototype for the SWE. A suite of reference solutions in spherical geometries
is available in [47], allowing for convenient verification and validation of these important
physical problems. We aim to eventually apply our proposed numerical method to the
rotating SWE on the sphere for atmosphere and climate simulations.

3. Description of Particle Method. The Lagrangian particle method (LPM) in
this work aspires to combine the best traits of vortex methods and more general meshfree



166 Lagrangian Particle Methods

schemes. We say meshfree in the sense that the nodes, or particles, are not connected in any
predefined manner; instead, these unstructured nodes move with the local velocity field, and
in problems involving shocks, particles may even be merged together or split apart. We now
proceed to discuss the velocity integral in LPM.

3.1. Velocity Computation. As a 1D analog of vortex methods, LPM computes
velocity using an integral transformation with kernel derived from the Green’s function of
the negative Laplacian, −∆ = −∂xx. We use the Poisson equation in one dimension,

− d2φ

dx2
= f(x) , (3.1)

with appropriate boundary conditions (BCs). Then, with the Green’s function of the problem,
the solution is

φ(x) =

∫
Ω

G(x, y)f(y) dy , (3.2)

where G solves Eqn. (3.1) (in the weak sense) with f(x) = δ(x− x̃), the delta distribution.
G must be piecewise linear in the whole space or with Dirichlet BCs to satisfy Eqn. (3.1);
hence, construction of these 1D Green’s functions requires the solution of a four-by-four
linear system determined by two BCs and two other relations, the continuity and jump
conditions. Continuity at the source location x = x̃ implies

lim
x→x̃−

G(x, x̃) = lim
x→x̃+

G(x, x̃) . (3.3)

The jump condition due to the unit point source requires a unit discontinuity in the gradient
of G, that is,

lim
x→x̃−

∂

∂x
G(x, x̃)− lim

x→x̃+

∂

∂x
G(x, x̃) = 1 . (3.4)

Inverting the resulting linear system yields the desired Green’s function. We now apply this
procedure to the periodic Poisson problem on Ω = [−π, π), which reads:

−∂
2G

∂x2
= δ(x− x̃)− 1

2π
(3.5a)

G(−π, x̃) = G(π, x̃) (3.5b)

∂G

∂x
=
∂G

∂x
. (3.5c)

Note that the differential equation is modified with a constant source term −1/2π to satisfy
the Neumann-type periodic boundary values in Eqn. (3.5). This implies that the condition∫

Ω
−∂xxGdx = 0 must hold [20] and that the Green’s function will admit quadratic structure.

We impose the additional equation
∫

Ω
G(x, x̃) dx = 0 to ensure a unique solution, yielding a

six-by-six linear system. Solving, we obtain the piecewise smooth quadratic Green’s function

G(x, x̃) =
1

4π
(x− x̃)2 − 1

2
|x− x̃|+ π

6
. (3.6)

In the whole space, the corresponding function G is simpler. For all x, x̃ ∈ R, the free space
Green’s function is radially symmetric and is found to be

G(x, x̃) = G(|x− x̃|) = −1

2
|x− x̃| . (3.7)
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Note that these Green’s functions for −∆ in 1D lack the singularities exhibited by their
counterparts in higher dimensions; hence, no special regularization is required. We remark
that while our derivation of G is intrinsic to 1D, construction of Green’s functions in higher
dimensions proceeds differently but is well known (see, e.g., Evans [17]) for simple domains
such as spheres or half-spaces.

Continuing, we decompose the velocity field u into its spatial mean (ū) and fluctuating (ũ)
components,

u(x, t) = ū(t) + ũ(x, t) . (3.8)

Now, suppose there exists a velocity potential φ defined by

∂φ

∂x
:= ũ , (3.9)

and denote the divergence of velocity ∇ · u in 1D as

θ :=
∂u

∂x
=
∂ũ

∂x
. (3.10)

Combining Eqn. (3.9) and (3.10) yields a Poisson problem for the velocity potential,

∂2φ

∂x2
= θ , (3.11)

which induces the Green’s functions (3.6, 3.7). Therefore, once θ is known, ũ may be
computed from Eqn. (3.2) and (3.9).

3.2. Discrete Equations. We consider the 1D SWE in advective form:

∂h

∂t
+ u

∂h

∂x
= −h∂u

∂x
(3.12a)

∂u

∂t
+ u

∂u

∂x
= −g ∂s

∂x
(3.12b)

h(x, 0) = h0(x) (3.12c)

u(x, 0) = u0(x) , (3.12d)

where t ∈ [0,∞), x ∈ Ω ⊆ R, u is velocity, s = h+ sB is the fluid surface height, sB is the
bathymetry profile, and g > 0 is the gravity constant. If posed on the whole space Ω = R, h
and θ must have compact support, while on the periodic domain Ω = [−π, π), the conditions
u(−π, t) = u(π, t), h(−π, t) = h(π, t), ∂xu(−π, t) = ∂xu(π, t), and ∂xh(−π, t) = ∂xh(π, t)
must also be imposed. This continuous form of the SWE conserves mass, d

dt

∫
Ω
h dx = 0, and

in the periodic BC case, total divergence is zero:
∫

Ω
θ dx = 0.

To derive the Lagrangian form of Eqn. (3.12), we apply ∂x to both sides of the momentum
equation in (3.12) to yield a PDE for θ. However, the mean part ū(t) is in the null space
of ∂x; it must be recovered by solving an additional ODE obtained by substituting the
decomposition (3.8) into the momentum equation. Thus, after applying the flow map (1.1)
and the change of variables x(t)→ X(ξ; t), the Lagrangian form of the SWE is:

dx

dt
= ū+ ũ (3.13a)

dθ

dt
= −θ2 − g ∂

2s

∂x2
(3.13b)
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dū

dt
= −dũ

dt
− g ∂s

∂x
(3.13c)

dh

dt
= −θh (3.13d)

dJ

dt
= θJ , (3.13e)

where the fluctuating part of velocity ũ is

ũ(x, t) =

∫
I

−∂G
∂x

θ(y, t) dy , (3.14)

G is the Green’s function for −∂xx on the collection of particles I ⊂ Ω, and J is the Jacobian
determinant of the flow map, J(ξ, t) = det(∂ξX(t; ξ)).

As a design choice, we consider a uniform initial particle distribution. Anisotropic
initializations are also used in vortex methods [10, 21], depending on the application. Given
a computational domain [a, b], we divide it into N cells and place a particle at the midpoint
of each of these cells, xj |t=0 = a+ (j − 1/2)∆x , j = 1, . . . , N , where the initial interparticle
spacing is ∆x = (b− a)/N . We define Vp as the associated particle volume element, initially
Vp(0) = ∆x. Thus, computation of integrals over the Lagrangian particle space in our
method immediately amounts to midpoint rule quadrature. For particles p = 1, 2, . . . , N ,
the discretized evolution ODE are

dxp
dt

= ū+

N∑
q=1

K1(xp − xq)θqVq (3.15a)

dθp
dt

= −θ2
p − g

∂2sp
∂x2

(3.15b)

dū

dt
= −

N∑
q=1

K1(xp − xq)
d

dt
(θqVq)− g

∂sp
∂x

(3.15c)

dhp
dt

= −θphp (3.15d)

dVp
dt

= θpVp , (3.15e)

where for t fixed, ū(t) is constant for each p and the kernel

K1(x) = −∂G
∂x

:=


1

2
sgn(x)− x

2π
, Ω periodic

1

2
sgn(x) , Ω = R ,

(3.16)

is a 1D analog of the Biot–Savart kernel. The sign function sgn(·) is

sgn(x) =


x

|x| , x 6= 0

0 , x = 0 .
(3.17)

Further manipulating into dilatation form, the final form of the discrete Lagrangian shallow
water equations in LPM read

dxp
dt

= ū+

N∑
q=1

K1(xp − xq)Qq (3.18a)
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dQp
dt

= −gVp
∂2sp
∂x2

(3.18b)

dū

dt
= g

N∑
q=1

K1(xp − xq)Vq
∂2sq
∂x2

− g ∂sp
∂x

(3.18c)

dMp

dt
= 0 (3.18d)

dVp
dt

= Qp , (3.18e)

where Qp := θpVp is the particle dilatation and Mp := hpVp is mass. Time discretization
is a fourth order Runge–Kutta (RK4) scheme; it remains to discretize the right hand side
spatial derivatives on the collection of particles. The dilatation form (3.18), inspired by [15],
is preferred over the more standard divergence form (3.15) because it involves one less ODE
and has superior conservation properties. This formulation exactly conserves mass at the
discrete particle level: for all t > 0, Mp(t) = Mp(0) = M0. Further, total divergence and
particle volume are also conserved if

∑
pQp(0) = 0 and

d

dt

∑
p

Qp = −g
∑
p

Vp
∂2sp
∂x2

= 0 . (3.19)

Thus, vanishing global divergence in the discrete setting depends on the discretization of the
Laplacian operator.

4. Spatial Derivatives on Particle Distributions. One challenge of meshfree ap-
proaches is the approximation of spatial derivatives. Since the particle distributions change
in time and are most likely nonuniform and asymmetric, standard grid-based finite difference
approximations, e.g., [39], may no longer be optimal. While finite differences have previously
been used in vortex methods [2, 31], one of the ultimate goals of this work is high order
accuracy; hence, we consider two alternative families of methods for computing derivatives
on scattered data, particle strength exchange and moving least squares. To be consistent
with the literature in this section, h > 0 denotes the average interparticle spacing and not
the fluid depth variable h(x, t) in the SWE.

4.1. Particle Strength Exchange. The method of particle strength exchange (PSE)
originated in the two-part set of papers [12, 13], in which integral operators for particle
methods were developed to approximate the Laplacian appearing in advection-diffusion
equations. PSE was significantly generalized by Eldridge, Leonard, and Colonius in [16],
where arbitrary spatial derivatives

Dβ =
∂|β|

∂xβ1

1 ∂xβ2

2 . . . ∂xβdd
(4.1)

in the whole space Rd are approximated using appropriate kernel functions that satisfy a set
of continuous moment conditions. Here, β = (β1, β2, . . . , βd) ∈ Nd0 is a multiindex, where
N0 = {0} ∪ N. The PSE integral operator Pβ approximates Dβ as

Pβf(x) =
1

ε|β|

∫
Rd

(f(y)∓ f(x))ηε(x− y;β) dy , (4.2)

where η(· ;β) is the kernel corresponding to the desired derivative and for ε > 0,

ηε(x) = ε−dη(x/ε) . (4.3)
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The kernel radius ε may be chosen as a scalar multiple of the desired support radius of
the kernel or as a fractional power of the particle spacing, h1/s, where s > 1. Further, the
minus or plus sign in Eqn. (4.2) is chosen for symmetry reasons to ensure a conservative
discretization. See [16] for details; in this work we are only concerned with the approximation
of the Laplacian operator, for which the minus sign is appropriate. An r-th order accurate
PSE approximation is constructed with Taylor expansions by ensuring the moment conditions

Mα =


(−1)|β|β! , α = β

0 , |α| = |β| ∧ α 6= β

0 , |α| ∈ {1, 2, . . . , |β| − 1} ∪ {|β|+ 1, . . . , |β|+ r − 1}
(4.4a)

∫
Rd
|y||β|+r|η(y;β)| dy <∞ , (4.4b)

where Mα =
∫
Rd yαη(y;β) dy. From [12], we have the error estimate∥∥Dβf − Pβf∥∥

L2(Rd)
≤ Cεr‖f‖Hr+2(Rd) , (4.5)

which is the optimal design rate of convergence for PSE. However, midpoint quadrature over
the particles,

Pβh fp =
1

ε|β|

∑
q

(fq − fp)ηε(xp − xq;β)Vq , (4.6)

leads to the additional discretization error estimate [16],∥∥∥Pβf − Pβh f∥∥∥
L2(Rd)

≤ C̃ hs

εs+|β|−1
‖f‖Hs(Rd) , (4.7)

which requires ε/h > 1, that is, particles must overlap for the error to decay. Further,
f ∈ Hs(Rd) must either be periodic or have compact support and η ∈W s,1(Rd) to observe
optimal rates (see [1, 17] for a review of Sobolev spaces). This restrictive set of functions
is a limitation of PSE; alternative methods such as DC–PSE (Sec. 4.1.1) or moving least
squares (Sec. 4.2) can perform optimally for a larger class of functions. Yet by construction,
PSE discretizations have the advantage of being numerically conservative in the sense that
the sum over all particles of a PSE operator acting on some function f is identically zero.

PSE kernels are commonly constructed from Gaussians, which are in W∞,1(Rd). In 1D,
we use the kernel template

η(x) =
x(βmod 2)

√
π

r/2−1∑
j=0

ajx
2j

 e−x
2

(4.8)

for r = 2, 4, 6, and 8-th order kernels (see [16] for explicit formulas), where the constants
aj are to be determined from a system of r/2 linear equations in Eqn. (4.4). Hence, the
Laplacian (equivalent to D2 in 1D) may be approximated by

∆εf(x) = ε−2

∫
R
(f(y)− f(x))ηε(x− y; 2) dy , (4.9)

where ∆ε → ∆ as ε→ 0. This theoretically should provide spectrally accurate quadrature
for appropriate f when discretized [16]. However, we now show that PSE has difficulty



N. H. Nelsen and P. A. Bosler 171

(a) f(x) = exp
(
−πx2

)
(b) f(x) = cos(x)

Fig. 4.1: Convergence study of standard PSE approximation to D2f with ε/h = 1.8.

achieving optimal convergence rates in 1D test cases for D2; this behavior was also identified
in [37].

In Fig. 4.1, the PSE integral approximation to the second derivative D2 is applied to two
functions on the interval [−π, π] with uniform particle spacing at constant ratio ε/h = 1.8.
The results that follow are also observed on randomly initialized particle distributions. In
the first case Fig. 4.1a, f(x) = exp

(
−πx2

)
satisfies the conditions for optimal convergence

and this is observed for kernels of order r = 2, 4. However, the dependence on the kernel-to-
particle spacing ratio ε/h (here ε/h = 1.8) is apparent at high kernel orders, where the error
saturates due to the discretization estimate (4.7). Further, we do not observe convergence of
the function f(x) = cos(x) in Fig. 4.1b; this is expected since cos(x) /∈ Hs(R) for any s ≥ 0.

4.1.1. Discretization Correction. Schrader in [37] extended the capabilities of the
general derivative treatment of Eldridge et al. [16] by introducing discretization corrected
particle strength exchange (DC–PSE) operators. The distinction here is that the operators
of DC–PSE exactly satisfy discrete moment conditions instead of the continuous ones in
Eqn. (4.4). As a result, the discretization error in Eqn. (4.7) is substantially reduced, albeit at
the expense of exact conservation and additional computational cost. Indeed, on nonuniform
or asymmetric particle distributions, a linear system must be solved at each particle location
to derive the spatially dependent discretization corrected kernel. Despite these shortcomings,
DC–PSE is advantageous over standard PSE due to its improved accuracy near boundaries
and less stringent parameter choice limitations.

The discrete moment conditions nearly parallel those in Eqn. (4.4). We have

Mα
h (x) =

1

εd

∑
{q:xq∈B(x,Rc)}

(
x− xq
ε

)α
ηDC

(
x− xq
ε

;β

)
Vq , (4.10)

subject to

Mα
h =

{
(−1)|β|β! , α = β

0 , α 6= β ∧ αmin ≤ |α| ≤ |β|+ r − 1 ,
(4.11a)

Mα
h <∞ , |α| = |β|+ r , (4.11b)
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where B(x, Rc) is the ball of radius Rc centered at x ∈ Rd, r is the desired order of accuracy,
and αmin equals zero if |β| is odd and one otherwise. The DC–PSE kernel template involves
a more general polynomial correction factor than does PSE,

ηDC(y; x,β) =

 |β|+r−1∑
|j|=αmin

aj(x)yj

 e−|y|
2

, (4.12)

where the coefficients aj(x) are to be determined. In 1D, substitution of Eqn. (4.12) into
Eqn. (4.10) along with the conditions (4.11) leads to the linear system of β + r − αmin
equations

β+r−1∑
j=αmin

aj(xp)Wα,j(xp) = Mα
h (xp) (4.13)

for each particle p, where the weights are

Wα,j(x) =
1

ε1+α+j

∑
{q: |x−xq|<Rc}

(x− xq)j+αe−
(
x−xq
ε

)2

Vq . (4.14)

The DC–PSE approximation is then

PDC,βh fp =
1

ε|β|

∑
{q:xq∈B(x,Rc)}

(fq − fp)ηDCε (xp − xq;β)Vq , (4.15)

Our implementation of DC–PSE yields optimal convergence rates, irrespective of the
computational domain boundaries; this holds even without using a cutoff radius Rc, i.e.,
Rc =∞. DC–PSE proves to be a viable alternative to the one-sided PSE operators described
in [16], especially for approximating the Laplacian; we find that one-sided kernels for D2

did not converge for a variety of cases. DC–PSE is also sensitive to the ratio ε/h, but less

(a) f(x) = exp
(
−πx2

)
(b) f(x) = cos(x)

Fig. 4.2: Convergence study of DC–PSE approximation to D2f with ε/h = 1.8.

so than standard PSE. DC–PSE even allows for non-overlapping ratios of ε/h ≤ 1; in this
scenario, the method approaches finite difference stencils [37]. For high-order kernels, we
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observe that increasing ε/h improves accuracy and consistently leads to optimal convergence
rates. In contrast, increasing the ratio in standard PSE does not in general improve accuracy.
Compared to Fig. 4.1a, Fig. 4.2a shows that DC–PSE outperforms standard PSE in terms
of convergence under identical conditions. Further, we observe in Fig. 4.1b that the L2

error corresponding to the DC–PSE second derivative approximation for f(x) = cos(x)
decays as O(εr) for r = 2, 4, demonstrating that a larger collection of functions is admissible
for DC–PSE. Overall, however, DC–PSE still struggles with high-order kernels because of
inherent linear system ill-conditioning.

4.2. Moving Least Squares. The method of moving least squares (MLS) is a meshless
approach for function approximation on scattered data (see the text of Wendland [46] for
a rigorous treatment). Originally formulated in the seminal work of Lancaster [24] as a
means of surface reconstruction in high dimensions, recently much interest has been given to
the use of MLS in the numerical solution of partial differential equations. In [35], a MLS
discretization of derivatives was implemented for the challenging compound KdV–Burgers’
equation. A compatible meshfree scheme using a high-order staggered discretization in [43]
was used to solve steady Stokes flows, while in [42] a compact-stencil version of MLS was
introduced that generalizes the well-known compact finite difference stencils to arbitrary
point sets. We describe the formulation of MLS in 1D; generalization to higher dimensions
is straightforward.

MLS is an extension of classical weighted least squares minimization and provides a direct
optimal estimation of an unknown function from known field values. Given a set of points
{xj}Nj=1 ⊂ Ω ⊆ R with associated data {ϕ(xj)}Nj=1, the goal is to find the spatially-dependent

coefficients aopt(x) = {aj(x)}Rj=1 that satisfy the approximation

ϕ(x) ≈ ϕh(x) =

R∑
j=0

aj(x)pj(x) = pT (x)aopt(x) (4.16)

in the sense of a local polynomial reproduction [46], where ϕ ∈ Cm+1(Ω) is the unknown
function and p = {pj}Rj=1 is a basis for the finite-dimensional space Πm(R) of polynomials
of degree less than or equal to m. In fact, the coefficient vector aopt(x) solves the weighted
`2-optimization problem

aopt = arg min
a∈Rdim Πm(R)

N∑
j=1

∣∣ϕ(xj)− pT (xj)a(xj)
∣∣2W (|x− xj |) , (4.17)

where x ∈ Ω and W = W (|x|) is the positive weight. The well known solution is

aopt(x) = M−1(x)

N∑
j=1

pT (xj)W (|x− xj |)ϕ(xj) , (4.18)

where M(x) =
∑
j pT (xj)W (|x− xj |)p(xj). As in DC–PSE, a small weighted least squares

problem is solved for each target point, usually by matrix factorization or pseudoinverse.

4.2.1. Generalized Moving Least Squares. In MLS, derivatives of ϕ are approx-
imated by taking derivatives of the shape functions generated by the MLS process. By
contrast, the action of target functionals is directly recovered from the data in the generalized
moving least squares (GMLS) approach. We refer the interested reader to Mirzaei [30] for
detailed analysis of GMLS and its relation to the so-called “diffuse derivative.”
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Given a MLS approximation ϕh = pT (x)a(x) (4.16), the GMLS derivative approximation
for ϕh is defined as (

Dβ
hϕ
)

(x) :=
(
Dβp(x)

)T
a(x) , (4.19)

and from [30,42] we have the optimal convergence rate∥∥∥Dβϕ−Dβ
hϕ
∥∥∥
L∞(Ω)

≤ C̃(m)hm+1−β
fill ‖ϕ‖Wm+1,p(Ω) , (4.20)

where the fill distance hfill describes the radius of the largest ball not containing any data
sites [46]. In practice, 1/N or the average particle spacing h may be used as the characteristic
length instead of the exact value for hfill.

4.2.2. Generalized Moving Least Squares with Enrichment. We now further
generalize the GMLS approach by designing a function space admitting piecewise continuous
polynomials. Motivated by the need to treat moving boundaries in Sec. 5.3, we seek
function reconstruction over the space of polynomials defined piecewise on sets Ωi such that
Ωi ∩ Ωj = ∅ for all i 6= j. Our approach is to construct approximations from the space of
functions

Pm(R) := {χIp+ χBq : p, q ∈ Πm(R)} , (4.21)

where we define the usual indicator

χD(x) =

{
1 , x ∈ D
0 , x /∈ D . (4.22)

In this work, the sets I and B are disjoint so that χB(x) = 1− χI(x). For the problems
discussed later in Sec. 5.3, I will denote the interior of a domain Ω and B the points on the
boundary ∂Ω. For notational brevity we denote this approach as EGMLS and note that a
more general framework may be found in [44]. This formulation is just generalized moving
least squares with the basis enriched with discontinuous polynomials. EGMLS handles the
difficulty of computing derivatives in the neighborhood of a discontinuity or non-differentiable
point. Setting I = Ω reduces the method to GMLS with the standard polynomial basis.

The specifics of our EGMLS implementation are now detailed. We use the family of
radially symmetric weight kernels

W (|x− y|) =


(

1− |x− y|
ε

)p
, |x− y| < ε

0 , |x− y| ≥ ε
(4.23)

where p > 0, y is the center, and ε is the support radius. In this work, p = 6. The stencil of
data location points xj is chosen to be of size 2s+ 1, where

s = ceil(m/2) + 1 . (4.24)

This choice of s guarantees a sufficient number of points in the stencil for unisolvency over the
set in Eqn. (4.21). To ensure polynomial unisolvency conditions [46] are met at each stage of
the computation, we introduce an adaptive kernel radius ε = ε(s). Trask et al. [43] similarly
adjusted the MLS weight function for improved multiresolution simulation. Specifically,
the support radius ε is adaptively refined for each particle xj based on the average spacing
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between neighboring particles in the stencil of interest. That is, given the average particle
spacing h = 1

2s

∑
j(xj+1 − xj), the variable support ε is defined to be

ε(s) =

(
2s+

1

2

)
h . (4.25)

To improve the conditioning of the matrix inversion in Eqn. (4.18), our polynomial bases
p,q for Πm(R) in Eqn. (4.21) consist of Taylor monomials shifted and scaled:

pk;i =
1

k!

(
x− xi
ε

)k
, (4.26)

and similarly for qk;i [30, 42]. Conveniently, for each xi ∈ Ω, Dβp(xi) = ε−β . Thus,

Dβ
hϕ(xi) = ε−βa(xi) . (4.27)

(a) EGMLS approximation of D2f with N = 100 (b) L∞ error for various derivative orders β

Fig. 4.3: EGMLS applied to f(x) in Eqn. (4.28) with m = 3 on uniformly distributed random
particles. The “kink” interface at x = 0 in D2f is correctly captured (Fig. 4.3a). In Fig. 4.3b,
the particles are resampled at each level of refinement.

As a simple test, we consider the piecewise smooth function f ∈ C0(Ω):

f(x) =

{
sin(x) , x > 0

0 , x ≤ 0
(4.28)

on points randomly sampled from the asymmetric domain Ω = [−π, 3π/2]. Here, I = {x :
x > 0}. Fig. 4.3a suggests that EGMLS accurately captures the non-differentiable interface
at x = 0 of D2f in the weak sense. We observe the same optimal rate O(hm+1−β) of standard
GMLS (4.20) in Fig. 4.3b. For functions with less than the required Cm+1 regularity of MLS
and GMLS (e.g., solutions to PDE with large gradients), EGMLS may be an appropriate
alternative for particle derivative approximations.
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5. Numerical Results. We pose the 1D shallow water equations (3.12) on two distinct
domains, the whole real line R and the 2π-periodic domain [−π, π). Within these spaces, we
imitate physical geometries by changing the bathymetry profiles. These source terms sB can
have a profound effect on the behavior of solutions; for example, by prescribing a parabolic
topography to simulate an ocean basin, complex moving boundaries with wetting and drying
phenomena arise (Sec. 5.3). We apply EGMLS, PSE, and DC–PSE in LPM for derivative
computation of the fluid surface Laplacian. Note that for PSE or DC–PSE, the ODE for
particle dilatation in (3.18) becomes

dQp
dt

= − g

ε2

N∑
q=1

[
VpMq − VqMp + (VpVq)(sB(xq)− sB(xp))

]
ηε(xp − xq; 2) . (5.1)

In all LPM simulations, gravity is set to g = 9.80616 and time integration is with RK4.

5.1. Whole Real Line. We approximate the SWE on the unbounded domain R by
using an interval [a, b] large enough such that shallow water waves do not reach these
numerical boundaries in the alloted simulation time tmax. The free space Green’s function
and one-sided derivative stencils (for the EGMLS operator D2

h) are utilized to enforce the
unbounded interpretation of this domain. Our PSE-type discretizations were derived only
for the whole space and hence no unique treatment is required.

We test the ability of LPM to conserve integral invariants of the SWE: total momentum∑
pMp(t)up(t), total divergence

∑
pQp(t), and total relative volume change ([

∑
p Vp(t)]−

b + a)/(b − a). The simulations are initialized with tmax = 0.8, ∆t = 0.0027, N = 150
particles, m = 4 for EGMLS, r = 4 with ε/∆x = 2 for PSE/DC–PSE, sB = 0, u0 = 0, and
h0(x) = 0.75 + 0.075 exp

(
−100πx2/9

)
on the computational domain Ω := [a, b] = [−π, π].

The small amplitude initial data h0(x) emphasizes the shallow water assumption and avoids
shocks.

(a) Integral invariants from LPM–EGMLS (b) Integral invariants from LPM–PSE

Fig. 5.1: Time evolution of SWE invariants. Values grow in time with LPM–EGMLS
(Fig. 5.1a) while are conserved to double precision with LPM–PSE (Fig. 5.1b).

Table 5.1 and Fig. 5.1b reaffirm the exact conservation of standard PSE; total particle
volume, momentum, and divergence all maintain a steady machine precision error over the
entire simulation duration. On the other hand, the invariant quantities using LPM–EGMLS
display a drift over time (Fig. 5.1a). From Table 5.1, we observe that LPM–DCPSE conserves
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Quantity EGMLS PSE DC–PSE

Volume Change 7.52E-04 2.83E-16 1.88E-04
Momentum 5.68E-07 5.33E-16 9.61E-16
Divergence 1.53E-02 1.99E-16 3.06E-03

Table 5.1: Values of integral invariants volume, momentum, and divergence at final time
tmax = 0.8. PSE conserves all three quantities to machine precision, whereas only momentum
is conserved with DC–PSE and none for EGMLS.

momentum to double precision over the course of the simulation, but particle volume and
divergence only to a similar threshold as in LPM–EGMLS.

While our unbounded domain approximation is a useful testbed geometry for comparing
properties of each spatial derivative discretization technique, more complex flow pattens
such as wave-wave interactions cannot be observed; we now turn to a periodic domain.

5.2. Periodic Domain. The periodic domain [−π, π) is modeled by utilizing the
periodic velocity kernel K1 in Eqn. (3.16) along with special modifications for EGMLS.
Specifically, at each time step LPM checks if any particle has left the domain; if so, that
particle is shifted back into the domain appropriately. For each particle p, our EGMLS
routine maintains particle-centered stencils by using the periodic image of the neighbors
of p, when necessary. While the PSE-type discretizations have not yet been extended to
periodic boundary conditions, we still test such methods by using the periodic version of
kernel K1 and setting tmax small enough such that waves are not propagated to the edges of
the computational domain.

A scheme is said to have the exact C–property if it is exact (i.e., to machine precision)
for stationary solutions. This is challenging for hyperbolic systems with source terms, such as
SWE with the term sB . We conduct an exact C–property test on the periodic interval with the
following initializations: s(x, t) = s0(x) = 0.75, u(x, t) = u0(x) = 0, sB(x) = 0.5 exp

(
−πx2

)
,

and the remaining parameter choices maintained the same as those outlined in Sec. 5.1.

L2 Error Quantity EGMLS PSE DC–PSE

Surface: ‖s(·, tmax)− s0‖L2(Ω) 3.46E-15 3.68E-17 1.11E-11

Velocity: ‖u(·, tmax)− u0‖L2(Ω) 4.04E-15 1.24E-16 8.17E-11

Table 5.2: L2 error of stationary surface height and velocity at final time tmax = 0.8.
Maintaining the steady solution to near machine precision, LPM with EGMLS and PSE
demonstrate the exact C–property.

Table 5.2 suggests that both LPM–PSE and LPM–EGMLS preserve the stationary “lake
at rest” solution [5], while LPM–DCPSE introduces some numerical error.

Additional LPM–EGMLS studies were conducted on the periodic domain that compared
solutions to those of a reference high-resolution central-in-space finite difference scheme;
LPM–EGMLS was in good agreement with the reference for all of the small-amplitude initial
conditions tested, even during wave-wave interactions.

5.3. Ocean Basin. Of great significance in physical oceanography is the free surface
flow of water in lakes or ocean basins. Simple models of ocean circulation have lead to
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great advances in our understanding of observable phenomena. For example, the Stommel
model [38] is a Helmholtz equation with sinusoidal forcing that provides an explanation for
the intensification of Western boundary layer development in wind-driven circulations such as
the Gulf Stream [29]. The SWE have also been used to model the propagation of tsunamis in
the ocean [41]. In this section, we investigate the flow of water in a parabolic basin and assess
the ability of the free-space version of kernel K1 to handle nontrivial physical geometries.

Following Thacker [40] and other sources of analytical SWE solutions [11, 36, 47], we
prescribe the parabolic bathymetry profile

sB(x) = −A0

(
1− (x− xc/2)2

L2

)
, (5.2)

where A0 is the peak parabola amplitude, xc is the offset, and L is the horizontal extent
from x = 0 to the shoreline sB = 0 (Fig. 5.2). From [14], the exact solution for an oscillating

h(x, t)

s(x, t)

sB(x)

Fig. 5.2: Parabolic ocean basin geometry for the SWE defined by source term sB .

1D linear surface flow governed by SWE with sB of the form (5.2) is

h(x, t) =

−A0

[(
1

L

(
x− xc

2

)
+

1

2L
cos

(√
2gA0

L
t

))2

− 1

]
, x1(t) ≤ x ≤ x2(t)

0 , else

(5.3)

u(x, t) =


√

2gA0

2L
sin

(√
2gA0

L
t

)
, x1(t) ≤ x ≤ x2(t)

0 , else

, (5.4)

where the time-varying wet-dry interface locations are

x1(t) = −1

2
cos

(√
2gA0

L
t

)
− L+

xc
2
, (5.5a)

x2(t) = −1

2
cos

(√
2gA0

L
t

)
+ L+

xc
2
. (5.5b)
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Initial conditions for this initial value problem are h(x, 0) = h(x, t)|t=0 and u(x, 0) = 0.
Accurately capturing the continuously evolving non-differentiable transition from wet fluid
(h > 0) to dry shore (h = 0) in this hyperbolic system is a salient challenge for computational
schemes.

We perform a convergence study on this problem with LPM. The problem is only
discretized on the domain I = {x : h(x, ·) > 0}, the particles with mass. Test parameters
were A0 = 0.5, L = π/2, xc = 0, T := tmax = 6, and N ∈ {32, 64, 128, 256, 512}. As the
spatial resolution increased, we maintained the ratio ∆t/∆x = 0.5 to determine the refined
time step.

(a) L∞(0, T ;L2(Ω)) error of s(x, t) and u(x, t) (b) Snapshots of oscillating linear surface solution

Fig. 5.3: Oscillating linear surface problem results for LPM–EGMLS: fourth order conver-
gence (Fig. 5.3a) of s(x, t) and u(x, t) with m = 2 and solution snapshots (Fig. 5.3b) of the
oscillating surface s(x, t) with m = 3.

For EGMLS polynomial order m = 2, we observe in Fig. 5.3a fourth order spatial
convergence (taking the infinity norm in time) to the analytical solution Eqns. (5.3, 5.4) for
s(x, t) and u(x, t). Although the midpoint quadrature for the velocity integral is formally
second order, this specific choice of initial value problem admits zero divergence θ since for
fixed time t, u(x, t) is piecewise constant (5.4). Thus, ũ = 0 and the only velocity contribution
is from the mean part ū(t). Since the EGMLS formulation is exact for linear functions by
the polynomial reproduction property, the observed fourth order rate is actually the order of
the RK4 time integration scheme. Snapshots of the LPM solution are shown in Fig. 5.3b; the
surface sloshes along the basin walls and remains linear in time, as expected. This tide-like
inundation behavior is also observed for more complex initial surfaces, including a Gaussian
drop in the same parabolic basin and in a bumpy sea bed defined by a sixth order polynomial
profile (Fig. 5.4). LPM naturally handles challenging moving boundaries that arise.
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(a) Parabolic basin (b) Sextic basin

Fig. 5.4: Gaussian drop initial surface results for LPM–EGMLS: solution snapshots of s(x, t)
in parabolic basin (Fig. 5.4a) and sextic polynomial basin (Fig. 5.4b) with m = 2. In both
cases, the waves exhibit wetting and drying. We note that the visual gap at the wet/dry
interface between the bathymetry and nearest particles in Fig. 5.4a and Fig. 5.4b is only an
artifact of our cell-centered particle initialization in Sec. 3.2; no particle is actually placed
on the interface itself.

6. Conclusion. This work has developed a mass-conservative 1D analog of a vortex
particle method for the shallow water equations posed on varied domains. Adjustment to the
bathymetry source term sB allowed for models of physically relevant geometries and complex
moving boundaries. The method’s simple treatment of wet/dry transitions, based on only
tracking the particles with positive mass, was successfully demonstrated in a parabolic basin
with an oscillating linear surface flow and in parabolic and sextic basins with a Gaussian
drop. Indeed, the results in Section 5 suggest that the nonlocal Green’s function approach
to velocity computation in LPM is appropriate for simulating ocean-related flows.

Moreover, we have presented two techniques from the literature, particle strength
exchange and moving least squares, and their extensions for approximating derivatives in
particle methods. Standard PSE is optimal for applications in which conservation is a
high priority, such as climate simulations. While the treatment of numerical boundaries is
challenging for PSE, coupling with DC–PSE near these locations could serve as a remedy. In
problems requiring more general spaces of functions or difficult interface definitions, our results
suggest that the new EGMLS approach is the superior choice. However, we acknowledge that
the extension of our specific discontinuous polynomial enrichment approach to dimensions
d > 1 is a significant challenge. For example, construction of the required indicator functions
is not as obvious in higher dimensions and would likely involve sophisticated algorithms from
computational geometry.

To conclude the discussion of the 1D case, we remark that LPM was applied to standard
linear advection-diffusion and viscous Burgers’ equation problems and showed close agreement
with reference solutions. Our future work on the 2D SWE will incorporate treecodes for
fast velocity evaluation and adaptive mesh refinement to correct for particle distortion.
For non-conservative discretization of differential operators (e.g.: DC–PSE, EGMLS), we
intend to implement the new method of Quasi-Local Tree-based reconstruction (QLT) for
communication efficient property preservation [8]. While other difficulties in the 2D realm



N. H. Nelsen and P. A. Bosler 181

will undoubtedly require augmentations to our method, the results presented in this work
display promise for the eventual adaption of LPM to the rotating shallow water equations
on the sphere.
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REMOVING DEGENERATE FEATURES FROM ICE-SHEET MESHES
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Abstract. In order to run climate simulations involving ice-sheets, it is important to be able to detect
and remove features of the ice-sheet mesh that are problematic for the solvers that operate on those meshes.
Because these degenerate features can appear over the course of many simulation steps, it is necessary to
check for them after each step. We present a parallelizable BFS-based label-propagation approach that is
efficient enough to be called at each step of an ice-sheet simulation, while still correctly identifying and
removing all degenerate features of the ice-sheet mesh. We can find all degenerate features on a mesh with 13
million vertices in 1.39 seconds in serial on a single core. We also show that this approach can be generalized
to finding all biconnected components of an undirected graph.

1. Introduction. Modeling Sea Level Rise (SLR) is an important objective of climate
modeling. One of the biggest factors contributing to SLR is the melting of the ice caps [1].
In order to predict SLR accurately, we must be able to accurately model the changing of the
ice-sheets in a computational environment. The most common way of representing three
dimensional ice-sheets is to use meshes. For our purposes, we will look at these meshes like
undirected graphs with a few more constraints than regular undirected graphs.

Over the course of an ice-sheet simulation, the mesh representing that ice-sheet changes,
as the solvers that drive the simulation calculate how the ice melts and grows. Most of
these changes do not cause any issues for the solvers that simulate these them, but there
are circumstances that prevent solvers from being able to complete the simulation. These
features, which we term “degenerate features” are discussed in Tuminaro et al. [8] and must
be removed from the mesh in order to allow the solvers to continue their calculations.

Degenerate features of an ice mesh are very closely tied to which parts of the mesh
are attached to the ground. We refer to vertices of the mesh that are in contact with the
ground as “grounded” vertices. The situations that present a problem to the solvers are the
cases where part of the ice mesh is floating in the water in such a way that it can move or
rotate freely. The two cases of degenerate features that we are concerned with are floating
islands, and hinged peninsulas. Floating islands are portions of the ice mesh that are not in
contact with any grounded part of the mesh, and hinged peninsulas, or “hinges” are floating
portions of the ice mesh that have only one point of contact with a grounded part of the
mesh. A relevant concept from graph theory, articulation points, which are vertices that,
when removed turn one connected graph into two separate connected graphs, could be useful
in finding where hinged peninsulas are connected to some grounded portion of the mesh.
This is the case, because the vertex that connects the peninsula to the rest of the mesh is an
articulation point, since removing it would disconnect the hinged peninsula from the rest of
the mesh, forming two separate graphs. From this insight, using an algorithm that can find
every articulation point in the mesh seems like a natural part of a solution to this problem.

Finding all of the articulation points of the mesh, however, treats this problem as if
our input is an undirected graph about which we can make no assumptions. In reality,
the mesh structure of our input is very useful, in that it allows us to quickly make very
good guesses about where articulation points may exist in the mesh. Even so, finding the
articulation points does not completely solve the problem of identifying degenerate features.
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Because degenerate features are caused by a lack of grounded vertices, we decided to design
an approach that “spread” the grounding information through the mesh in such a way that
degenerate features would become apparent. We used our guesses at which vertices in the
mesh could be articulation points in order to restrict the potential propagation of grounding
information to hinged peninsulas. This more tailored approach not only solves the problem,
but our experimental results in figure 6.1 show that it is faster in serial than algorithms that
find all the articulation points in a graph, and label the different parts of the graph that are
separated by articulation points.

(a) Double Hinge (b) Triple Hinge

(c) Chained Hinges (d) Indirect Grounding

Fig. 1.1: Examples of mesh data from our dataset. Black nodes represent grounded vertices,
white nodes represent floating vertices.

1.1. Our Contributions. We present an efficient serial algorithm for identifying
degenerate features of ice meshes, and we show that our serial algorithm is faster than
state-of-the-art biconnectivity algorithms. Additionally we show that the serial algorithm is
amenable to a distributed memory implementation, and show how to generalize the algorithm
to find biconnected components.

2. Background.

2.1. Previous Approach. The previous solution to this problem was implemented as
a standalone MatLab code [8]. To remove floating islands, Tuminaro et al. used a Breadth-
First Search (BFS) from every unvisited vertex in contact with the ground. Anything that
remained unvisited after those BFSs has to be a floating island. To remove hinged floating
peninsulas, they first colored the vertices of the mesh such that no neighboring vertices were
the same color. Then, for each color, they removed vertices of that color and re-ran the
ice island algorithm; hinged peninsulas would eventually become floating islands, because
the hinge vertex would eventually be temporarily removed from the graph. This approach
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generally had runtimes in the order of several minutes.

2.2. Biconnectivity Algorithms. The biconnectivity problem is concerned with
finding components of the input graph which remain connected when any vertex is removed.
Such components are referred to as biconnected components, while vertices that disconnect
the graph are called articulation vertices, or articulation points.

Biconnectivity is a well studied problem, with a work optimal serial algorithm presented
by Hopcroft and Tarjan [5]. This work optimal algorithm uses a Depth First Search (DFS)
to identify biconnected components. DFS algorithms, however, are not easy to parallelize, as
discussed by Tarjan and Vishkin [7]. Tarjan and Vishkin [7] present a parallel algorithm
for finding biconnected components in a concurrent-read, concurrent-write parallel RAM
model, where each processor has access to shared memory. This parallel algorithm reduces
the problem of biconnectivity to the problem of connectivity on an auxiliary graph. The
auxiliary graph is able to be constructed without using a DFS, so Tarjan and Vishkin were
able to present an efficiently parallelizable algorithm in shared memory.

We used two general biconnectivity algorithms for various tests against our approach [6].
These algorithms use simple graph operations such as BFS or color propagation in order
to decompose a graph into its biconnected components. The BFS-based algorithm does an
initial BFS sweep, and then subsequents BFS sweeps check to see if children of certain nodes
can reach other nodes on their parents’ level. If so, the parent is not an articulation point.
The coloring version also does an initial BFS, but it uses color propagation rules to prevent
certain labels from being passed through articulation points. Originally, we were planning
on using these algorithms to solve this problem. We planned on running a biconnectivity
algorithm, and then doing a BFS-like check to make sure that the separate biconnected
components were all attached to the ground. These two algorithms are not work optimal
in the general case, but they achieve speedup due to the fact that they are comprised of
efficiently parallelizable subroutines. However, it is likely that these shared-memory parallel
algorithms are not efficiently parallelizable in a distributed memory context.

3. Ice-sheet feature detection. Algorithm 12 shows a high-level overview of our
approach. As shown, our algorithms generally require grounding information about the
nodes, and some guess as to which nodes are articulation points. It is important to node
that this heuristic is only needed for speed, and not correctness. However, the correctness of
the heuristic is important, because the propagation rules assume that the set of potential
articulation points contains all actual articulation points.

Algorithm 12 Our general approach for both biconnectivity and ice sheets

1: procedure prop-alg(G=(V,E),grounding info)
2: labels ← ∅
3: Compute articulation heuristic using G
4: Propagate labels
5: while Propagation needs fixed do
6: Fix propagation, and repropagate
7: end while
8: Return labels
9: end procedure

Our proposed algorithm has three inputs: A set of vertices that contain potential
articulation points , where the set of actual articulation points is a subset of this set;
Grounding information for each vertex; and the graph representation of the mesh. Our labels
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in this approach hold four vertex IDs: two representing grounded vertices, and the other two
keep track of which vertex sent which ID. We initialize a set of labels for all vertices from the
initial grounding information, and start propagating the labels from each grounded node. We
use two frontiers, frontier, and art frontier, and in a BFS-like manner, we only examine
a node’s neighbors if that node has gained a grounded vertex ID in its label since we last
saw it on the frontier. We use art frontier for potential articulation points, and frontier
for regular nodes, in order to allow the potential articulation points’ labels to become more
full before they communicate labels to their neighbors. In short, we do this because we only
allow potential articulation points to communicate one vertex ID, and if they communicate
too soon, they could cause incomplete propagation (see section 3.4). After this propagation
is complete, we check to see if there are any signs of incomplete propagation, and we fix the
incomplete propagation if necessary. Then, any nodes that have two grounded vertex IDs in
their label are nodes we keep, and any nodes with less than two grounded vertex IDs are
nodes we remove.

3.1. Mesh Articulation Point Heuristic. When operating on an ice-sheet mesh, it
is fairly easy, given the elements of the mesh, to compute which edges in the mesh form the
boundary between the ice and the water. The edges that only appear once in the list of
elements are the ones that are on the boundary, because there is no element on the other
side of that edge. Given the boundary edges, we can determine which nodes are potentially
articulation points by looking at how many boundary edges are incident to a given node.
If a node has two or less incident boundary edges, then it cannot be an articulation point,
because those nodes are on at most one boundary-edge cycle. If the node has more than two
incident boundary edges, then it is potentially an articulation point. (show a figure of this
process here)

3.2. Label Propagation Rules. Algorithm 13 shows the logic used to pass labels
between neighboring vertices. We ensure that all potential articulation points send only
one label to each neighbor, because all articulation points can only contribute one point of
contact to the ground to any neighbor. The rest of the nodes can pass as many labels as
they want, since they are guaranteed not to be articulation points. It should be noted that
the “giving” of labels mentioned in the algorithm simply checks to make sure that labels
consist of the vertex IDs of unique, grounded nodes.

Algorithm 13 Function for passing labels to neighbors

1: procedure Give-Labels(curr node, neighbor)
2: if curr node ∈ Potential Articulation Points then
3: if curr node hasn’t sent anything to neighbor before then
4: if curr node has two grounded vertex IDs then
5: curr node gives neighbor its own vertex ID as a grounded vertex
6: else
7: curr node gives its only grounded vertex ID to neighbor
8: end if
9: end if

10: else
11: curr node gives neighbor any grounded vertex IDs neighbor doesn’t have
12: end if
13: end procedure
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3.3. Two Frontiers Approach. As shown in Algorithm 14, the two frontiers separate
the potential articulation points from the other nodes while propagating. This is done so
that the potential articulation points have a better chance to be in their final label-state,
and pass on vertex IDs that will not cause incomplete propagation. This approach is good
enough for all the real ice-sheet data we have dealt with, but it is possible to break it with a
synthetic example.

Algorithm 14 BFS-based label propagation algorithm

1: procedure BFS-Prop(frontier,labels,G=(V,E))
2: art frontier ← ∅
3: while !frontier.empty() do
4: curr node ← frontier.pop()
5: for all neighbors n of curr node do
6: Give-Labels(curr node,n)
7: if n’s label changed then
8: if n ∈ Potential Articulation Points then
9: art frontier.push(n)

10: else
11: frontier.push(n)
12: end if
13: end if
14: end for
15: if frontier.empty() then
16: swap(frontier,art frontier)
17: end if
18: end while
19: end procedure

3.4. Incomplete Propagation. Incomplete propagation is a complex situation that
is prominent in the generalized case, but almost nonexistent in our ice-sheet data. It is best
illustrated by figure 3.1. To fix this issue, we check for the signs of incomplete propagation,
which are potential articulation points that end up with two grounded vertex IDs in their
label, but did not send their own vertex ID to their neighbors (The vertex that neighbors B
in figure 3.1 is an example of this state). We add all such nodes to a frontier, clear out any
labels that have only one grounded vertex ID in them, and restart propagation from this
new frontier. Algorithm 15 shows this addition to the BFS-Prop algorithm.
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Fig. 3.1: Because B’s vertex ID reaches two potential articulation points before A’s label
can, we have incomplete propagation.

Algorithm 15 Driver for BFS-Prop, fixes incomplete propagation

1: procedure BFS-Prop-Driver(labels, G=(V,E))
2: frontier ←vertex IDs of half labeled vertices
3: BFS-Prop(frontier,labels,G)
4: while true do
5: for all v ∈ V do
6: if v ’s label is full then
7: for all neighbors n of v do
8: if n’s label is half-full and v ’s ID is not present in it then
9: frontier.push(v)

10: end if
11: end for
12: end if
13: end for
14: if frontier.empty() then
15: break
16: end if
17: for all v ∈ V do
18: if v ’s label is half full then
19: clear v ’s label
20: end if
21: end for
22: BFS-Prop(frontier,labels,G)
23: end while
24: end procedure
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4. Generalization to Biconnnected Component Detection. In generalizing this
tailored algorithm to find biconnected components on general undirected graphs, we needed
to find a suitable heuristic for finding potential articulation points, and we needed to somehow
manufacture grounding information.

4.1. LCA heuristic. LCA, or Lowest Common Ancestor, is a measure that makes
sense only in terms of trees. Thus, given a spanning tree T , the LCA of two vertices is the
lowest node in T that has both vertices as descendants. Given two vertices in a spanning tree,
a simple serial algorithm would be to follow the parents of both nodes until the traversals
meet at the LCA vertex.

The generalized heuristic that we settled on was found in [3]. The idea is to do a BFS,
find the Lowest Common Ancestor of each non-tree edge, and then note which nodes were
not visited in the traversals to find the LCAs. This heuristic, proved by [3], guarantees that
all articulation points will be contained in the set of vertices it returns. However, in practice
we found that it generally returned many more vertices than the Mesh Heuristic presented
in section 3.1.

4.2. Manufacturing Ground. The straightforward choice of which vertices to ground
initially is to ground any two neighboring vertices. This choice is advantageous because two
neighboring vertices must be in the same BCC, so we cannot be grounding vertices in two
separate biconnected components. After running Algorithm 15, any vertices that have full
labels are in the same biconnected component, and any vertices that are full, but neighbor
half-full or empty vertices are articulation points. We clear out all the half labels from the
last propagation in order to prepare for the next one. Then, we ground the neighbor of an
articulation point to find the next BCC, and continue doing so until all vertices in the graph
have full labels.

4.3. Final BCC Decomposition. A minor tweak to Algorithm 13 is needed in order
to easily label the Biconnected Components of the input graph. During each call of Algorithm
15, we also pass along the name of that biconnected component. Any node that ends up with
two labels will retain that name, while all other nodes will have their labels reset. Algorithm
16 shows the full algorithm.
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Algorithm 16 Generalized Driver to find Biconnected Components

1: procedure BCC-BFS-Prop(labels, G=(V,E))
2: art queue ← ∅
3: frontier ← ∅
4: while not every label is full do
5: while frontier.empty() do
6: if !art queue.empty() then
7: ground a neighbor of art queue.front()
8: push both nodes onto frontier
9: if art queue.front() has no empty neighbors then

10: art queue.pop()
11: end if
12: else
13: ground two empty neighbors
14: push both nodes onto frontier
15: end if
16: end while
17: BFS-Prop-Driver(labels, G=(V,E)) . Using modified labels
18: for all v ∈ V do
19: if v ’s label is full then
20: for all neighbors n of v do
21: if n’s label is not full then
22: art queue.push(v)
23: break
24: end if
25: end for
26: end if
27: end for
28: for all v ∈ V do
29: if v ’s label is not full then
30: clear v ’s label
31: end if
32: end for
33: end while
34: end procedure

5. Distributed Memory Implementation.

5.1. Ice Sheet Version. Because the ice sheet mesh that we will be operating on
exists in distributed memory, we needed to implement this algorithm in a distributed
memory environment as well. The algorithm adapts surprisingly well to a distributed
memory environment, in that it can maintain its “push coloring” label propagation strategy,
without causing any ill effects. In our case, we are assuming that the graph distribution
is provided by the application, but that we need to ghost the neighboring vertices along
the partition boundaries. Essentially, we treat each processor’s part of the graph as its
own instance of a smaller problem. Once propagation stops, the labels on the ghosted
vertices are communicated, and made consistent with their owned versions. Then, if the
communication significantly changed any labels for any processor, the propagation continues.
Synchronization is required between the initial call to BFS-Prop and the subsequent calls to
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BFS-Prop that fix incomplete propagation.
We heavily used existing objects from the Tpetra [2] package of Trilinos [4] in order

to implement this strategy. We used Tpetra Maps to initially set up the layouts of the
owned and ghosted vertices, and used those Maps to create a Tpetra FEMultiVector. The
FEMultiVector came with functionality to communicate accross processor boundaries built-in,
all we had to do to implement our label propagation scheme was overload the += operator
for the type that represented our labels. In order to use the FEMultiVector’s communication
capabilities, we had to call beginFill() before we started our per-processor label propagation,
and endFill() to communicate the ghosted labels back to their owned versions. However, we
also needed to communicate the owned labels back to the ghosted versions, because at this
point they could be inconsistent, so we called doSourceToTarget() with Tpetra::ADD as one
of the arguments, to ensure our label-swapping logic was used.

5.2. Generalized Version. The generalized version of this algorithm is slightly less
straightforward to implement in a distributed memory environment, because of the heuristic
we used. The label propagation phase is just a minor variation of the Ice Sheet version.
Before we run the LCA Heuristic, we run a an implementation of a distributed BFS.

5.2.1. LCA Heuristic. The distributed memory implementation of this heuristic
centers on the use of queues. Each processor has a queue of entries corresponding to an LCA
traversal. Each individual entry contains the two active vertices, the level of both vertices,
and the numbers of the tasks that own each vertex. While a processor works on the traversals,
eventually the travesal will end, or need to be passed to a different processor. Once all
processors run out of work to do locally, they communicate the entries they cannot advance
to a processor that can. Then, each processor may have new entries to work on locally,
and the cycle repeats. This cycle ends once all processors have nothing to communicate,
and no more local work to do. As the entries advance, we also mark the edges that we’ve
visited, and both the LCA vertices and the endpoints of unvisited edges become potential
articulation points.

5.2.2. BCC BFS-Prop Driver. As in the generalized serial version, the distributed
version essentially runs the distributed ice-sheet propagation function multiple times until
each biconnected component of the input graph is found. In order to increase parallelization,
we attempt to make the initially grounded neighbors be nodes that are split across a processor
boundary. Like the serial version, after the first propagation finishes, we can identify actual
articulation points that are incident to the biconnected component we just found by looking
for vertices that have two labels, but neighbor vertices that only have one label. After this
identification takes place, we clear out the half labels on all the processors. Then, we can
safely ground one neighbor of each articulation point in order to find multiple biconnected
components in parallel. If we run out of articulation points before we finish labeling the
whole graph, we simply ground two neighbors again, favoring neighbors that are split across
a processor boundary. We keep doing propagations until each processor’s vertices all have
two labels. In order to keep the names of each biconnected component unique, we have each
processor keep a count of how many biconnected components they have found, and the name
of the next biconnected component is found by bcc count ∗#processors+ processor ID.

6. Results.

6.1. Experimental Setup. The runtimes we present were gathered on Blake, a Hybrid
Advanced Architecture Platform at Sandia. Blake has 40 nodes with Dual-socket Intel Xeon
Platinum processors. Each of these nodes has 12 cores, and Blake has an Intel Omnipath
interconnect.
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6.2. Ice-sheet Results. The largest input ice-sheet mesh had 13 million vertices, and
about 13 million edges, and was obtained from the team running climate simulations. Table
6.1 shows the serial runtime of our algorithm against the runtimes of serial biconnectivity
algorithms. Our algorithm achieves an 2.39x speedup over the bcc-bfs algorithm on the
largest input, and a much larger speedup over the bcc-color, 161x on the second largest input.
We show this result to motivate our attempt at generalization, this algorithm is faster in
serial than BCC algorithms, and more amenable to a distributed memory implementation.

Runtimes with OMP NUM THREADS=1
Ice-sheet Resolution BCC-BFS BCC-Color Tailored Approach
16km 0.0163 (s) 0.0841 (s) 0.0046 (s)
8km 0.0483 (s) 0.7728 (s) 0.0196 (s)
4km 0.1912 (s) 7.6713 (s) 0.0834 (s)
2km 0.7199 (s) 54.821 (s) 0.3395 (s)
1km 3.3271 (s) —— (s) 1.3904 (s)

Fig. 6.1: Runtimes of the serial ice-sheet algorithm vs. serial biconnectivity algorithms on
blake

6.3. Generalization Results. The graphs used as input to the distributed BCC each
had two biconnected components, and the number of edges equals two times the number of
vertices. These graphs were generated by first constructing two cycles, and independently
connecting their respective nodes with a random chance. The number of random edges was
capped at the number of vertices, to keep the graphs relatively sparse. The table 6.2 shows
the runtime of BCC-BFS-Prop part the algorithm on different numbers of cores, with one
MPI rank per core. The runtimes for the 4 million vertex graph initially jump up from
the serial runtime, most likely due to higher overhead in communication, while not gaining
enough parallelism with small numbers of cores. The maximum speedup achieved on the
4 million vertex graph is 33x, with 528 processors. The number of cores for the 40 million
vertex graph was chosen due to the fact that a multiple of 12 MPI processes gave the best
speedup for the 4 million vertex graph, and that each processor on Blake has 12 cores. The
maximum speedup achieved for the 40 million vertex graph is 15x. Much less data was
gathered for the 40 million edge graph because of how much time it took to read the file and
distribute the graph. Additionally, no times are reported for the distributed LCA algorithm
because we have not yet implemented the LCA heuristic in distributed memory.
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Distributed BCC-BFS-Prop Runtimes
# processors 4 Million Vertex Graph 40 Million Vertex Graph
1 95.436(s) –
2 101.088(s) –
4 116.19(s) –
8 91.39(s) –
16 58.53(s) –
32 32.28(s) –
48 26.568(s) 224.49(s)
64 17.783(s) –
128 10.442(s) –
256 6.011(s) –
512 3.441(s) –
528 2.8647(s) 27.957(s)
1024 3.417(s) –
1056 3.1772 14.686(s)

Fig. 6.2: Runtimes of the distributed BCC algorithm on blake

7. Conclusions and Future Work. We have proposed an algorithm for identifying
degenerate features in ice-sheet meshes. We showed that a serial implementation ran
2x faster than a serial Biconnectivity algorithm, and that the algorithm lends itself to a
straightforward distributed memory implementation. Additionally, we showed how the
version of the algorithm that is tailored towards ice-sheet meshes can be generalized to find
the Biconnected Components of any undirected graph.

Future work related to this algorithm could take many directions. The label propagation
function may be parallelizable in shared memory, so a hybrid distributed and shared memory
implementation may be possible. There are optimizations that can be made to the generalized
LCA heuristic, and it could be that grounding two neighboring vertices is not the most
efficient way to start the general BCC algorithm. Finally, we have not explored what using
three labels for each node would mean in the general case, but it could lead to a distributed
memory triconnectivity algorithm.
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CURVATURE BASED ANALYSIS TO IDENTIFY AND CATEGORIZE
TRAJECTORY SUBSEGMENTS

PAUL T. SCHRUM, JR.∗, MARK D. RINTOUL† , AND BENJAMIN D. NEWTON‡

Abstract. Since the attacks carried out against the United States on September 11, 2001, which involved
the commandeering of commercial aircraft, interest has increased in performing trajectory analysis of vehicle
types not constrained by roadways or railways, i.e., aircraft and watercraft. Anomalous trajectories need to
be automatically identified along with other trajectories of interest to flag them for further investigation.
There is also interest in analyzing trajectories without a focus on anomaly detection. Various approaches to
analyzing these trajectories have been undertaken with useful results to date. In this research, we seek to
augment trajectory analysis by carrying out analysis of the trajectory curvature along with other parameters,
including distance and total deflection (change in direction). At each point triplet in the ordered sequence of
points, these parameters are computed. Adjacent point triplets with similar values are grouped together
to form a higher level of semantic categorization. These categorizations are then analyzed to form a yet
higher level of categorization which has more specific semantic meaning. This top level of categorization is
then summarized for all trajectories under study, allowing for fast identification of trajectories with various
semantic characteristics.

1. Introduction. Whenever an object moves, its path is called a trajectory. For
vehicles, these trajectories may be recorded over time by occasionally sampling the location
in a certain coordinate reference frame. The resulting sequence of time-stamped position
samples constitutes the “trajectories” we study in this research.

Of these vehicles, aircraft and water-borne vehicles are generally not constrained by
predetermined pathways, as is the case for road-borne and rail-borne vehicles. Thus aircraft
and watercraft have a large number of possible variations in path from one point to another.
Furthermore, aircraft and watercraft have been used as transportation for threat agents
specifically because of this greater freedom of course coverage, and in some cases the vehicles
themselves have been used as the destructive weapon. It would be advantageous if unusual
trajectories could be identified by analyzing their geometry as described by the sequence of
sampled points. Because of these and other motivations, several researchers have undertaken
to analyze and characterize trajectories from the recorded point sequences.

One general approach to trajectory analysis involves computation of the normalized
parameter space or normalized feature space. This approach is used by [1], and [3]. [1]
performs an image parsing technique, Recursive Multi-frequency Segmentation, cross applied
to the speed parameter of bird flights to detect speed-based segments. [3] computes whole-
trajectory aggregate values including total distance, and convex hull aspect ratio.

The method we have explored in this research takes a sequential point-by-point approach,
looking at the geometry of the trajectory at each point and its nearest previous and next
neighbors along the ordered sequence. This approach yields information at a detailed level
which is then aggregated into groups of similar properties until the entire trajectory has
been partitioned into meaningful subsegments. The ‘meaningful subsegments’ are referred to
as Level 1 Categorizations, which are the primary result yielded by the method. The Level 1
Categorizations are reduced to data formats which are well suited to established data mining
techniques and may be used for various purposes.

We present the method, which we call “The Curvature Parsing Method” (CPM), demon-
strate its capability, and assess its strengths and weaknesses.

Although the method is intended to be generalizable to maritime trajectories, only

∗North Carolina State University, ptschrum@ncsu.edu
†Sandia National Laboratories, mdrinto@sandia.gov
‡Sandia National Laboratories, bdnewto@sandia.gov



P. T. Schrum, Jr., M. D. Rintoul, and B. D. Newton 195

aviation data was used in the development of these algorithms, so further discussion focuses
mainly on aviation trajectories.

2. Methods. The core of the Curvature Parsing Method is shown below. The subse-
quent discussion on the method follows this pseudocode as an outline.

1. Load batch of trajectory data into memory.
2. For each trajectory:

(a) Compute local point geometry, including point triple curvature.
(b) Perform Level 3 Processing: Categorize Each Individual Point.
(c) Level 2 Processing: Group adjacent similar Level 3 Nodes into subsequences

and categorize.
(d) Level 1 Processing: Aggregate Level 2 Nodes into subsequences based on

sequence patterns and categorize.
(e) Generate intermediate data outputs as requested for each trajectory.

3. Generate report summarizing results for each Level 1 Node for the batch.

The items in this listing serve as an outline for the Methods section.

Optional data outputs are
1. a kml file for visualization using Google Earth (.kml) 1 ,
2. a plot of the parse tree graph (.png),
3. a detailed arc data report including derived geometry parameters (.csv),
4. a statistical summary report of Level 1 categorizations (.csv),
5. a Level 1 hash bin report grouping all trajectories by a hash string of the Level 1

categorization. (.csv)

The details of these output types are provided in Section 2.3.4. Figures 2.1 and 2.2
together illustrate two of these outputs for a single trajectory. Figure 2.1 shows a kml plot of
a flight which begins in the cruise phase over Lake Erie and ends with a landing at Ottawa.

The parse tree graph of Figure 2.2 illustrates important features of the process, detailed
below, including the way in which points constitute the leaves of the parse tree, the entire
trajectory is the root of the tree, and Level 1 and 2 categorizations are between the root and
the leaves.

2.1. Trajectory Data Source. Trajectory data used in the development of this
project originates with Aircraft Situation Display to Industry (ASDI), a data feed of aircraft
trajectories in United States and Canadian airspace provided by the Federal Aviation
Administration (FAA). ASDI data includes “aircraft scheduling, routing, and positional
information.” [6] Our purposes only require use of the temporal positional information and
the aircraft identity to distinguish individual trajectories.

The FAA obtains ASDI data from radar stations across North America, which gather
positional information as well as information squawked by the aircraft such as identity and
altitude. The data has not been optimized to eliminate anomalies. Specifically, the data
sometimes contains points which are the result of two radars reporting the position of the
same aircraft at slightly different positions and different time stamps, resulting in a zigzag
pattern in occasional portions of the trajectory. We refer to this kind of data anomaly as
radar jitter. Further, there are rare data anomalies in which two sequentially adjacent points
have identical coordinates and time stamps. We refer to these as double-stamps. Both kinds

1It is also possible to output all kml files into subdirectories named for Level 1 hashes.
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Fig. 2.1: Partial Trajectory of Flight A3A458 in which sampling begins mid-flight over Lake
Erie and ends with landing in Ottawa. White segments are straight; Yellow segments are
left turns; Orange segments are right turns.

Fig. 2.2: The Parse Tree Graph of Flight A3A458, depicted in Fig.2.1.

of anomalies cause problems for the algorithm. Thus those points are not removed from the
dataset, but the categorizer ignores them by continuing the previous categorization across
the anomalies.

Rintoul et al., in working on Sandia National Lab’s PANTHER project, call for “a more
thorough analysis of the information content in the different features” to be carried out, and an
“examination of more efficient ways to break up the trajectories into segments to find smaller
features”. ( [4], p. 72) The current research is part of that follow on work. The software
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developed for the research being presented here is an exploratory extension of Tracktable.
The PANTHER report states, “Tracktable is an open source library which contains a core set
of functionality for ingesting, processing, plotting, and analyzing trajectories.” ( [4], p. 39)
The software implementation of the current research depends on Tracktable’s Application
Programming Interface (API) for data access and some computational geometry functionality.
The desired outcome is a way to identify meaningful trajectory subsegments in partial
support of a subset of PANTHER’s stated goals:

1. finding trajectories that exhibit a behavior of interest without regard to translation,
rotation or scale,

2. dividing trajectories into specific clusters,
3. finding trajectories that are outliers with respect to a given set of trajectories, and
4. performing analysis prelimanry to classifing trajectories using unsupervised learning

techniques.
( [4], p 18)
In some cases the categorizations performed in the current research depend on trajectory

subsegment absolute length, which makes the analysis no longer invariant under scale
transforms.

2.2. Compute Local Point Geometry. The basis of this algorithm is the notion
that any three points define a portion of a circle. Figure 2.3 shows how three coplanar points
uniquely define an arc segment regardless of the offset of the middle point.

Fig. 2.3: Three points defining a portion of a circle. The interior solution is shown. Exterior
solutions, the arcs going the long way around the are not used in the present algorithm.

Although the altitude input parameter is available for most trajectories, this algorithm
does not use it, so all points are considered coplanar for the purpose of analysis. We are also
developing an altitude based analysis in parallel with this research. At some point these two
types of analyses may be merged for greater insight into aviation trajectories.

For each sequential point triplet of the given trajectory, the arc segment defined by
point subsequence n-1, n, and n+1 is computed and the resulting computed information
(hereafter referred to as ‘curve data’) is associated with point n. Hereafter, the midpoint of
the point triplet, n, is referred to as the keypoint because in the data model, the arc segment
parameters for arc n are stored with point n The first and last points of the sequence cannot
have an associated arc, having only a single neighbor.

The terms ‘trajectory’ and ‘alignment’ are related but different. In the following
discussion, ‘trajectory’ refers to the historical path of a physical object represented by a point
moving through time; ‘alignment’ refers to a static, mathematically defined path independent
of time. To clarify this distinction, roads are built along alignments, but cars trace out
trajectories.
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In fact, the disciplines of railway and roadway design, along with surveying, also concern
themselves with determining the mathematical definition of smooth alignments from sampled
data points. For this reason, some of the theory from those disciplines may be adapted for
our purposes.

Concepts, symbols, and terminology are taken from [2], which is used extensively by
surveyors and civil engineers for alignment definitions. Figure 2.4, adapted from [2] Figure 9
and accompanying discussion (pp 64-67), depicts the engineering symbology and definitions
for the arc segment used to fillet two straight line segments. All geometry is flattened to
eliminate the Z dimension. Further, the notion of Length in the following discussion only
considers the 2D length of a path in the plane, and does not include any Z component. The
parameters shown here are the curve Radius, R, and the curve deflection, ∆. PC is Point of
Curvature, shared by the incoming tangent and the curve, PT, Point of Tangency, shared
by the curve and the outgoing tangent, PI, the Point of Intersection of the two tangents
without the curve, and CC, the Curve Center.

Fig. 2.4: Basic arc segment elements using Civil Engineering terminology. CC is the Curve
Center. PI is the Point of Intersection of the tangential line segments at the begin and end
of the curve. PC is “Point of Curvature”, which is the point where the alignment transitions
from the line segment to the arc segment. PT is “Point of Tangency”, which is the point
where the alignment transitions from the arc segment to a different line segment. L is the
length along the arc segment. ∆, Deflection, is the total change of heading of the arc segment
from the PC to the PT.
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Curvature, also referred to as Degree of Curve (Dc), may be visualized as the degrees of
heading change over one unit length along the trajectory or alignment in which the length of
the arc changing by one degree is the same unit length for radius. Roadway design engineers
in the United States use a length basis of 100 feet for Degree of Curve. For our research we
work with a 1 mile length Degree of Curve basis. Figure 2.4 illustrates this concept. For the
case where total curve length, L, equals 1 basis unit, then the total deflection, ∆, equals the
curvature of the curve in degrees of change of heading per basis unit of length.

Several observations should be noted regarding Figure 2.4. The elements and equations
for the engineering definition of an arc fillet are constrained by the requirement that all
elements be continuous in heading. Curvature is the first derivative of heading. When a civil
engineering alignment is used without Euler Spiral Segments (as depicted in Figure 2.4), there
is a curvature discontinuity at the PC and PT, but heading is continuous. Following such an
alignment precisely is physically impossible for real world vehicles due to conservation of
momentum, so there are always easement curves at the beginning and end of a filleting curve
which serve to ease from zero curvature to non-zero curvature and back. Civil engineers
use Euler Spiral Segments to accomplish this easement, but easement curves are not being
considered for this trajectory analysis.

Since curvature is the first derivative of heading, plots of heading versus length may
conveniently be collocated on the same graph as curvature versus length. Figure 2.5, below,
depicts such a simultaneous plot.

Fig. 2.5: Heading versus Length Along (top line) and Degree of Curve versus Length Along
Alignment (bottom line). This collocated plot illustrates the first derivative relationship
between Heading and Curvature. This plot matches the arc segment shown in Figure 2.4.

2.2.1. Limitations of Sampled Data. The plot in Figure 2.5, heading versus length
combined with curvature versus length, is idealized for a proscribed engineering alignment
such as the one shown in Figure 2.4. Sample-based trajectories have limitations due to
sample noise and sampling rate. Regarding sample noise, if an aircraft is following a perfectly
straight geodesic (also known as a Great Circle Route, the spherical equivalent of a straight
line), noise will introduce errors into the reported position at each sample, leading to each
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point being slightly off the actual trajectory, and the curvature, which would be zero for
a straight line, will have values near zero on both the positive side and the negative side,
averaging to near zero over multiple sequential samples.

Our dataset consists of points sampled about every 60 seconds in most cases. Since
the sampling rate is not continuous, certain turning events may be skipped over or under
sampled, resulting in ambiguous or unresolvable features. This phenomenon is conceptually
related to the Nyquist-Shannon Sampling Theorem [5].

The sampling rate is determined in the time domain, but the comparison basis for
sampling rate is in the length domain. So a slower aircraft has a shorter physical distance
between samples (more samples per hundred miles) than a fast moving one, and this has a
higher sample resolution even though both have the same number of samples per minute.

A related problem is partial aliasing of point triplets at arc boundaries. Specifically, if a
given point is near the beginning or end of a curve, one of its neighbor points lies on the
adjacent tangent, and one lies on the curve. The result is that the key point (the middle
point of the triplet) shows a transitioning curvature value even though that point is on the
tangent of the alignment. This is illustrated in Figure 2.6

Fig. 2.6: Sample points along an alignment showing aliasing where some point triplets span
an end of the arc segment

Figure 2.6 shows a contrived example of of sample points along a perfect alignment with
no sample noise. The distance between samples is 6.0 miles. The sample arc associated with
point 2 is highlighted in blue. Sample arcs 2, 3, 6, and 7 overlap the end points of the true
curve, so their curve values are aliased between an arc and a tangent. Sample arcs 4 and 5
(not shown as arcs, but as points) fall completely on the true arc, so their curvatures will be
the same as the true arc.

Table 2.1 illustrates the same effect numerically.
In addition to end-aliasing, certain curves of short length may be skipped by sample

points altogether, while the triple-point curvature data yields curvature and ∆ values which
differ considerably from the actual value. In the extreme case, the curve length is so short
compared to the sample rate that sample points fall before and after the arc segment, but
none fall directly on it, so aliasing occurs at all points involved with the curve.

Another caveat of basing the analysis on curve segments of sampled data points is that
neither chord deflection δChord or total arc deflection ∆Sample represent the true change
of heading from Point 1 to Point 3 when curves are under sampled. In the categorizations
process, where change of heading is used for categorization criteria, it is based on δChord
because the estimation error is much less.

Figure 2.7 illustrates the definitions of these terms. The alignment being sampled is the
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Arc
Segment

R Dc ∆Sample

1-2-3 32.57 mi 1.76° 2.11°
2-3-4 3.59 mi 15.97° 19.17°
4-5-6 3.00 mi 19.06° 22.89°

True Curve 3.00 mi 19.06° 43.98°

Table 2.1: Transition Values for Curvature (Dc) for point triplets spanning the beginning of
a curve. R is sample curve radius. ∆Sample is sample curve deflection.

same alignment as shown in 2.4 and 2.5, although the sample points are sparser. ∆Sample

is the deflection of the arc generated from the point triplet, 1-2-3, shown in blue. δChord
is the deflection of the straight line segments 1-2 and 2-3. This figure also demonstrates
the effect of the sampled arc curvature and radius being substantially different from the
true curve when only one sample point falls on the arc. We believe this effect impacts the
subsequent categorization processing, but the details have not been confirmed and should be
investigated further.

Fig. 2.7: Different types of deflection from different computations. Note the point triplet
1-2-3 is repeated in the figure to improve readability.

2.3. Categorization Parse Tree. After the algorithm computes local point geometry
for all interior points, the points are categorized and grouped by categorization. Categoriza-
tion is carried out in a multi-level process. The levels are labeled on Figure 2.8, which is a
recapitulation of Figure 2.2. In Figure 2.8, Level 0 is at the root of the parse tree, the whole
trajectory, and deeper levels progressing downward on the parse tree graph, down to Level 3,
which has one categorization for each interior point (points 1 through n− 1).
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Fig. 2.8: The Parse Tree Graph of Flight A3A458, depicted in Fig.2.1.

2.3.1. Level 3 Processing. The leaves of the parse tree are individual key points.
Categorization starts at the bottom of the graph and works its way up. Level 3 processing is
carried out first, which is based on the curve data computation of point triplets described
above. There is one Level 3 node for each interior point of the trajectory.

Level 3 categorizations are grouped into three aspects: curvature, leg length, and point
deflection (δChord). Curvature categories are “hard left,” “normal left,” “flat,” “normal
right,” and “hard right.” Deflection categories are “sharp left,” “left,” “straight,” “right,”
“sharp right.” Leg length categories are “short,” “medium,” “long,” “stopped anomaly” (used
to indicate double-stamped points), and “jitter anomaly” since radar jitter detection is based
on leg length ratios.

2.3.2. Level 2 Processing. Level 2 categorization groups Level 3 nodes according to
curvature. Hard left and normal left map to Level 2 category “left.” Similarly, hard right
and normal right map to Level 2 category “right.” Level 3 category flat maps to Level 2
category “straight.”

Once processed, any Level 2 node will have between 1 and n−2 Level 3 nodes as children.
For any Level 2 node, all child nodes must be in the same contiguous sequence. If two Level
3 nodes of the same type are interrupted by a different type, they will be children of different
Level 2 nodes.

One may note that mapping Level 3 nodes to Level 2 nodes does not add significant
semantic interpretation. The primary purpose of this level of processing is to group like
Level 3 nodes into a single Level 2 node. This is necessary because a segment of one kind
may include multiple key points which are of the same type.

Level 2 nodes have some geometric properties which are aggregated from the underlying
Level 3 geometric information. The most important of these are total point deflection
(ΣδChord) and total leg length. We found that in certain cases partially aliased key points
at the boundary between a curved Level 2 segment and a straight Level 2 segment were
incorrectly being assigned to the straight segment due to the low value of the transitional
curvature. To resolve this issue, a subprocess was added allowing curved Level 2 segments
to steal a point from an adjacent straight Level 2 segment. This improved the accuracy of
Level 2 curve total point deflection values.
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2.3.3. Level 1 Processing. Level 1 categorization groups Level 2 nodes according to
multiple patterns in the Level 2 aggregate attributes. Level 1 categories are

1. Cruise: Long, generally straight segments
2. Course Turn: Cruise/Turn/Cruise in which turn ΣδChord is less than a U Turn
3. S Curve: A pair of curves in opposite directions with no intermediate straight

segment.
4. U Turn: A sequence of straight, turn, straight, in which turn ΣδChord is approxi-

mately 180°
5. Racetrack: A sequence of turning segments or a single turning segment in which

turn ΣδChord is greater then 360°
6. Boustrophedon: a sequence containing two or more U Turns in which alternate U

turns turn in the opposite direction and straight segments interleave the alternating
U Turns

7. No Category: This is the default category and is assigned to Level 1 nodes which do
not meet the criteria for other Level 1 categories.

The sequence of Level 1 Categorizations is the primary data product of the CPM. This
sequence is viewable in one of the available output types, the parse tree graph. However,
the Parse Tree Graph format is not amenable to further analysis. For analysis, the Level
1 Categories are mapped to single characters, which form a string of characters useful for
analysis.

2.3.4. Output Files. As described in Section 2, available outputs are
1. a kml file for visualization using Google Earth. (.kml),
2. a plot of the parse tree graph (.png),
3. a detailed arc data report including derived geometry parameters (.csv),
4. a statistical summary report of Level 1 categorizations (.csv),
5. a Level 1 hash bin report grouping all trajectories by a hash string of the Level 1

categorization. (.csv)

An example of item 1, above, is given in Figure 2.1, which is kml output visualized
in Google Earth. An example of item 2, the parse tree graph, is given in Figure 2.2. No
example of Item 3, a detailed arc data report, is provided.

The first three kinds of outputs are time consuming for the analysis process to generate,
so these are not generally created for large batches. More commonly, a large run outputs
a batch report, data analysis is performed on that report, and a human selects specific
trajectories from the batch report of either item 4 or item 5 to be visualized in one or more
of the other three reports for further assessment.

The statistical summary report, item 4 above, consists of 15 columns. One column
contains a unique name for each trajectory. Subsequent columns are the number of segments
of a given category and the percent of total for each of the seven categories. A subset of the
summary output is shown in Table 2.2.

2.3.5. The Hash Bin Output Report. The most useful of the available outputs is
the Level 1 hash bin report, listed above as item 5. This report groups trajectories together
which have the same Level 1 Categorization sequence.

As described in Section 2.3.3, there are six Level 1 categories plus ‘No Category.’ We
map each of these descriptive names for the categories to a single letter as shown in Table 2.3

For example, if a trajectory is found to have Level 1 categorizations of Course Turn,
Cruise, and S-Curve, its hash would be TCS. When a batch run generates a hash bin report,
it computes the hash for every trajectory, then it bins all like trajectories into groups based
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Name Cruise Count Cruise Percent Turn Count Turn Percent
07132202 AAL100 4 81.9% 8 16.1%
07171248 AAL1 3 94.5% 5 3.4%
07230452 AAL10 3 91.5% 5 6.7%
09061717 AAL100 3 74.8% 5 20.5%

08250149 AAH5503 3 67.9% 4 16.3%
07092229 AAL1000 3 66.9% 7 25.2%

Table 2.2: Portion of a Statistical Summary Output table for a test run over a large dataset
of trajectories.

Level 1 Category Single Letter Hash
Cruise C

Course Turn T
S Curve S
U Turn U

Racetrack R
Boustrophedon B
No Category N

Table 2.3: Hash Mapping from Level 1 Category to a single letter.

on their hash. This results is a report in which every trajectory on a given row has the
identical Level 1 Categorizations (including order). Table 3.2 shows a portion of a hash bin
report.

3. Results. Software development was carried out in Python primarily on a small
number of trajectories. Then batch runs were executed on several large datasets.

The primary question we want to ask is, can we use the Curvature Parsing Method to
identify trajectories of interest for further investigation by humans from a large real world
dataset? It may be noted that what constitutes a “trajectory of interest” is not being defined
in this report since the method allows for so many kinds of analysis to be performed.

3.1. Utilizing the Statistical Summary Output Report. To answer the primary
question, we ran several queries on the summary data to see what answers might turn up.
Upon flagging trajectories of interest, we plotted the results in kml for human inspection.

One batch run resulted in 2,405 flight trajectories. Only the statistical summary output
is available for this run. The first query was to look for trajectories with holding patterns
by finding trajectories with a high percentage of Racetrack pattern. After the statistical
summary output cvs was generated, we sorted the values so that Racetrack appeared at the
top of the list.

After reviewing these four flights visually using kml output, we found that one of them,
082214 AAH1, does not contain any racetrack segments. Investigation as to why it incorrectly
reports to have 12% racetrack is left as future work.

The other three appear all to be the same flight from Charlotte to JFK, but on different
days. In the dataset under study, these three had noteworthy racetrack segments as indicated
by the statistical summary output, but the holds do not occur near the destination as is
the usual case. Rather they were all near the midpoint of the trajectory over southeastern
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Name Cruise
Count

Cruise
%

Turn
Count

Turn
%

No
Cat

Count

No
Cat
%

Race-
track
Count

Race-
track

%

080118 AAL1 2 68.2% 2 12.9% 0 0.0% 1 18.4%
072818 AAL1 1 34.9% 3 46.1% 2 7.1% 1 13.2%
082214 AAH1 1 77.4% 1 7.5% 0 0.0% 1 12.2%
072517 AAL1 3 42.2% 3 41.9% 1 2.9% 1 9.9%

Table 3.1: Portion of Summary Output Table sorted by Racetrack Percent.

Virginia. A detail of one of these flights, 072818 AAH1, is shown in Figure 3.1.

Fig. 3.1: Holding pattern for a flight from Charlotte to JFK. The uninterrupted turning in
the same direction is categorized as a Racetrack segment. The trajectory was identified from
the statistical summary report sorted by Racetrack Percentage.

3.2. Utilizing the Level 1 Hash Bin Output Report. We carried out a second
batch run on a different dataset. In this run we generated a Level 1 Hash Bin report. A
total of 21,985 trajectories were processed in 339 seconds resulting in 886 distinct hash
combinations. When the report is sorted in descending order of trajectory count per hash,
the partial result is shown in Table 3.2. The most common Level 1 categorization hash string
is ‘C’ (Cruise only), with 3,982 trajectories in this category. Not shown in Table 3.2, there
are 518 singleton hash strings, which are hash strings with only a single trajectory.

No further data assessment was carried out on the Level 1 Hash Report (L1HR) results.
However, one may note that it is in this Hash Report that a type of trajectory similarity
emerges. Unlike the statistical summary report, the L1HR preserves the sequence of categories,
so the sequence constitutes part of the trajectory similarity. The L1HR aggregates and
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Hash String Trajectory Count Trajectory IDs
C 3,982 08302100 2XSQM, etc

TC 2,205 09222020 A459, etc
CT 2,114 09041341 9ZHRA, etc
T 1,814 09180011 A5A775, etc

TCT 1,639 09012217 A111971, etc
CTC 1,249 08211613 A1L1958, etc

CTCT 865 08270021 A1, etc
TCTC 660 08030648 AAH11, etc
TCU 462 07141358 AAL100, etc

TCTCT 407 09191922 0UXUB, etc

Table 3.2: Portion of a Hash Bin Output Report sorted by Trajectory Count.

reduces the trajectory data to a form which is better suited for some established data mining
approaches.

4. Discussion. The question posed in the Results section has been answered in the
affirmative. We are indeed able to use the Curvature Parsing Method to identify trajectories of
interest for further investigation. The research into this approach is a partial success. We can
get Level 1 Categorizations and perform analysis on these results which help us understand a
large dataset, find similarities among temporally and spatially distant trajectories, or quickly
find trajectories with specific characteristics.

We claim that this success is only partial because of certain shortcomings. First, we find
a number of trajectories which are being classified incorrectly. There may be other bugs in
the software which may similarly be considered implementation shortcomings and would
be resolved with further work. Another kind of implementation shortcoming is that course
correction turns in the middle of long cruises are not being identified as turns.

There are also shortcomings related to the process which must be refined or miti-
gated. Specifically we refer here to concepts related to curves being missed or incorrectly
characterized due to the inherent limitations of sample rate.

Given these observations, we believe a potential for the Curvature Parsing Method to be
of value is present. As developed thus far, the Curvature Parsing Method shows promise,
but it should be developed more. The Level 1 semantic segments are reasonable and enable
an analyst to find alignments with certain features of interest from a large dataset.

4.0.1. Future Research. One indication of the success of the project is that there are
multiple directions that future research could take. These directions may be grouped into
three themes: Geometry, Categorization, and Analysis.

1. Geometry
(a) Continue investigation of how to get the most correct arc values for under

sampled curves.
(b) Determine how to find the exact point of curvature (End Tangent/Begin Curve)

given edge aliasing tends to obscure these points.
(c) For racetrack patterns, find the center point which the craft is orbiting. This

information could be used to identify Surveillance flights.
(d) Determine what the best way is to identify radar jitter and the stopped anomaly,

and consider improved approaches to ignore or categorize them.
(e) Add altitude and speed analyses to gain greater understanding of the trajectory.
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2. Categorization
(a) Investigate whether there should be an additional, higher level of categorization.

This may be the case given that Boustrophedon depends on a certain sequence
of two other Level 1 categories, cruise and u-turn.

(b) See what other Level 1 categorizations should be added. It would be advan-
tageous to be able to distinguish “loops” from course turns by finding turns
between 181° and 360° (similar to a loop ramp at an interchange). It would
also be useful to distinguish between “figure eight” and other patterns.

3. Analysis
(a) Identify useful types of analytic questions which may be asked of the data

products.
(b) What are common patterns in different situations. For example, how often

do S-curves appear within the final three category segments, thus indicating a
runway alignment maneuver.

(c) How can machine learning be applied to these processes either to detect previ-
ously undetected patterns, or to improve the selections of threshold values at
all categorization levels.

5. Conclusion. The Curvature Parsing Method is an innovative approach to identifying
and analyzing meaningful subsegments of loosely constrained trajectories. Although it needs
more development, we believe that the prospective benefits of this method warrant the
additional work.

REFERENCES

[1] S. C. Ahearn and S. Dodge, Recursive multi-frequency segmentation of movement trajectories (remus,
Methods in Ecology and Evolution, 9 (2018), pp. 1075–1087.

[2] T. Hickerson, Route location and design, McGraw-Hill, 1967.
[3] M. D. Rintoul and A. T. Wilson, Trajectory analysis via a geometric feature space approach, Statistical

Analysis and Data Mining: The ASA Data Science Journal, 8 (2015), pp. 287–301.
[4] M. D. Rintoul, A. T. Wilson, C. G. Valicka, W. P. Kegelmeyer, T. M. Shead, B. D. Newton,

and K. R. Czuchlewski, Panther. trajectory analysis, (2015).
[5] C. E. Shannon, Communication in the presence of noise, Proceedings of the IEEE, 86 (1998), pp. 447–

457.
[6] Aircraft Situation Display To Industry: Functional Description and Interface Control Document, tech.

rep., Volpe Center, 2000.



CCR Summer Proceedings 2018 208

MACHINE LEARNING FOR LINEAR SOLVERS

CONNOR D. SMITH† , JOHN KAUSHAGEN‡ , MARK F. HOEMMEN§ , AND CHRIS M. SIEFERT¶

Abstract. Physics simulations represent a vital yet often problematic marriage of physics and linear
algebra. In order to efficiently run such simulations, analysts require the combination of physics input
and input regarding solution techniques for the partial differential equation (PDE). However, analysts are
sometimes unable to choose solution parameters that result in a desirable convergence. We present a solution
to these inefficiencies through the use of machine learning, in hopes that supervised learning techniques
can provide a robust alternative to the often suboptimal linear solver and preconditioner settings chosen by
humans.

1. Introduction. Input decks for partial differential equation (PDE) codes involve
both “physics” input (which describe the physics of the problem the analyst wishes to
solve) as well as parameters governing solution techniques. The further away from the
physics these parameters get, the more analysts tend to rely on cut and paste from previous
problems. Many times this leads to suboptimal choices or choices which do not let the code
run to completion. Moreover, many codes do not allow these non-physics settings to change
dynamically, forcing the analyst to pick one set for all timesteps and hope for the best.

In this work, we apply SNL’s Avatar framework to a single source of these non-physics
parameters, namely the linear solver and preconditioner settings. These parameters are often
very far from areas of analyst expertise, yet can have a striking influence on time to complete
simulations. Here we will focus on Laplace problems (e.g. electrostatics, or steady-state
thermal conduction) solved using the conjugate gradient method (CG) preconditioned with
algebraic multigrid (AMG).

Once we generate the required data, we train a classifier using a decision tree ensemble.
This classifier is then embedded into the linear solver software, where it is used to recommend
optimal parameters to the user. From the application developer’s perspective, what is
required is a set of features specific to the problem that the user is attempting to solve.
Assuming that the classifier has been trained to a sufficient accuracy, the features given
by the application will produce a set of solver parameters that will result in a desirable
convergence.

2. Machine Learning and Avatar.

2.1. Machine Learning Techniques. In its most basic sense, machine learning is the
process of training machines to use past experience to predict future events. There exist
a nearly unlimited number of algorithms that have the ability to accurately predict just
about any event that has historical precedence. Some of the more popular machine learning
techniques include support vector machines (SVMs) [6], linear and logistic regression [9],
neural networks [13], and decision trees [11]. Each of these techniques have strengths and
weaknesses, but (as of yet) there is no technique that can universally outperform all of the
others. Neural networks in particular represent nearly an entire field by themselves, and
continue to accumulate popularity in the machine learning community. For this problem, we
experiment with several techniques. We eventually decided on decision trees as the technique
of choice, but neural networks also displayed some promise, achieving as high as 90% accuracy.
However, due to a stall in accuracy past this point, neural networks were determined as not
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Fig. 2.1: Example of basic decision tree that recommends whether to wear a jacket based on
current weather conditions.

suitable. A simple example of a decision tree is Figure 2.1, which demonstrates the process
a decision tree would go through to recommend whether or not to wear a jacket.

2.2. Machine Learning Process. While there is no agreed “best” machine learning
algorithm, where there does appear to be some consensus within the machine learning
community is in the machine learning process, at least when it comes to supervised learning
techniques. In order to predict future events, these algorithms require information on past
events; in other words, they need data. Thus, the first step in the process is generating
data, and if the machine learning algorithm is going to produce accurate predictions, there
needs to be a lot of it. For the problem of recommending parameters for linear solvers, we
generated 26,040 samples. More often than not, this step in the machine learning process is
the most challenging and time consuming.

After generating data, the next step is to train the chosen algorithm on the data.
Depending on the algorithm of choice, training can take seconds or days. The actual training
process varies from algorithm to algorithm, but usually involves initial guesses on training
data followed by refining based on errors made on the training data. Once training is
complete, the algorithm is ready to make predictions on data it has yet to see. Next, the
third step in the machine learning process is required: testing. Testing involves letting the
algorithm predict outcomes of a separate data set, then discerning accuracy based on how
well the algorithm performed. If accuracy is determined to be insufficient, one or both of the
previous steps are revisited, and in some cases, a completely new plan is put forth.

2.3. Avatar. Decision trees represent a popular type of supervised machine learning
algorithm. Given a set of input features, the decision tree algorithm decides on the appropriate
label based on previously given labeled data. Depending on the number of features and size
of the training set, decision trees can be either very small and simple or large and complex,
however decision trees tend to train on and classify data considerably faster than many other
machine learning algorithms.

For this problem, we used a set of decision tree tools called Avatar [5]. Aside from its
basic functionalities in creating decision trees, Avatar provides the ability to easily create
decision tree “ensembles”. Instead of one tree to train on and classify data, ensembles are
groups of decision trees that, when trained together on the same data, greatly improve
classification accuracy. Avatar utilizes other methods of improving accuracy as well, including
bagging, boosting, and random subspaces. In bagging [2], the decision tree algorithm builds
several different trees on subsets of data sampled with replacement. While each tree is not an
accurate classifier by itself, when put together the weak trees tend to produce very accurate
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classifiers. Boosting [3] is the process of building an ensemble in which each tree focuses
on the samples that the previous trees missclassified. Over time, the boosting ensemble
minimizes error on the training set, often greatly improving accuracy as well. The random
subspace [8] method is similar to bagging in that it takes random subsets, but instead of
sampling the training data, the random subspace method samples the training data features.
When applied to the right types of training data, the random subspace method can greatly
improve classifier performance.

3. MueLu. MueLu [10] is an algebraic multigrid (AMG) precondititoning package
provided in Trilinos [7]. MueLu implements a number of algebraic multigrid algorithms, but
for the purposes of this paper we consider smoothed aggregation (SA-AMG) [15]. One of the
most difficult parameters for a user to choose when using SA-AMG is the drop tolerance,
also known as the aggregation threshold. This is used to remove “weak” connections in a
matrix to improve coarse grid quality. It is traditionally defined as follows. A matrix entry,
aij , is dropped if ∣∣∣∣aijajiaiiajj

∣∣∣∣ < ε,

for some tolerance ε. If this parameter is chosen to be too small, our coarse grids are poor
and thus convergence is poor. If this parameter is chosen to be too large, MueLu may crash
in the eigenvalue estimation for smoothed aggregation. Thus, analysts using MueLu need to
choose a parameter in the “Goldilocks Zone,” which is neither too large nor too small. The
goal of this work is to use machine learning to guide this decision. For this work, we will be
using the distance Laplacian dropping algorithm [4,14], where the drop tolerance is defined
on an auxiliary matrix, L, where

lij =

{
(xi − xj)

−2 if i 6= j and aij
−∑i6=j lij if i = j

,

where xi represents the mesh coordinates of node i.

4. Problem Features and Correlation. All machine learning algorithms need data
to train on, and part of our task was choosing which features to record. There are near limitless
choices, and feature choice can be important in the performance of an algorithm. Our problem
was heavily dependent on the matrix generated for the problem. Although it would be possible
to use information from this matrix as features, we chose to use information about the mesh
quality. There has already been much research done on mesh quality and its performance
impacts, and seemed a good place to start [1]. We also wanted our features to be dimensionless,
scale-invariant, and scalable to a (0, 1) range. For this we settled on element edge length,
the material parameter from Laplace (∇ · σ∇ϕ = f), the determinant of the Jacobian for
elements, and stretch, which is defined as

√
3 min edge length/max diagonal length. We

recorded other mesh quality metrics as well, but these other metrics proved to be constant
for this particular dataset. For each of element edge length and stretch, the minimum and
maximum element value were recorded, as well as the mean value. For the Jacobian and
material parameter, the ratios of min to mean and max to mean were recorded.

To analyze the independence of our feature choices, we examined the angles between each
pair feature vectors. This gave us and idea of how closely related each pair of features was.
Figure 4.1 shows the cosine of the angle between each pair of vectors. Along the diagonal
are ones since the angle between the same feature vector is zero. There are however some
notable relationships. In particular are ElEdge max and ElEdge mean which appear to be
nearly indistinguishable on the plot. Additionally, there is dependence between Stretch max
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Fig. 4.1: Pairwise cosine of angle between feature vectors. The closer a pairwise relationship
is to 1, the more closely related the pair of features.

and ElDetJ max mean. Again this is rather unsurprising since stretching should have a
noticeable effect on the element Jacobian. Finally one also sees some dependence between
Sigma max mean and ElEdge min, although this is most likely an artificial dependence
showing up in this dataset.

5. Dataset Description. The dataset we used was created to imitate a normal ALE-
GRA run [12]. The mesh is a stretched tensor product of a highly refined section and a very
coarse section. The material parameter of the mesh is variable in one region of the mesh,
and constant everywhere else. Due to the grading, we may obtain very stretched elements on
the boundaries of the mesh. In addition, the material parameter varies over different runs.

For each set of stretches and material parameters, eight different drop tolerances were
run. The best performance run was considered baseline, and the other seven were compared
from the original. In all, we ran 26,040 different combinations.

6. Results.

6.1. Data Classification. Supervised machine learning techniques that classify data
into unique categories require training data that has been labeled as one of several possible
classes. Data labels can take many forms, ranging from integers to strings of characters. For
this problem, data was labeled with an integer value based on a “cost estimate” output from
each run in MueLu. Rather than look at run time and deal with the question of performance
variability, we use a mathematical estimation of the cost of solving the linear system as our
key performance metric. Using an approximation of multigrid work units [16], we first define
work as,

Work = (SmootherComplexity + 1) ·#Iterations, (6.1)
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where smoother complexity is the cost of applying smoothers at all levels divided by the cost
of applying a matrix-vector product at the fine level. This differs from work units by not
including the cost of prolongation/restriction or the cost of vector/scalar operations in the
conjugate gradient method. For each problem/parameter combination, we took the work of
the best parameter on this problem (e.g. the one with the lowest work), and divided this by
the work on the problem/parameter pair. This yields a cost estimate, which is 1 for the best
algorithm and approaches zero as performance degrades.

Initially, the label on a particular sample was either 0 or 1. A sample was labeled as
0 if its cost estimate was below the arbitrary threshold of 0.8, and labeled as 1 if its cost
estimate was above the threshold. A label of 0 represented a “bad” MueLu run, in which
the solver either took longer than an ideal time to converge, or crashed before converging. A
label of 1 represented a “good” MueLu run, meaning the sample had a set of parameters
worth recommending to the user. Later, a third label was introduced: -1. A sample was
now labeled as -1 if its cost estimate was negative, which only occurs when convergence is
not attained and the program crashes. Therefore, a label of -1 represented the worst case
scenario. Aside from adding utility by differentiating between a “bad” run and a “crash”,
which are significantly different, the addition of a third label surprisingly also saw a slight
increase in performance metrics. With both of these benefits, we decided to permanently
keep the third “crash” classification.

6.2. Measuring Performance. To measure classifier performance, practitioners usu-
ally separate data into training and testing partitions. When the training step is completed,
the testing data is used to test the accuracy of the classifier with testing data that has not
been seen by the classifier. However, in some cases there is not enough usable data to divide
into two separate partitions and still attain good performance in the training step. In these
cases, a technique called cross-validation is often utilized. Instead of separating the data
into two batches, training is done on the full dataset for N iterations. At each iteration, a
subset of the data of size datasetSize / N is set aside, the classifier trains on the rest of the
data, and then the classifier is tested on the small subset. Once all iterations are complete,
all N of the test results are averaged, resulting in an overall accuracy for the dataset. For
our problem, we used both techniques to measure classifier performance.

6.3. Performance Metrics. Accuracy is the most basic measure of classifier perfor-
mance. It is calculated,

TruePositives+ TrueNegatives

TruePositives+ TrueNegatives+ FalsePositives+ FalseNegatives
, (6.2)

where TruePositives are correctly labeled “good” samples, TrueNegatives are correctly
labeled “bad” or “crash” samples, FalsePositives are “bad” or “crash” samples incorrectly
labeled as “good”, and FalseNegatives are “good” samples incorrectly labeled as “bad” or
“crash”. In other words, accuracy is,

CorrectGuesses

AllGuesses
. (6.3)

There are several metrics aside from accuracy that are vital in understanding classifier
performance. In our project, we used both precision and recall as performance metrics. For
this particular problem, precision is perhaps the most important metric, as it measures
the percentage of samples classified as positive (“good”) by the classifier that are correctly
labeled as such. This is of high importance to us, because the worst case scenario of the
classifier is a “good” classification that, when run in MueLu, actually results in a “crash.”
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The closer the precision is to 1, the less likely such an incident will occur. Precision is
calculated,

TruePositives

TruePositives+ FalsePositives
. (6.4)

While not quite as important to this problem, recall is still an interesting metric for our
classifier. Recall measures how many of the positive (“good”) samples were correctly classified
as “good” by the classifier. The closer the recall is to one, the less likely “good” samples will
be missclassified as “bad” or “crash.” Recall is calculated,

TruePositives

TruePositives+ FalseNegatives
. (6.5)

6.4. Classification Performance. To maximize classifier performance, we used all
of the previously mentioned decision tree building options (bagging, boosting, and random
subspaces) in conjunction. There is not much literature regarding hybrid approaches to
decision trees, yet all three of these options together produced the best performance out of our
classifier. Between the two data classification approaches, performance metrics were either
identical or slightly favored the ternary classification approach. Classification accuracy ended
up just above 94 percent which, although less than ideal, should be suitable to accomplish
what we need from the classifier. Less suitable to our classifier is the precision, ending up at
about 90 percent. While most “good” recommendations will be accurately recommended,
the chance that a “good” recommendation is “bad” or “crash” is about 10 percent. However,
because of the separation between “bad” and “crash” classifications, we can take a deeper
look at what the precision really measures. If we only count “crashes” as negatives, and
include “bad” classifications with “good” classifications to make up our positives because
“bad” labeled samples still converge, our precision comes out to be about 95 percent. This is
important to note, because this means the odds that a worst case scenario will occur, being
a “crash” labeled as “good”, is only about 5 percent. Table 6.1 summarizes the results of
using both three classifications and two.

Number of Classifications Accuracy Precision Recall
Two (0,1) .9326 .8862 .9002
Three (-1,0,1) .9431 .9047 .9144

Table 6.1: This table provides the accuracy, precision, and recall for both the ternary and
binary classifications.

Figure 6.1 demonstrates an Avatar tool that, instead of increasing accuracy, aids in the
visualization of performance results. Called a confusion matrix, this table charts classifier
predictions against the true labels of the samples. This allows users to easily identify how
well the classifier is performing beyond accuracy, and in this case, to distinguish between
“crash” false positives and “bad” false positives. “Crash” false positives are highlighted in
red and “bad” false positives are highlighted in orange.

6.5. MueLu Performance. Once embedded in MueLu, the trained classifier predicts
the performance of a problem for a set number of drop tolerances, then MueLu recommends
a suitable drop tolerance based on the classifier’s predictions. Figure 6.2a is a chart of the
predicted best drop tolerances for a particular set of problems. Figure 6.2b represents the
resulting number of iterations for the problems with drop tolerances recommended by MueLu
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Fig. 6.1: This confusion matrix represents the results of our ternary (three classification)
decision tree ensemble. The red number signifies “crash” false positives, which are our worst
case scenario. The orange number signifies “bad” false positives, which are not ideal, but
still will not crash the linear solver.

(a) Chart of drop tolerances recommended
by our classifier. Samples within the black
triangle are closely related to our training
data, while samples outside of the triangle are
not. The axes are labeled in accordance with
the stretch sizes used to generate each data
point.

(b) Chart of the number of iterations for sam-
ples with drop tolerances recommended by our
classifier. Spaces that are blank illustrate a
crash.

Fig. 6.2: Charts of drop tolerances and number of iterations recommended by our classifier.

in conjunction with our classifier. Samples within the highlighted triangle area come from
the same problem domain as our training samples, but as of yet have not been seen by the
classifier. As we can see in the chart mapping the number of iterations, samples within
the same problem domain performed very well, while samples not as closely related to the
training data did not perform as consistently.

7. Conclusions. One of the more complex dilemmas in physics simulations is the
choice of certain simulation parameters, in particular the input regarding solution techniques
for the partial differential equation. We have provided an alternative to the usual guess work
associated with choosing these parameters through the use of machine learning. While we
have so far only produced results for the multigrid drop tolerance parameter, our method for
recommending parameters is applicable to a nearly endless array of solution parameters. We
have successfully demonstrated that the combination of human and machine decision making
has the ability to greatly improve efficiency in physics simulations, and is a promising field
of study moving forward.
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Applications

Articles in this section discuss the application of computational techniques to simulate
physical systems.

Hedge, Van Bloemen Waanders, Littlewood, and Brown-Shaklee support the production
of defect-free parts in additive manufacturing by developing predictive models for ceramic
components. Using peridynamics, they model thermal debinding and sintering processes.
They demonstrate that their model captures several key features of defects in the experimental
specimen.

Meredith, McGregor, and Kramer address the utility of simulation-based parameter
estimation where analytic studies are impossible and experimental investigations are imprac-
tical. They describe a method for determining the convolution kernel of an antenna using
electromagnetic simulation. Their method permits the prediction of the antenna response to
any arbitrary time-dependent input signal.

Brickson, Jacobson, and Baczewski implement the effects of magnetic fields and spin-
orbit coupling in an interior penalty discontinuous Galerkin discretization of Schrödinger-like
equations. Their method enables simulations of qubit device design.

Sagredo and Cangi develop an exchange-correlation functional for density functional
theory which captures bulk, surface, and confinement physics for materials modeling of d-
and f-electron systems. They demonstrate its accuracy on the jellium surface.

A. Cangi
M. L. Parks

December 6, 2018
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A PERIDYNAMIC MODEL FOR DIRECT WRITE

ARUN S. HEGDE∗, BART G. VAN BLOEMEN WAANDERS† , DAVID J. LITTLEWOOD‡ , ADAM

W. COOK§ , AND HARLAN J. BROWN-SHAKLEE¶

Abstract. Developing predictive models for the additive manufacturing of ceramic components is
essential to producing defect-free parts in a reliable manner. In this report, we investigate peridynamics, an
alternative theory to classical continuum mechanics, as a foundation for developing such models. Our focus
is on direct write, a subfamily of additive manufacturing processes in which parts are produced by layering a
ceramic slurry to create the green state and then applying heat in two steps, first to dry the green state
(thermal debinding) and second to solidify the resulting powder compact (sintering). Simple models for the
first two stages – green state and thermal debinding – are constructed using the peridynamic theory. The
efficacy of the strategy is demonstrated through comparison with experiment, with the models capturing
several key features of defects in the experimental specimen.

1. Introduction. Developing realistic and predictive models for additive manufacturing
requires multiscale and multiphysics modeling techniques. The production of ceramic parts
is an important example of this. In a typical scheme, a ceramic powder is mixed with a
polymeric binding agent to create a thixotropic and pliable slurry, which is then layered
onto a substrate to achieve a prescribed geometry. The polymer binder is removed from the
resulting green state via an initial heating, leaving only the shaped ceramic powder. After
the binder is removed, the shaped powder is sintered into its final state. The end goal of this
process is to produce a part that exhibits the desired material properties without defects or
anomalies. Unfortunately, the reality is that material properties of the manufactured parts
can be less than reliable and often display considerable variation [15]. Moreover, significant
amounts of defects, such as cracks or voids, can be detected when viewing a finished product
at different length scales. Each of these subprocesses – the green state, removal of the binder,
and sintering – could contribute to the formation of defects. In order to mitigate these
challenges, computational models must be able to reliably predict when and how defects
occur, and therefore must account for the various physics and length scales involved in the
process.

In the present work, we focus our attention on direct write (DW), a subfamily of additive
manufacturing processes in which three-dimensional parts are constructed in a layered
fashion by extruding material through a deposition tool, such as a syringe or nozzle [8,10,11].
DW consists of a sequence of four stages: (1.) creating a homogeneous slurry with the
correct rheological behavior, (2.) using an optimal amount of pressure and heat at the
syringe for deposition onto the substrate, (3.) applying an optimal heating schedule to
extract the binding agent, and (4.) applying the right amount of heat for sintering. A
proper setting of multiple decision variables and parameters during each of these stages
is required to produce ceramic parts with the desired geometric features and predictable
material properties. Although this motivates an optimal control problem, our first challenge
is to develop a forward model that not only captures the general characteristics of the process,
but also spans the different, critical subprocesses. The approach we follow is rooted in the
peridynamic theory, which provides a flexible computational mechanics framework in which
the formation of defects is a natural consequence of the governing equations. Although
a range of mechanical, thermal, and electrical properties are potential design targets, we
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concentrate on the characterization of defects throughout the DW process. Specifically, we
seek to address the following question: can the peridynamic framework help us construct a
model that is (a.) capable of spanning the green state, binder removal, and sintering steps of
DW and (b.) flexible enough to generate defects with features similar to those observed in
experimental data? Our results suggest positive answers to both questions.

Peridynamics was first introduced by Silling in [17] as an alternative theory for solid
mechanics that naturally handled length scale effects and subsumed the modeling of discon-
tinuities, which traditionally required a separate set of theory and computational techniques.
This was accomplished by replacing spatial derivatives, a key feature of the classical theory,
with integral equations defined over neighborhoods. In the current work, we utilize the
meshfree discretization of Silling and Askari [18], as implemented in the Peridigm simulation
code [14]. Peridynamics has successfully been applied in a number of settings, including
prediction of crack growth [1, 9], realistic fracture modeling [2, 25], gas and explosive model-
ing [5], heat and mass transfer [3, 13], fluid-structure interactions [23], and shockwave and
impact modeling [21]. Recent work by Silling and coworkers [16] extended peridynamics to
formulate a novel multiscale approach to sintering. These developments motivate the present
work and suggest that the modeling of the various stages of DW can be unified under a
single peridynamic framework.

The remainder of the paper is organized as follows. Section 2 provides a brief overview
of peridynamics and discusses specific material and damage models. In Section 3, we use
the theory to formulate a forward model for DW focusing on the green state and removal of
the binder. Throughout the section, we emphasize the flexibility and utility of the approach
by highlighting design decisions that simplify the modeling procedures. The developed
forward model spans the green state and thermal debinding stages of DW and is compared
to experimental data from sintered specimen in Section 4. In particular, we emphasize the
similarities between simulated and experimentally-observed defects.

2. Peridynamics. In this section, we provide a brief introduction to peridynamics. For
more detailed accounts of the theory, please refer to work by Silling and coworkers [17,19,20].

2.1. General formulation. Peridynamics was initially developed as a nonlocal
reformulation of classical continuum mechanics [17]. Whereas the classical theory constructs
models based on interactions between material points and their infinitesimal neighbors,
i.e., via spatial derivatives, peridynamics is based on interactions between material
points and their neighborhoods. Let B ⊆ Rd (typically d = 3) denote a reference body
and let x ∈ B. For notational convenience, boldfaced variables are used to denote
vectors in Rd. Given δ > 0, define the neighborhood of the material point x to be
Hx = {x′ ∈ B : ‖x′ − x‖2 < δ}, i.e., the intersection of an open ball centered at x
with radius δ and the reference body B. The parameter δ is often referred to as the
horizon as it dictates with which points x may interact. If x′ ∈ Hx, then x and x′

are said to share a bond, which is denoted by the corresponding relative position vector x′−x.

It is important to note that both neighborhoods and bonds are determined with re-
spect to proximity in the reference configuration. For any t ≥ 0, let u(x, t) denote the
displacement vector between the point x in the reference configuration and its new location
at time t. Whether two deformed points x + u(x, t) and x′ + u(x′, t) are bonded depends on
whether the bond x′−x exists in the reference configuration. With this setup, discontinuities
such as cracks or voids are directly modeled by deleting bonds when a failure criterion is
met, for example, if the deformed bonds have stretched too far.
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The peridynamic equation of motion can be derived as,

ρ(x)ü(x, t) =

∫
Hx

(T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉) dVx′ + b(x, t) (2.1)

for all x ∈ B, where Vx′ refers to the standard volumetric measure. The quantity ρ(x) is
the density field of the reference body and b(x) is a prescribed volumetric force applied
at the material point x. T[x, t]〈x′ − x〉 describes the force state associated with the point
x ∈ B at time t. A force state is an important example of a peridynamic state, which is a
scalar, vector, or tensor valued operator that takes bonds as input. Peridynamic states are
typically denoted by the underline convention with the bond being operated on indicated
between angle brackets 〈·〉. Any spatial and/or temporal dependence is specified using
regular brackets [·]. Hence, T[x, t]〈x′−x〉 is a nonlinear function that depends on a reference
position and time, takes as input a bond (in the neighborhood of the reference position),
and returns a d-dimensional vector of force densities with units of force per unit volume
squared. A more comprehensive discussion of state-based peridynamics can be found in [19].

Another important example of a peridynamic state is the deformation state,

Y[x, t]〈x′ − x〉 = y(x′, t)− y(x, t) (2.2)

where y(x, t) = x + u(x, t) represents the deformed position of point x at time t. Essentially,
the deformation state operates on a bond x′ − x and returns the corresponding deformed
bond at time t. The associated extension scalar state is a scalar-valued expression defined as,

e[x, t]〈x′ − x〉 = ‖Y[x, t]〈x′ − x〉‖ − x[x]〈x′ − x〉 (2.3)

where x[x]〈x′ − x〉 = ‖x′ − x‖2 is the reference scalar state. Hence, (2.3) measures the
change in bond length after deformation. Normalizing this quantity by x[x]〈x′ − x〉 provides
the dimensionless strain in the indicated bond. As will be illustrated shortly, different
material models are specified by different expressions for the force state, which in turn
depend on the deformation state, i.e., T can be written as a function of Y.

Numerical solution of (2.1) requires both spatial and temporal integration. In the
present work, we use the software Peridigm [14], an open-source computational peridynamics
code which computes (2.1) using the meshfree method of Silling and Askari [18]. Spatial
integration is carried out by partitioning the reference body B into m disjoint regions,
represented by the collection of nodes and volumes {(xi,∆Vi)}mi=1 where xi is some
representative point from region i and ∆Vi is the volume of region i. For each region, let the
collection of δ-neighboring elements be defined as,

Fi = {p : ‖xp − xi‖2 ≤ δ}, i = 1, ...,m. (2.4)

The spatially discretized equation of motion can therefore be written as,

ρ(xi)ü(xi, t) =
∑
p∈Fi

(T[xi, t]〈xp − xi〉 −T[xp, t]〈xi − xp〉) ∆Vp + b(xi, t), (2.5)

for each i = 1, ...,m. Under the assumption that the force state is Riemann integrable, the
discretization becomes quite natural. Following [18], time integration can be carried out
using a central difference scheme, which leads to a fully discretized equation of motion,

ρ(xi)
u(xi, tk+1)− 2u(xi, tk) + u(xi, tk−1)

(∆t)2
=∑

p∈Fi

(T[xi, tk]〈xp − xi〉 −T[xp, tk]〈xi − xp〉) ∆Vp + b(xi, tk), ∀i = 1, ...,m
(2.6)
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where {tk}nk=1 is a discretization of the interval [0, T ] for some T > 0 with stepsize ∆t.
The above equations can be solved when appropriate initial and boundary conditions are
provided.

2.2. The linear peridynamic solid model. In this subsection, we describe the linear
peridynamic solid (LPS) material model derived in [19]. Essential, the LPS model provides
a nonlocal interpretation of classical linear elastic theory. The LPS principle states that the
force density vector produced by T[x, t]〈x′−x〉 acts along the direction of deformation state.
Specifically,

T = t
Y

‖Y‖ , (2.7)

where t is a scalar valued peridynamic state. Note, the input arguments to the peridynamic
states, [x, t]〈x′ − x〉, have been suppressed for readability. In a general setting, a material
that obeys (2.7) is termed ordinary. The magnitude t is defined as,

t =
−3p

m
ω x+

15G

m
ω ed (2.8)

where p is the peridynamic pressure and G is the shear modulus. The peridynamic pressure
is generally given by p = −Kθ, where K is the bulk modulus and θ is the dilatation. The
remaining components of (2.8) are defined as follows.

The weighted volume m is a spatially varying quantity that only depends on the
reference configuration and is given by,

m[x] =

∫
Hx

ω (x)2 dVx′ . (2.9)

The influence function ω is a nonnegative function that weights bonds in the neighborhood
Hx, thus determining their contribution to the integral. If ω is solely a function of the scalar
x, then the influence function is spherical and the material is isotropic. The dilatation is
defined as,

θ[x, t] =
3

m

∫
Hx

ω x e dVx′ . (2.10)

The final term in (2.8), ed, is the deviatoric part of the extension state e and is given by
ed = e − θx/3. The effect of changes in temperature-dependent problems can be easily
incorporated by subtracting the thermal expansion from the extension scalar state [12],

e? = e− α∆Tx (2.11)

where α is the material’s linear coefficient of thermal expansion and ∆T is the temperature
change. The new extension state e? then replaces e in the preceding formulas.

2.3. The critical stretch damage model. An important feature of the peridynamic
framework is that discontinuities such as cracks or fractures are handled naturally by the
theory. Essentially, these forms of damage occur when two points x ∈ B and x′ ∈ Hx cease
to interact, i.e., the bond 〈x′ − x〉 is removed and the load that it would have carried is
distributed among neighboring bonds. These neighboring bonds are more likely to fail as
they must now support the extra load. In this fashion, damage can emerge realistically and
propagate autonomously through a material. The fidelity of this scheme has been observed in
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a number of studies, e.g., [1, 5,9]. The critical stretch model for bond failure is one approach
to modeling the formation and propagation of discontinuities [18]. Let s0 denote the critical
stretch for bond failure and define the bond stretch to be the peridynamic state,

s =
e

x
(2.12)

which is simply the normalized extension. Define µ as follows,

µ =

{
1 if s < s0 for all 0 ≤ t′ ≤ t
0 otherwise

. (2.13)

The motivation for this definition is that bond failure is irreversible; µ takes on the value of
1 only if the bond stretch never equals or exceeds the critical stretch, i.e., the bond remains
undamaged for all time t′ ≤ t. From this, the notion of damage at a particular point can be
introduced by integrating over all bonds in the neighborhood of that point,

φ(x, t) = 1−
∫
Hx

µ[x, t]〈x′ − x〉dVx′∫
Hx

dVx′
. (2.14)

Hence, φ(x, t) measures the fraction of material points in the neighborhood of x for which
no bonds exist (at time t). If φ(x, t) = 1, then x is totally disconnected from its neighbors.
Damage is incorporated in both (2.1) and (2.6) by introducing µ as a multiplier to the force
state T.

3. A forward model for direct write. In this section, peridynamic theory is used
to construct a forward model spanning the green state, debinding, and sintering stages for
the direct write (DW) assembly of ceramic parts. We begin with a description of the DW
fabrication technique. In a typical application, a ceramic powder is mixed with a sacrificial
polymeric binder in order to create a workable slurry that can be shaped into complex
patterns or arrangements at the right pressures and temperatures. This shaping occurs
via a controlled procedure where the slurry is deposited onto the substrate by a deposition
tool, such as a syringe or nozzle, in a layered fashion to achieve the target geometrical
configuration. The manner in which the deposition occurs can be broken into two principal
categories [11]: filamentary-based approaches and droplet-based approaches. Our focus is on
filamentary-based approaches where the slurry is extruded through the nozzle in continuous
strands.

Once deposited, the material is referred to as being in the green state and the shaping of
the material is complete. The remaining stages can be thought of as post-processing steps
in order to give the final part desirable mechanical properties. The binding agent is first
removed from the green state in a process known as debinding. In the present work, we
focus on thermal debinding, which is probably the most common industrial technique for
polymer removal [6]. During this procedure, the polymeric binding agent is removed from
the green state through controlled heating, leaving only the ceramic in the form of a powder
compact, i.e., a porous packing of loose grains. The resulting part is then sintered in order
to further fuse the powder grains together and create a strengthened and dense solid part.
Note that the removal of the binder before sintering is a critical step – if debinding is not
carried to completion, the residual polymer left in the part may act as a contaminant during
the subsequent sintering and lead to a final part with weakened material properties [22]. A
simple example to have in mind is clay pottery – clay and water are mixed together into a
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malleable form, shaped, and then heated in a kiln to produce a pot. At any stage of the
above processes, flaws in the part could develop and grow into defects in the final product.
The modeling of these defects is the critical aspect of the current work.

3.1. Green state. The term green state refers to the configuration of the material
before heating, i.e., the state after the material is deposited but prior to debinding and
sintering. In order to simplify the construction, we do not explicitly model the mixing of
the slurry and the deposition onto the substrate. Rather, the green state is constructed
by arranging the slurry strands according to specified pressure maps, which contain the
trajectory (x(t) ∈ R3 coordinates), temperatures and syringe forces associated with the
printing procedure. As such, the model for the green state becomes a direct implementation
of the theory described in Section 2.2 and Section 2.3 for the geometry specified by the
pressure maps. An example pressure map displaying the nozzle trajectory and syringe forces
is shown in Figure 3.1a .

(a) (b)

Fig. 3.1: Left, example pressure map detailing the laydown path of the slurry and syringe
forces at the nozzle. Right, visualization of the green model containing multiple strands from
a subset of the pressure map.

In order to assemble the green state, we have to make some critical modeling as-
sumptions. Consider an individual slurry strand extending linearly from the coordinate
xL to xU and let [xL,xU ] denote the corresponding line segment. Let f(x) be the syringe
force associated with the pressure map. The strand is modeled as a cylinder with radius
depending on the syringe force,

r(x) = r0 + β

(
x− xL

xU − xL
f(xU ) +

xU − x

xU − xL
f(xL)− fave

)
for x ∈ [xL,xU ] (3.1)

where r0 is the nominal radius, β is a sensitivity parameter determining the variations
among strands based on force measurements, and fave is the average syringe force (over
the entire pressure map). Essentially, the strand radius at a position x is given by a
nominal radius plus the scaled deviation between a linear interpolation of the forces at
the strand endpoints and the average force, reflecting the fact that larger syringe forces
correspond to greater quantities of material being deposited. The strand endpoints and
forces are typically extracted from sequential data points in experimentally-recorded pressure
maps. Additionally, the nominal strand radius r0 and the constant β are unknown model
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parameters that must be estimated from experimental data. It should be emphasized that
(3.1) was chosen for its simplicity; model forms of greater complexity may lead to more
realistic results. As will be demonstrated in Section 4, this model is enough to capture
several prominent features of experimental samples. An example strand model corresponding
to a subset of the pressure map in Figure 3.1a with β = 0.08 is presented in Figure 3.1b.

A full numerical implementation of the green state can be constructed by combin-
ing the pressure map and strand model, discretizing the resulting geometry into nodes as in
Section 2.1, choosing a horizon δ, implementing the force states associated with the linear
peridynamic solid model of Section 2.2, and solving the resulting set of equations. This task
is made simple in Peridigm [14].

3.2. Thermal debinding. After the green state has been constructed, the green part
enters a thermal debinding stage in which the polymer binder is removed from the material
via a prolonged period of heating. This process, sometimes referred to as burnout or burnoff,
involves an intricate combination of chemical and physical mechanisms that can often result
in anomalies such as bloating, blistering, cracking, and void growth [6, 22]. As temperature
increases, the polymer degrades and eventually decomposes into volatile species that diffuse
to the surface of the part. When these gasses become trapped, the resulting internal stresses
can lead to defect formation [22]. Enneti and coworkers [6] posit that the increased internal
pressure during thermal debinding is exacerbated by the angular shape of ceramic particles,
which restricts how freely the particles may rearrange and thus acts as a further impediment
to the escaping polymer. An additional complication is the distribution of internal pressure
throughout the part could be uneven as the composition of the slurry strands may be highly
variable. For example, polymer-rich regions of the green state can form into pores and voids.

The above discussion suggests that the principle mechanism for defect formation
during thermal debinding is an increased internal pressure brought about by an increased
temperature. Rather than explicitly modeling the complex array of mechanisms that
contribute to the internal pressure, e.g. evaporation, fluid flow through porous media,
pyrolysis, etc., we choose to construct a simple peridynamic material model that exerts a
user-specified time-dependent pressure on its surroundings. This material can be placed
among the arranged slurry strands to emulate an increasing internal pressure as the green
state undergoes a temperature rise. In our implementation, we utilize the peridynamic
material model developed by Turner [23] for representing a porous material with fluid
pressure accumulated in the pores. The new material model requires a simple modification
to (2.8), with the peridynamic pressure now containing an additional contribution from the
fluid pressure pf , which may vary in time or space, i.e.,

p = −Kθ + γpf (3.2)

where γ is the fluid pressure coefficient. We refer to the Peridigm user guide [14] for discussion
on the software implementation of new material models. An obvious challenge with this
approach is that the internal pressure is usually unmeasured and therefore unknown. To
handle this, we can parameterize the pressure function and treat the parameters as quantities
to be estimated or calibrated.

3.3. Sintering. Once the polymer is removed from the green state, the part is sintered
into its final state. Sintering is a thermal process in which a powder compact made
up of individual powder grains is converted into a solid mass through the application
of heat. This process is fundamentally driven by a reduction in surface energy of the
powder grains [4, 7]. We first note that the surface energy is created by the disrupted
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atomic bonds on free surfaces of the grains and is hence related to the area density of
broken bonds. At grain boundaries, i.e., the interfaces where two grains are in contact,
the broken bonds of both contact surfaces partly align and connect, leading to high
grain boundary energy if the alignment is poor (more broken bonds) and lower grain
boundary energy otherwise (better alignment, fewer broken bonds). As the temperature
is increased, atoms in the grains become more mobile and curvature gradients due to
the mixed particle-pore structure promote mass flow within contacting grains. This
mass flow tends to fill and smooth out the connecting regions between adjacent grains,
a phenomenon known as neck formation. In this manner, grain boundaries grow during
sintering, leading to a decrease in free surface areas and hence a reduction of free surface en-
ergies. The result is a densified, solid part where the formerly loose grains have fused together.

Due to unavoidable variations in grain sizes and shapes, as well as anomalies either
present in the green state or formed during debinding, the ceramic powder compacts are
rarely uniform and may contain voids and other defects which grow into larger-scale flaws
during sintering. For example, preexisting voids may merge rather than close, leading to
the final part containing even larger voids. Moreover, it has been observed that sintering
tends to amplify defects developed during thermal debinding [6]. The key motivation
for a peridynamic model for sintering comes from the importance of peridynamic bond
forces. Recall from Section 2, peridynamic theory is built on nonlocal force interactions
between material points within the same horizon. As a result, the framework provides a
natural setting to model the long-range forces responsible for powder grains attracting
and deforming. In work by Silling and coworkers [16], a multiscale model for sintering is
proposed that characterizes the aforementioned surface energies through intergrain and
intragrain peridynamic bonds rather than atomic bonds. Importantly, this approach has
been demonstrated to reproduce several microstructural features that appear in real-world
sintering applications.

The full forward model is constructed by connecting the models for the green state,
debinding, and sintering in series. Hence, the forward model is initialized at the green state,
which then undergoes thermal debinding, and the output of thermal debinding is passed as
an input to sintering. Importantly, each stage of the model is underpinned by the same
fundamental peridynamic theory.

4. Results. The forward model developed in Section 3 utilizes the peridynamic
framework to span the green state, thermal debinding, and sintering stages of DW. This
answers the first half of the question posed in the introduction. Now, we pursue the second
half, namely, how well does the forward model capture defects observed in real-world
systems? In what follows, we highlight the flexibility of the peridynamic approach by
discussing design decision that allow us to reproduce interesting features of the experimental
specimen. It is important to note that the results presented in this section constitute
only a partial comparison between simulation and experiment. The simulation results are
taken after running the green state and thermal debinding components of the code and
comparisons are made with selected defects from sintered specimen which were judged to
have originated during debinding. Hence, the conclusions drawn in this section are primarily
qualitative and motivate more quantitative comparisons in the future.

In the examples presented below, the slurry mixture was composed of 60% alumina
powder and 40% polymer, with trace amounts of stearic acid. The experiment followed
the procedures highlighted in Section 3 – the slurry was printed onto a substrate, the
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green state underwent thermal debinding, and the resulting powder compact was sintered.
Experimental data was available in two forms. First, numerical measurements were taken
during the printing procedure. The corresponding pressure map was shown previously
in Figure 3.1a and served as an input to the green state peridynamic model. Second,
three-dimensional computed tomography (CT) scans of entire experimental part were taken
at both the green state and post-sintering. Unfortunately, CT scans during and after
thermal debinding were unable to be collected due to the fragility of the powder compact.
On the simulation side, the horizon was selected to be roughly thrice the minimum distance
between nodes, as recommended in [14]. The pressure function to emulate the internal
pressure during thermal debinding was represented as a sigmoid function, with the peak
pressure an unknown parameter. In the simulation results displayed below, the unknown
parameters – including peak pressure, the strand model parameter β, and the horizon δ –
were essentially fixed at convenient values and tuned by hand. This is justified by the fact
that our goal here is not in parameter estimation, but rather in assessing the flexibility
of the peridynamic framework in capturing qualitative features of defects. The results of
this study motivate more quantitative comparisons between model and data, e.g., by using
calibration or inversion techniques. This avenue of investigation is further motivated in the
study conducted by Turner and coworkers [24], which presents an adjoint-based method for
handling inverse problems with peridynamic models.

Cross sections of the experimental part at both the green state and after sintering
are displayed below in Figure 4.1.
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(a) Green XY slice (b) Green YZ slice (c) Green XZ slice

(d) Sintered XY slice (e) Sintered YZ slice (f) Sintered XZ slice

Fig. 4.1: Slices of the computed tomography scans of the experimental part in the green
state, top row, and after sintering, bottom row. The XY slices between the green state and
sintered images are comparable and taken at the crack region of the sintered part.

The primary observation is that the cracks in the middle of the sintered part are not
present in the green state. Moreover, the relatively large-scale nature of the defects suggest
that they were formed during thermal debinding and perhaps enlarged during sintering.
Additionally, we note that both the green and sintered XZ and YZ slices contain a grid-like
array of small voids. These voids correspond to the interfilament regions created when
cylindrical strands are packed together, forming channels of varying diameter that travel
in and out of the XZ and YZ slices. These channels, along with the cross-hatched layering
pattern of the pressure map in Figure 3.1a, can also be readily observed in the XY slices of
the part. Interestingly, the misshapen discolorations surrounding channels in the damaged
XY slice, Figure 4.1d, may correspond to rupturing or possible disintegration within channels
and strands brought about by the increased internal pressures and temperatures. Detailed
views of the large-scale cracks are shown below in Figure 4.2.
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Fig. 4.2: Slices of the computed tomography scans of the damaged region in the sintered
part. The XZ slice, bottom, corresponds to a horizontal slice through the XY face. The YZ
slices, right and furthest right, correspond to vertical slices through the XY face that cross
the ruptured channels at different locations.

A key feature of the observed damage is that the cracks emanate outward from the
previously mentioned channels, appearing triangular and aligned with the strands. This is
clearly illustrated by the central defect in the XZ slice of Figure 4.2. As this particular defect
runs depth-wise into the slice, it carves out a series of cracks that appear almost continuous
when viewed from the YZ and XY perspectives. Similar features can be observed in both YZ
slices as well. Hence, the experimental images suggest that the larger-scale damage observed
in Figure 4.1 is composed of many smaller channel-aligned defects. To simulate this behavior,
we embed the the pressure varying material described in Section 3.2 into the strand model as
three rods running three parallel channels between strands. The green state implementation
of this is shown below in Figure 4.3.
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Fig. 4.3: The strand model corresponding to the a subset of the pressure map in the damaged
region is shown in gray. The transparent red rods correspond to the pressure material of the
thermal debinding model and run the indicated channels.

As discussed in Section 3.1, the variations in the strand shape are due to the choice of β
and the syringe forces in the vicinity of the damaged region. The result of initializing the
thermal debinding simulation with this geometry is presented in Figure 4.4.

(a) (b) (c)

Fig. 4.4: Different views of the damaged part after thermal debinding with darker colors
indicating nodes with higher simulated damage, as quantified by (2.14). Nodes with damage
in excess of 0.95 have been filtered out to reflect a complete material failure (practically no
intact bonds remain). The upper right image corresponds to a slice taken depthwise into
Figure 4.4a.

The simulated results contain a number of interesting features. For example, the damage
in the channels retain similar characteristics to those observed in the CT scans. The cracks
emanate outwards from the channels and travel throughout the part. Adjacent cracks may
merge to create larger defects, as can be seen in the central defect of Figure 4.4a. A closer
inspection of the channels is provided in Figure 4.5, which displays several XY slices at
different heights in the simulated part.
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(a) (b) (c)

Fig. 4.5: XY slices of the simulated part after thermal debinding. The slices are ordered in
increasing height. Note the pressure material from Figure 4.3 (not shown) runs parallel to
the horizontal axis.

In these images, the gaps between strands are clearly visible and comparable to Figure
4.1d and Figure 4.2. Similarly, we observe that the damage is not localized to just the
channels, but extends to and through neighboring strands in complex patterns.

5. Conclusion. The present work has demonstrated that peridynamics offers an effec-
tive and flexible framework for modeling the direct write additive manufacturing process.
The proposed model spans several key components of direct write. First, the green state is
assembled by combining a linear strand model with a pressure map detailing the laydown path
and syringe forces of the printing procedure. Second, the elevated temperatures and internal
pressures associated with thermal debinding are emulated by applying a temperature loading
and placing a pressure-varying peridynamic material among the slurry strands of the green
state. Third, sintering of the resulting powder compact can carried out by implementing the
multiscale peridynamic model developed in [16]. By focusing on the green state and thermal
debinding stages of the proposed model, we show that the peridynamic approach capably
reproduces key features of defects observed in experiment and appears to show a general
qualitative agreement with the available data. It is believed that a more careful selection of
model parameters and full implementation of the sintering code would lead closer agreement.
To that end, the results of this study motivate a more rigorous and quantitative assessment
of the model’s validity.
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SIMULATION-BASED PARAMETER ESTIMATION APPLIED TO
ANTENNA ANALYSIS

LOGAN T. MEREDITH∗, DUNCAN A. O. MCGREGOR† , AND RICHARD M. J. KRAMER‡

Abstract. Simulation-based parameter estimation is useful for fitting models to complex physical systems
where analytic study is impossible and experimental investigation is impractical. The characterization of
antennae frequently fits this description. We describe a method for determining the convolution kernel of an
antenna using electromagnetic simulation. The principles described herein are applicable to the analysis of
any system that can be described by a linear analog filter.

1. Introduction. Antenna analysis involves measuring the response of antennae to
signals of various frequencies. Knowledge of the frequency response of an antenna is vital to
understanding its applicability in a given frequency range. This is because antennae have
only a finite bandwidth within which they pass a significant signal.

The objective of this paper is to develop a method for measuring the frequency response
of antennae using electromagnetic simulation. Ultimately, we wish to use a nonlinear least-
squares method to fit the measurements to an easily realizable mathematical model. This
reduced order model can make the prediction of the antenna’s response to any signal far
simpler than with brute force simulation or experimentation.

The method we use to estimate the frequency response of an antenna is similar to
that used by scalar network analyzers. These devices are typically comprised of two main
components: a spectrum analyzer and a signal generator. The signal generator sweeps
through the frequency range of interest, applying a a known input signal. The spectrum
analyzer then measures the output signal as a function of frequency. The ratio of the output
amplitude to input amplitude is the gain of the network. Most modern spectrum analyzers
measure the frequency domain output signal by first measuring the signal in the time domain
and then performing a discrete Fourier transform (DFT) [6]. Our approach emulates this
technique.

2. Mathematical motivation. In this section we provide mathematical background
that will inform our numerical analysis. In general, we use the convention that frequencies
are angular, rather than ordinary, and that j ≡

√
−1.

2.1. Network synthetic approach. We model antennas as linear analog filters.
Hence, given a time-varying input signal x(t), the antenna produces a time-varying output
signal y(t) according to

y(t) = (x ∗ h)(t), (2.1)

where h is called the linear response function or, more generally, the convolution kernel of
the filter, and ∗ is the convolution operator defined as

(f ∗ g)(t) ≡
∫ ∞
−∞

f(t− s)g(s) ds. (2.2)

We shall use the convention that the Fourier transform of a function f ∈ L1(R) is defined
as

f̂(ω) ≡
∫ ∞
−∞

f(t)e−jωt dt. (2.3)
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By taking the Fourier transform of both sides of (2.1) and using the convolution theorem,
we find

ŷ(ω) = ĥ(ω)x̂(ω). (2.4)

The Fourier transform of the convolution kernel ĥ is referred to as the transfer function of
the filter.

The transfer function is generally a complex valued function. We refer to the magnitude
of the transfer function ĝ(ω) = |ĥ(ω)| as the gain of the filter. This is the definition of gain
we use throughout this paper. There is a similar term in the field of antenna analysis called
power gain, which involves the directivity and power transmission efficiency of the antenna,
and these two terms should not be confused.

The operation of a filter is governed by its convolution kernel. If a filter’s transfer
function is known, its convolution kernel can be recovered via inverse Fourier transform,
given by

f(t) =
1

2π

∫ ∞
−∞

f̂(ω)ejωt dω. (2.5)

Note that a signal can be any time dependent quantity. Common signals are voltages,
currents, and electric fields in the realm of electrical network analysis.

2.2. Filter fitting methodology. Antennae essentially act as superpositions of band-
pass filters. We model the antenna with Butterworth filters [3]. The transfer function of
these filters is given by

ĥ(ω) =
h0

Bn

(
jν0

∆ν

(
ω
ν0
− ν0

ω

)) , (2.6)

where ∆ν = νR − νL is the filter bandwidth, ν0 =
√
νRνL is the resonant frequency, νL and

νR are the left and right bandpass cutoff frequencies, and Bn is the Butterworth polynomial
of integer order n, given by

Bn(s) =

{∏n
2

k=1

[
s2 − 2s cos

(
π 2k+n−1

2n

)
+ 1
]

n even,

(s+ 1)
∏n−1

2

k=1

[
s2 − 2s cos

(
π 2k+n−1

2n

)
+ 1
]

n odd.
(2.7)

The polynomial order n is interpreted as the number of elements required to construct an
equivalent passive filter in the Cauer topology [4, 5]. From (2.6), we can compute the filter’s
gain as

ĝ(ω) ≡ |ĥ(ω)| = |h0|√
1 +

[
ν0

∆ν

(
ω
ν0
− ν0

ω

)]2n . (2.8)

The transfer function of an antenna is considerably more complicated than a single
Butterworth bandpass filter. Hence we approximate the antenna’s transfer function with a
linear superposition of Butterworth bandpass filter. This superposed transfer function is
given by

ĥp(ω) =

M−1∑
m=0

h0,m

Bnm

(
jν0,m

∆νm

(
ω

ν0,m
− ν0,m

ω

)) , (2.9)
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where M is the number of summed Butterworth bandpass filters and

p = (M,h0,0, νL,0, νR,0, n0, . . . , h0,M−1, νL,M−1, νR,M−1, nM−1)

is a vector parametrizing the transfer function. In general,

P =

∞⋃
M=1

{M} ×
(
C× R2 × Z+

)M
is the space of admissible parameters. Note that the number of filters is itself parametrized.
A treatment of this extra complexity is described in Section 3.5. The gain of this filter is not
generally expressible analytically, but can be easily numerically computed as

ĝp(ω) ≡
∣∣∣ĥp(ω)

∣∣∣ =

∣∣∣∣∣∣
M−1∑
m=0

h0,m

Bnm

(
jν0,m

∆νm

(
ω

ν0,m
− ν0,m

ω

))
∣∣∣∣∣∣ . (2.10)

The measurement of the convolution kernel of the antenna proceeds as follows. First, we
apply an input signal on the antenna in the form of an electromagnetic plane wave in an
anechoic chamber. Then, the resulting voltage difference at the coaxial port of the antenna is
transformed via discrete Fourier transform (DFT). The ratio of the transforms of the voltage
to the input signal is the gain of the antenna. Finally, we fit the gain versus frequency
to (2.10). The transfer function and convolution kernel of the antenna can be recovered from
the fitted parameters.

3. Problem description. In this section we describe the construction of the simulation,
its computational domain, and the boundary conditions with which the problem is driven.

3.1. Domain. The antenna we are testing in this paper is a model SAS-545 biconical
antenna from A.H. Systems, Inc. [1]. Such an antenna consists of two solid right conical
frusta made of a conducting material whose tops face each other and are separated by a
fixed distance [13]. These elements are held in place by a case made of a dielectric between
the two elements. Extending from each element are six conducting arms that approximate a
larger cone. A diagram of the setup is shown in Figure 3.1.

Let Ωpoles be the region occupied by the conductive elements of the antenna. Then
define

ΩTF =

([
−w

2
,
w

2

]2
×
[
−h

2
,
h

2

])
\ Ωpoles (3.1)

as the total field region, where w, h ∈ R+ are the width and height of the region, respectively.
Further define

ΩSF =

([
−d− w

2
, d+

w

2

]2
×
[
−d− h

2
, d+

h

2

])
\ (ΩTF ∪ Ωpoles) (3.2)

as the scattered field region, where d ∈ R+ is the thickness of the region. Then the
computational domain is given by Ω = ΩTF ∪ ΩSF. Note that the dielectric antenna case is
contained in ΩTF. The significance of the total field and scattered field regions is discussed
further in Section 3.2. A cross section of the computational domain is shown in Figure 3.2.
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(a) A solid view of the biconical antenna. (b) A transparent view of the biconical antenna.

Fig. 3.1: Isometric view of a biconical antenna, both solid and transparent. Note the
separation between the two poles in the transparent view.

Fig. 3.2: Cross section of the computational domain, showing the regions and imposed
boundary conditions. Note that the dielectric antenna case is contained in the total field
region. The conductive arms of the antenna are not shown here.

3.2. Drive. For a unique solution to Maxwell’s equations within Ω, we must specify
boundary conditions on Γ for 0 ≤ t ≤ t0, where t0 is the termination time of the simulation.
Let ΓPEC be the boundary of Ωpoles. In the simulation, we impose perfect electrical conductor
(PEC) boundary conditions on ΓPEC, since it physically represents the surface of the
conductive antenna poles. Now let ΓABC be the boundary of [−d− w/2, d+ w/2]2 × [−d−
h/2, d+ h/2]. On ΓABC, we impose Mur absorbing boundary conditions (ABC) [11], since it
physically represents the absorbing walls of an anechoic chamber. Note that Γ = ΓPEC∪ΓABC

is the boundary of Ω. Hence we have imposed boundary conditions completely on the
boundary of Ω.

Furthermore, we wish to introduce energy into the domain. We use the total field
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scattered field (TFSF) formulation [10, 12] to introduce a plane wave into ΩTF, which
impinges upon and scatters off of the antenna. Let ΓTFSF = ΩTF ∩ ΩSF be the TFSF
boundary. Then we use the TFSF boundary condition to impose an incident electric field in
ΩTF of the form

Eincident(x, t) = E

(
t− k̂

c
· (x− φ)

)
p̂, (3.3)

where c is the speed of light, k̂ is the propagation direction, φ is the phase center, p̂ is
the polarization, and E : R 7→ R is an arbitrary amplitude. Intuitively, this electric field
specification describes a plane wave pulse of amplitude E(τ), oriented along p̂, and traveling

from φ in the direction k̂. Note that c is material-dependent, given by c = 1/
√
µε. We choose

the permittivity to be given by ε = 2.25ε0 within the antenna case and ε = ε0 everywhere
else. The permeability is constant everywhere, as µ = µ0.

For our simulation, the termination time is given by t0 = 1/3× 10−6 s. Furthermore,

we choose p̂ = ẑ, k̂ = −ŷ, and φ = (0, w/2, 0). These choices orient the incident electric
field to maximize the received signal at the antenna, given a biconical antenna’s radiation
pattern [9]. Our choice of E merits further motivation and will be discussed in Section 3.3.

3.3. Signal generation and detection. Simulation affords us nearly unlimited choices
for input signals. To simplify post processing, it is convenient to choose a signal that is easy
to work with.

Consider a time-dependent input signal of the form

x(t) = Ae−
σ2

2 (t−λ)2

. (3.4)

The Fourier transform of this signal is given by

x̂(ω) = A

√
2π

σ2
e−jλωe−

ω2

2σ2 . (3.5)

The gain of a filter driven by the input signal x can therefore be computed as

ĝ(ω) =
|ŷ(ω)|
|A|

√
σ2

2π
e
ω2

2σ2 . (3.6)

Note that the gain is independent of λ.
We desire the gain of a filter only in a certain frequency range. Denote this set of

frequencies of interest by Φ ⊂ [0,∞). In order to minimize floating point errors, it is
preferable to choose the parameters of x such that

diam x̂(Φ)

sup |x̂(Φ)| � 0. (3.7)

Since the form of x has been chosen such that x̂ is a scaled standard Gaussian function, this
can be achieved by taking σ ≥ sup Φ. Intuitively, the effect of this is to widen the Gaussian
x̂ such that the scale does not fluctuate wildly across the frequency range of interest. Such
fluctuations would introduce errors in the computation of ĝ.

Implementing this signal in our simulation is straightforward. Choose E(τ) = x(τ) as
in (3.3). Then the simulation imparts the desired input signal onto the antenna in the
form of an incident electric field. For our simulation, our set of frequencies of interest is
given by Φ = 2π · [3× 104, 1.5× 109] rad/s, corresponding to a range between 30 MHz and
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1.5 GHz. Hence we choose σ = 1.5/4× 109 s−1. Furthermore, we choose A = 1 V/m and
λ = t0/2 = 5/3× 10−7 s so that the signal is quiescent for 0 ≤ t� λ and t0 ≥ t� λ.

Measurement of the output signal can be performed by computing the voltage difference
between the poles. Therefore let

y(t) =

∫
γ

E(x, t) · dl, (3.8)

where γ is the line segment between the poles, {0}2 × [−l/2, l/2], oriented in the positive
z-direction. Note that E here is the total electric field, consisting of the sum of the incident
and scattered fields.

3.4. Discretization. It is vital to choose discretization intervals that are fine enough
in order resolve effects of frequency components throughout Φ. In general, it is sufficient
to choose ∆t ≤ 1

2 sup Φ and ∆x ≤ c
2 sup Φ . Hence we choose ∆t = 4/3 × 10−11 s and a

prescribed edge length of ∆x = 0.01 m with a tetrahedral mesh. The mesh was generated
using Cubit [2].

3.5. Post processing. From the simulation, we extract two pieces of data: the input
and output signals at each time step. Denote these by the sequences {xi} and {yi}, respec-
tively. Use a Fast Fourier Transform algorithm [7] to compute the DFT of each sequence,
{x̂i} and {ŷi}, respectively. Further denote the sequence of time steps by {ti}. The DFT
sample frequencies can be computed from {ti}. Denote the sequence of sample frequencies
by {ωi}. Finally, let

{ĝi} =

{∣∣∣∣ ŷix̂i
∣∣∣∣} . (3.9)

Then {ĝi} consists of the computed gain of the antenna at the frequencies {ωi}.
To find our reduced order model, we must use a nonlinear least-squares strategy to fit

ĝp as in (2.10) to {ĝi}. The fitting problem can be reduced to finding

arg min
p∈P

N−1∑
i=0

|ĝp(ωi)− ĝi|2 , (3.10)

where P is the space of admissible parameters.
This problem can be further reduced to the subproblem

arg min
(M,p̄)∈P

N−1∑
i=0

∣∣ĝ(M,p̄)(ωi)− ĝi
∣∣2 (3.11)

for fixed M ∈ Z+, which effectively reduces the fitted function to be composed of M
Butterworth filters. By inspection, M cannot exceed the number of local maxima, or peaks,
in {ĝi}. Thus there is an upper bound on M . In order to find a best fit, we solve (3.11) for
all M less than or equal to the number of peaks in {ĝi}. For each such M , we then compute
the L2 error norm for the corresponding fit. The fit for M with the least error norm is the
best fit.

4. Results. The simulation was performed using the EMPHASIS electromagnetics
code [14]. On the Skybridge capacity cluster, it took 12 hours on 368 cores, and contained
14.5 million finite elements. Figure 4.1 shows a cross section of the domain as the Gaussian
electric field pulse impacts the antenna at multiple time steps.
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(a) t = 1.6668 × 10−7 s (b) t = 1.70373 × 10−7 s

Fig. 4.1: Cross section of the domain during impingement of the Gaussian electric field pulse
on the antenna, showing the z-component of the electric field. The electric field is in units of
V/m.

We are especially interested in the voltage difference between the antenna poles, which
acts as our output signal. Figure 4.2 displays this voltage difference alongside the input
signal at every time step in the simulation. The figure also shows a zoomed view about
t = t0/2 so that the narrow Gaussian envelope of the input signal is visible.

(a) Input and output signals as functions of
time.

(b) Zoomed view of input and output signals
near t = t0/2.

Fig. 4.2: Raw signal data collected from the simulation. The input corresponds to{xi} and
the output corresponds to {yi}.

To post process the signal data, we must first compute the DFT of both the input and
output. Before computing the DFT, we apply a Hamming window to the signals to reduce
spectral leakage [8]. Since the input signal approximates a Gaussian, the absolute value of
its DFT also approximates a Gaussian. This can be clearly seen in Figure 4.3a, which also
displays the DFT of the output signal. Figure 4.3b shows the gain of the antenna, computed
according to (3.9).

Finally, we wish to fit a reduced order model to our data. To do so, we follow the
procedure outlined in Section 3.5. There are 13 peaks in the computed gain data, found by
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(a) Absolute value of DFT of signals. (b) Computed gain of antenna.

Fig. 4.3: DFT of raw signal data collected from the simulation and gain thence computed.

comparing neighboring values. Hence we perform a nonlinear least-squares fit for numbers of
filters up to and including 13. Figure 4.4a shows every such fit superimposed on {ĝi}, and
Figure 4.4b shows only the best fit. We find that an optimally fit Butterworth bandpass
filter as in (2.10) has 3 filters and is parametrized by

p = (3, 2.49968544× 10−1 m, 1.58368052× 106 Hz, 7.13738696× 108 Hz, 2,

− 1.70516259× 10−1 m, 3.21217315× 108 Hz, 5.73665070× 108 Hz, 2,

2.11043001× 10−2 m, 1.51721542× 109 Hz, 1.41792554× 109 Hz, 2). (4.1)

This fitted Butterworth bandpass filter can be used to predict the response of the antenna
to any time-varying electric field according to (2.1).

(a) Absolute value of DFT of signals. (b) Computed gain of antenna.

Fig. 4.4: DFT of raw signal data collected from the simulation and gain thence computed.

5. Conclusions. It is undesirable to perform a fully resolved electromagnetic simulation
for every input signal of interest on an antenna. As we have described, however, it is feasible
to capture sufficient data from a single simulation to estimate the parameters of a known
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linear analog filter. This permits the prediction of the antenna’s response to any arbitrary
time-dependent input signal.

In principle, we do not have to restrict our study to antennae. Any linear analog filter
design with well defined input and output signals can be treated in an analogous way to the
antenna presented here.
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A NUMERICAL APPROACH TO SIMULATING MAGNETIC FIELDS
AND SPIN-ORBIT COUPLING IN QUANTUM DOTS

MITCHELL BRICKSON∗, N. TOBIAS JACOBSON† , AND ANDREW D. BACZEWSKI‡

Abstract. Understanding the effects of magnetic fields and spin-orbit coupling (SOC) on the properties
of quantum dots (QDs) is essential to creating models with sufficient richness to explore qubit applications
in silico and to help interpret experiments. In this article we show how to incorporate these effects into an
interior penalty discontinuous Galerkin (IPDG) discretization of the Schrödinger-like equations that govern
effective mass theory. We describe the implementation of this approach in the Laconic software package and
present results that numerically verify it against a variety of test problems. We conclude by describing some
of the calculations that our IPDG capability will enable.

1. Introduction. Lithographic quantum dots (QDs) are engineered few-level quantum
systems created by patterning nanoscale control electrodes in the vicinity of a semiconductor
heterostructure. The band offsets between the materials in the heterostructure and the
built-in potential that arises due to background doping lead to the formation of two-
dimensional accumulation or inversion layers at material interfaces. By carefully tuning the
voltages applied to the control electrodes, the local density of carriers in these layers can be
manipulated such that one or a few can be separated from the rest, and then manipulated
and measured. Leveraging many years of advances in semiconductor device fabrication
technologies, single- or few-carrier QDs have been realized in GaAs/AlGaAs [9], Si/MOS [12],
Si/SiGe [7], and Ge/SiGe [3] heterostructures. Such devices show great promise for realizing
quantum technologies, particularly quantum information processing devices. While many of
these QDs have been used as qubits themselves, they are also used for qubit readout [10]
and in heterogeneous two-qubit systems [4].

Impressed magnetic fields and intrinsic spin-orbit coupling (SOC) play an important
role in determining the properties of these systems pertinent to their use as qubits. A recent
experiment in a Si/MOS double QD illustrated that the combination of a uniform magnetic
field and variations in the SOC between QDs can create an effective gradient magnetic field.
This gradient field was strong enough driving rotations in a singlet-triplet qubit encoded in
the electronic spin state of electrons occupying the double QD [6]. Also of interest are recent
proposals for driving qubit rotations via electric-dipole spin resonance, leveraging the strong
SOC in Ge quantum wells [11]. To help guide experimental progress, device-level models
that can be used to compute the properties of QDs are frequently used. However, to the best
of our knowledge there is presently no mature device-level modeling tool that incorporates
both magnetic fields and SOC.

In this article, we describe the implementation of magnetic fields and SOC to facilitate
device-level modeling of QDs in the Laconic software package. Laconic implements an interior
penalty discontinuous Galerkin (IPDG) discretization [5] of the Schrödinger-like equations
that govern effective mass theory. The IPDG framework is used to incorporate features
of semi-analytic solutions in regions with known physics through the use of enrichment
functions. For example, in accurately capturing the wave function in the vicinity of singular
potentials (e.g., impurity atoms) or at heterostructure interfaces. This is essential because
these difficult to capture features can be disproportionately responsible for the system’s
energetics or even its fine structure (e.g., valley splitting). Naive discretizations might require
prohibitively large linear systems to accurately represent the relevant physics.

∗Center for Quantum Information and Control, University of New Mexico, mbrickson@unm.edu
†Center for Computing Research, Sandia National Laboratories, ntjacob@sandia.gov
‡Center for Computing Research, Sandia National Laboratories, adbacze@sandia.gov
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In Section 2 we begin by reviewing the Schrödinger-like equations that typically appear
in effective mass theory and describe the manner in which magnetic fields and SOC enter
into those equations. We next describe the standard IPDG discretization used in Laconic in
Section 3 and describe the modifications necessary to incorporate magnetic fields and SOC
in Sections 3.1 and 3.2. These descriptions are furnished at a physicist’s level of rigor and
serve to document the practical details of our implementation. Illustrative numerical results
that verify our implementation are include in Section 4. Finally, we summarize our results
and consider the types of calculations that this will enable in Section 5.

2. Effective mass theory. The central ansatz in effective mass theory is that the
wave function of a localized charge carrier, ψ(xxx), can be factorized into a product of an
envelope function, F (xxx), and a Bloch function, φ(xxx),

ψ(xxx) = F (xxx)φ(xxx). (2.1)

The envelope function describes the coarse scale behavior of the carrier due to, e.g., con-
finement by an applied potential, whereas the Bloch function describes the atomic scale
behavior of the carrier as it would behave in a bulk crystal. This simple picture assumes that
the wave function is primarily supported in the vicinity of a single band extremum, though
we note that it is possible to generalize to multi-valley effective mass theories in which this
support is distributed across extrema that would be degenerate in a bulk crystal (e.g., in
silicon [1, 2]). For simplicity, we consider only the single extremum case in this article.

By factoring the coarse and atomic scale features of the wave function and holding the
Bloch function fixed to its bulk functional form, the effects of the applied potential and
the bulk crystal’s lattice potential can be separated. A Schrödinger-like equation for the
envelope function can be derived, taking the form(

1

2
p̂pp ·mmm−1

eff · p̂pp+ V (xxx)

)
F (xxx) = EF (xxx), (2.2)

where p̂pp is the canonical momentum operator, mmmeff is the effective mass tensor associated
with the band extremum of interest, and E is the energy relative to that extremum. Given
the appearance of (2.2) as a Schrödinger-like equation, one can think of the operator acting
on F as an effective Hamiltonian, and we will henceforth refer to it as such. For the sake
of simple presentation, the rest of this report will focus on the special case of an isotropic
effective mass tensor, indicated by the single scalar meff . However, the results here are
readily generalized to arbitrary effective mass tensors.

To incorporate the effect of a magnetic field into Eq. 2.2, we transform the canonical
momentum operator to include the magnetic vector potential, AAA,

p̂pp = −i~∇ → p̂pp = −i~∇+ eAAA, (2.3)

where e is the charge of the particle and the magnetic field is related to the vector potential
by BBB = ∇×AAA. This augments the kinetic energy, the numerical aspects of which will be
one of the focuses of this paper.

When considering the reference frame of a charged particle moving through an electric
potential, the motion of the potential relative to the particle can be seen as inducing an
effective magnetic field in that frame. This leads to an additive contribution to the bare
Hamiltonian referred to as the SOC, which can be expressed as

~
4m2c2

σ̂σσ · (∇V × p̂pp) . (2.4)
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Note that the mass appearing in this expression is the bare electronic mass, and renor-
malization into an effective mass theory is non-trivial and outside the scope of this report.
Independent of details pertaining to the incorporation of this physics into effective mass
theory, taking advantage of this effect has become a central point of some schemes for
controlling qubits in QDs as the presence of SOC allows for fast electrical control of the spin
state via electric-dipole spin resonance.

3. IPDG Formulation. Proceeding at a physicist’s level of rigor, we begin by con-
sidering the standard IPDG formulation of a Schrödinger-like equation in the absence of
a magnetic field or SOC [8]. The domain supporting F (xxx) is decomposed into a mesh
consisting of Ne elements, {D(a)}Nea=1. Local to each element is a set of Np(a) basis functions,

{`(a)
j (xxx)}Np(a),Ne

j=1,a=1 . While element-local enrichment using semianalytic solutions is the ulti-
mate goal of our approach, we need not consider these details to establish our formulation.
For the sake of simplicity, we henceforth suppress the dependence of Np on the element
index, i.e., each element hosts a local basis of the same order. The results in this report
will make use of a uniform nodal basis defined over a tetrahedral mesh, for which the nodal
polynomials are defined making use of a modal basis of orthogonal Jacobi polynomials as
in [5]. We then expand the envelope function as

F (xxx) =

Ne∑
a=1

Np∑
j=1

F (xxx
(a)
j )`

(a)
j (xxx). (3.1)

It is evident in the construction of the element-local basis functions that there is no explicit
inter-elemental continuity. Thus, an interior penalty formulation is employed to enforce
continuity numerically. Intuitively, we force the low-energy solutions to be continuous by
artificially adding energy to solutions with discontinuities.

Because the inclusion of the vector potential and spin-orbit operators are the primary
point of this paper, we simply state the matrix elements necessary to translate the eigen-
problem in (2.2) using the basis in (3.1) into a finite-dimensional generalized eigenproblem.
We first define the matrices

Sµ,(a)
jk =

∫
D(a)

d3x`
(a)
j

∂

∂µ
`
(a)
k , N µ,(a,b)

jk =

∫
∂D(a)∩∂D(b)

d2x`
(a)
j n̂(a) · ∇`(b)k ,

M(a)
jk =

∫
D(a)

d3x`
(a)
j `

(a)
k , Bµ,(a,b)jk =

∫
∂D(a)∩∂D(b)

d2xµ̂ · n̂(a)`
(a)
j `

(b)
k ,

and V(a)
jk =

∫
D(a)

d3x`
(a)
j V `

(a)
k ,

where µ is any Cartesian coordinate and n̂(a) is the surface normal vector for mesh element
a. The matrices with one superscript will appear in blocks of Hamiltonian matrix elements
that arise due to basis functions with support over the volume of a single element, whereas
the matrices with two superscripts will appear in blocks of Hamiltonian matrix elements
that arise due to basis functions with support at the interface between two elements. The
diagonal blocks of the Hamiltonian matrix will then take the form

H(a,a) =
~2

2meff

∑
µ∈C

(
Sµ,(a)

)T (
M(a)

)−1

Sµ,(a)

− ~2

4meff

∑
b6=a

(
B(a,b)N (a,b) +

(
N (a,b)

)T
B(a,b) − α

2
B(a,a)

)
+ V(a), (3.2)
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while the off-diagonal blocks take the form

H(a,b) =
~2

4meff

((
N (a,b)

)T
B(a,b) − B(a,b)N (b,a) +

α

2
B(a,b)

)
. (3.3)

The isolated B(a,b) matrices in these equations do not correspond to any operators in the
original Schrödinger equation, but rather to the interior penalty, and α is the penalty strength.
Because our basis is not orthonormal, we note that the right-hand side of the matrix form
of (2.2) will include a block-diagonal overlap matrix consisting of entries of M(a). Due to
the structure of this matrix, its inverse can be efficiently applied to H to yield a standard
eigenproblem.

3.1. IPDG with magnetic fields. Having reviewed the matrix elements necessary
for the standard IPDG formulation, we next determine the additive contribution to the
Hamiltonian matrix that arises due to the transformation of the momentum operator to
include a vector potential (see (2.3)). It is convenient to define an intermediate function,
γγγ(xxx), the momentum operator acting on the envelope function,

p̂ppF (xxx) = γγγ(xxx). (3.4)

Then we define a residual of the form p̂ppF (xxx)− γγγ(xxx) on which we impose orthogonality to
any arbitrary vector test function ννν. After some manipulation we can arrive at an elemental
strong form of this residual,∫

D(a)

d3xννν ·
(
−i~∇F (a) + eAAAF (a) − γγγ(a)

)
= −i~

∮
∂D(a)

d2xννν · n̂(a)
(
F (a) − F̃

)
(3.5)

where functions with a superscript (a) are the restriction of that function to mesh element a,
n̂(a) is the normal pointing out of mesh element a, and F̃ is the numerical flux, for which we
will use a central flux in this situation.

Consider expansions of F and γγγ in terms of our basis functions, F (a)(xxx) =∑
j F (xxx

(a)
j )`

(a)
j (xxx) and γγγ(a) =

∑
µ∈C µ̂

∑
j γ

µ,(a)
j `

(a)
j , where C = {x, y, z}. The orthogo-

nality of the test function to the residual can be imposed if the residual is orthogonal to each
basis function. If we define the matrix

Aµ,(a)
jk =

∫
D(a)

d3x`
(a)
j Aµ`

(a)
k ,

then, after considering that the central flux is defined as the average value of a function on
either side of a boundary, we get the matrix equation(

−i~Sµ,(a) + eAµ,(a) +
i~
2
Bµ,(a,a)

)
F (a) − i~

2

∑
b 6=a

Bµ,(a,b)F (b) =M(a)γγγµ,(a). (3.6)

Of course, it is p̂pp2 rather than p̂pp that enters into the Hamiltonian in (2.2), the discretization
of which was considered in Section 3. To incorporate the transformed vector potential into
that formulation, we define a residual and impose orthogonality to test functions just as
before, and we use a flux that will include interior penalty terms to increase the energy of
discontinuous solutions. The form of this flux is

γ̃µ = {{γµ}} − αµ̂ · n̂(a)[[F ]] (3.7)
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where {{γµ}} is the average of γµ across a boundary, and [[F ]] is the jump in F across a
boundary. If we define

∑
µ∈C Bµ,(a,b) = B(a,b), then this leads to the matrix equation in

IPDG form for (2.2)

1

2meff

∑
µ∈C

(−i~Sµ,(a) + eAµ,(a) +
i~
2
Bµ,(a,a)

)
γγγµ,(a) − i~

2

∑
b6=a

Bµ,(a,b)γγγµ,(b)


=

(
EM(a) +

i~α
4meff

B(a,a) − V(a)

)
F (a) − i~α

4meff

∑
b 6=a

B(a,b)F (b). (3.8)

Putting equations (3.6) and (3.8) together, we can find the contribution that the vector
potential makes to the kinetic energy in the Hamiltonian. Giving each block of this addition

the variable C(a,b)
vp , for the diagonal blocks we get

C(a,a)
vp =

1

2meff

∑
µ∈C

(
− i~e

(
Sµ,(a) − 1

2
Bµ,(a,a)

)(
M(a)

)−1

Aµ,(a)−

i~eAµ,(a)
(
M(a)

)−1
(
Sµ,(a) − 1

2
Bµ,(a,a)

)
+ e2Aµ,(a)

(
M(a)

)−1

Aµ,(a)

)
(3.9)

and for the off-diagonal blocks we get

C(a,b)
vp = − i~e

4meff

∑
µ∈C

(
Aµ,(a)

(
M(a)

)−1

Bµ,(a,b) + Bµ,(a,b)
(
M(b)

)−1

Aµ,(b)
)
. (3.10)

The Aµ,(a)
(
M(a)

)−1Aµ,(a) term in the equation for the diagonal elements, which corresponds

to the AAA2 term of p̂pp2, can be handled in Laconic in the same manner as a scalar potential.
The rest, which corresponds to the AAA · ∇ + ∇ ·AAA term in the Hamiltonian, was the first
addition we made to Laconic.

3.2. IPDG with SOC. For the spin-orbit operator, we only need to focus on the
spatial part of the operator corresponding to ∇V × p̂pp, since the tensor products with spin
degrees of freedom will be trivial to add in after that. Starting with the x-component of this
operator we take the same approach as before. We first define αx as the transformation of F
under this operator, then again define a residual and impose orthogonality to test functions
φ to arrive at∫

D(a)

d3xφ

(
−i~∂V

∂y

∂

∂z
+ i~

∂V

∂z

∂

∂y
+ e

∂V

∂y
Az − e

∂V

∂z
Ay

)
F (a) −

∫
D(a)

d3xφαx,(a)

= −i~
∮
∂D(a)

d2xφ

(
∂V

∂y
− ∂V

∂z

)(
F (a) − F̃

)
. (3.11)

This can be used to directly determine the matrix equations for the IPDG form of this
operator. Using a central flux for F̃ and then defining the matrices

Eλ,(a)
jk =

∫
D(a)

d3x`
(a)
j

∂V

∂λ
`
(a)
k , Fλ,(a)

jk =
∑
µ∈C

∑
ν∈C

ελµν

∫
D(a)

d3x`
(a)
j

∂V

∂µ
Aν`

(a)
k ,

and J µν,(a,b)jk =

∫
∂D(a)∩∂D(b)

d2x`
(a)
j

∂V

∂µ
ν̂ · n̂(a)`

(b)
k
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where ελµν is the standard Levi-Civita symbol, we can then generalize to determine that the
spatial operator that goes with σ̂λ will have diagonal blocks defined by

Cλ,(a,a)
so = −i~

∑
µ∈C

∑
ν∈C

ελµν

(
Eµ,(a)

(
M(a)

)−1

Sν,(a) − 1

2
J µν,(a,a)

)
+ eFλ,(a) (3.12)

and off-diagonal blocks defined by

Cλ,(a,b)so = − i~
2

∑
b6=a

∑
µ∈C

∑
ν∈C

ελµνJ µν,(a,b). (3.13)

4. Results. We have extended the Laconic software package to include implementations
of our formulations of the magnetic field and SOC terms. To verify their functionality, we
focus on two generic approaches to testing both of them, and a third specific to the magnetic
field. The first approach constructs matrix discretizations of these terms, applies them to
vectors containing nodal data sampled from known functions, and checks that the resulting
nodal data approximately reproduce analytic results. Our second approach is to add these
matrices as perturbations to unperturbed Hamiltonians with analytic solutions, and to check
that the resulting eigenvectors approximately agree with analytic results obtained with first
order perturbation theory. Finally, for the magnetic field term we also verify our numerical
solutions against an analytically solvable problem. Respectively, we refer to these approaches
as the operator, perturbative, and analytic tests.

4.1. Operator tests. In the same way that ∇2 can transform an arbitrary function,
our magnetic field and SOC operators can be seen abstractly as operators that transform
functions. This gives us an especially simple way to do a first test on the operators we have
developed here: apply them to a DG representation of a known analytic function and see
if the result matches what we would expect to have by doing the calculation analytically.
Starting with the function

f(x, y, z) =
∏
µ∈C

cos (πµ) , (4.1)

we can apply AAA · ∇+∇ ·AAA resulting in

(AAA · ∇+∇ ·AAA) f =
∑
µ∈C

(
−2πAµ sin (πµ) +

∂Aµ
∂µ

cos (πµ)

)∏
ν 6=µ

cos (πν) . (4.2)

For a fixed mesh and an associated nodal basis, we can perform a Gram test to generate a
representation of f to which the matrix form of AAA ·∇+∇·AAA can be applied. The result of this
matrix-vector multiplication is then another vector containing an approximate representation
of (4.2), that can be compared to the analytic result. For all tests in this Section, we use a
tetrahedral mesh of a cubic domain with edge length 1 and typically elemental edge lengths
of 0.1. Our tests indicate that our implementation of the magnetic field operator produces
approximate results that agree well with the analytic calculation and that increasing the order
of the nodal basis uniformly decreases the error in the approximation to (4.2). Exemplary
results for our operator tests can be found in Figures 4.1 and 4.2.

To test our formulation of the SOC operator, we continue to ignore the spin degree of
freedom and focus on the spatial part of the operator. In units with ~ = e = 1, applying
(∇V × p̂pp)x to f will result in

(∇V × p̂pp)x f =
∂V

∂y
(iπ sin(πz) +Az cos(πz))

∏
µ6=z

cos(πµ) (4.3)
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Fig. 4.1: Slices in the xy-plane (z = 0) of (AAA · ∇+∇ ·AAA) f for AAA = ẑ × rrr computed
analytically and using the operators derived in Section 3.1. The discretization uses a 4th
order local basis. The difference between the analytic and DG calculations illustrate that
our implementation of the magnetic field operator is working as intended.

−∂V
∂z

(iπ sin(πy) +Ay cos(πy))
∏
µ6=y

cos(πµ). (4.4)

We then perform the same tests that we did with the magnetic field operator, for which
exemplary results can be seen in Figure 4.3. We again find that our implementation of the
SOC operator works as intended.

4.2. Perturbative tests. To test our implementation perturbatively, we consider an
unperturbed Hamiltonian taking the form of a 3D particle in a box of unit length centered
on the origin. In units with ~ = meff = 1, the unperturbed energies and wave functions are
simply

Ennn =
π2

2

∑
µ∈C

n2
µ and ψnnn(xxx) =

√
8
∏
µ∈C

sin

(
nµπ

(
µ+

1

2

))
. (4.5)

First, we test the magnetic field operator. We consider a magnetic field with a simple vector

potential of AAA = Aoẑ ×
(
rrr + x̂+ŷ+ẑ

2

)
applied perturbatively to the non-degenerate ground

state (nnn = 111 = (1, 1, 1)). The first order correction to this state is given as

ψ
(1)
111 = −i

∑
nnn 6=111

ψnnn
E111 − Ennn

∫
Ω

d3x′ψnnnAAA · ∇ψ111. (4.6)

For AAA = Aoẑ × rrr, the dominant corrections come from the nnn = (2, 1, 1) and (1, 2, 1) terms,
which is evident in Figure 4.4.
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Fig. 4.2: Slices in the xy-plane (z = 0) of (AAA · ∇+∇ ·AAA) f for AAA =
∑
µ∈C µ̂ sin (πµ)

computed analytically and using the operators derived in Section 3.1. The difference between
the two calculations is shown for 4th (left) and 6th (right) order local basis sets, illustrating
that the error decreases with an increase in the order of the local basis. Note the difference
in the ranges for the two error plots.

Fig. 4.4: Slices in the xy-plane (z = 0) of the correction to the wave function as calculated
perturbatively (un-normalized) and as calculated by the DG method for Ao = 1

100 . The
difference is calculated after renormalizing the two to have the same maximum value of 1.
The error at any point in space is less than 6%. The perturbative expansion includes the 15
largest contributions to the correction.
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Fig. 4.3: Slices in the xy-plane (z = 1/4) of (∇V × p̂pp)x f for AAA = ẑ × rrr and V = 1
2

∑
µ∈C µ

2

computed using the operators derived in Section 3.2. The difference between the analytically
calculated and numerically calculated values are illustrated for 6th order local basis sets.

We test out the spatial part of the spin-orbit operator in exactly the same way, though
excluding the spin of the particle forces us to focus on individual components of the vector
operator ∇V × p̂pp. While applying the operator (∇V × p̂pp)x as a perturbation to the same
particle in a box Hamiltonian may not seem to make sense physically if we don’t have a
constant V , the perturbation is still perfectly well-defined mathematically. The first order
correction to the ground state is

ψ
(1)
111 =

∑
nnn 6=111

ψnnn
E111 − Ennn

∫
Ω

d3x′ψnnn (∇V × p̂pp)x ψ111. (4.7)

For V = Vo
2

∑
µ∈C µ

2 and AAA = rrr, the first order contribution is again entirely imaginary

as (∇V × p̂pp)x = −iVo
(
y ∂
∂z − z ∂

∂y

)
. The dominant contributions to first order correction

are from the nnn = (1, 2, 4) and nnn = (1, 4, 2) terms, which is evident in Figure 4.5.
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Fig. 4.5: Slices in the xy- (z = 1/4) and yz- (x = 1/4) planes of the correction to the
wavefunction as calculated by the DG method for Vo = 1

20 . The difference is calculated after
renormalizing the two to have the same maximum value of 1. The error at any point in
space is less than 6%.

4.3. Analytic test. Finally, we verify our implementation for the solution of a 2D
harmonic oscillator in a magnetic field, which serves as a toy model of a lithographic QD
like the ones we intend to model using this capability. Without including SOC this problem
has an analytic solution. While Laconic is centered around calculations for 3D systems, we
can easily enough decouple the z-component of the Hamiltonian from the xy-component
if we have the harmonic potential only in the xy-plane and a static magnetic field in the
z-direction. For our example, we will use AAA = B

2 ẑ × rrr. The resulting eigenfunctions are
separable in xy and z, with the xy solutions being of the form

φn,`(r, θ) =
ei`θ

a
√

2π

√
n!

2|`|(n+ |`|)!
( r
a

)|`|
e−r

2/4a2

L|`|n

(
r2

2a2

)
(4.8)

where a =
√
~/2m

√
ω2 + e2B2/4m2 and L is a generalized Laguerre polynomial. To avoid

any issues that a specific choice of gauge might bring to the phases of our states, we can
simply compare |φn,`|2 for the analytic and DG solutions. Examples can be seen in Figure
4.6.
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Fig. 4.6: Slices in the xy-plane (z = 0) of DG solutions for the n = 1, ` = 1 (top) and n = 2,
` = 0 (bottom) eigenfunctions. The relative errors with respect to the analytic solution are
also illustrated, indicating that our implementation correctly predicts the eigenstates of a
model of a QD in the presence of a magnetic field.

5. Summary and Future Work. In this report, we have developed an IPDG for-
mulation of the Schrödinger-like equations governing effective mass theory that includes
arbitrary magnetic fields and SOC. This formulation has been implemented in the Laconic
software package and we have described the tests used to verify their correct operation.
Future numerical work will involve a more rigorous error analysis and the implementation of
basis function enrichment.

We have illustrated that our implementation reproduces an analytic calculation intended
to model a lithographic QD in a magnetic field, suggesting that this capability is ready
to be used for more realistic applications. We will be modeling upcoming experiments in
Ge/SiGe QDs with the aim of predicting Rabi oscillation frequencies for electric-dipole spin
resonance control of single hole spins. The ability to accurately predict this directly from
device designs will allow us to determine which gate is best to use to control a given QD and
also to optimize the gate layout for future devices. The work presented in this paper details
an important step toward that goal.
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AN EXCHANGE-CORRELATION FUNCTIONAL FOR BULK, SURFACE,
AND CONFINEMENT PHYSICS

FRANCISCA SAGREDO ∗ AND ATTILA CANGI†

Abstract. Density functional theory is cited over 30,000 times per year and has become one of the
standard methods in electronic structure calculations due to its low cost, and ease of use. While there are
many new approximations to the exchange-correlation functional appearing frequently in the literature, the
need for an approximation which correctly captures the correct bulk, surface, and confinement physics is
missing. Such physics is commonly found in d- and f- electron systems. These systems are common and
relevant to DOE national labs, and are of the national interest. Below we develop a new exchange-correlation
functional that captures this correct physics and demonstrate its accuracy on the jellium surface.

1. Introduction. The use of approximations in density functional theory (DFT) has
become a standard tool in electronic structure theory, due to its accessibility, and low cost
of calculations. This is especially true when compared to other standard methods such as
configuration interaction (CI) [14], coupled cluster (CC) [6], GW [5], quantum Monte Carlo
(QMC) [11]. While numerous approximations to the exchange-correlation (XC) functional are
constantly appearing in the literature, many functional approximations still fail to capture
the correct confinement physics. More specifically, XC functional approximations are known
to fail for the “heavier” elements (e.g. transition metals) of the periodic table.

Thus the need of a functional approximation that fulfills these requirements becomes
apparent. DFT approximations are used readily in material and molecular calculations
since they provide structural information, vibrational properties, and even magnetic and
electron polarizations; all things needed when investigating material systems. Due to
the interest of the DOE’s heavy element chemistry research [1], the need to accurately
capture these material properties has been notably missing. Due to the inaccuracy in this
regime, different approaches to remedy it have been investigated, including DFT + U [2,3],
hybrid functionals [7, 17, 19], and dynamical mean field theory [12]. Below we propose an
approximation to provide a solution to this problem. In particular we construct an XC
functional to accurately capture bulk, solid, and confinement (BSC) physics of these elements.
We focus on the confinement aspect which has been lacking in past approximations. We
construct the BSC functional, run preliminary calculations using jellium surface reference
data, and implement the functional into a quantum chemistry code.

2. The many body problem. Here we express the many-body problem within the
realm of non-relativistic time-independent quantum mechanics, and use atomic units through-
out with ~ = e = me = 1. The total molecular Hamiltonian can be written as

Ĥmol = T̂e(r) + V̂ee(r) + Ven(r,R) + V̂nn(R) + T̂n(R), (2.1)

where T̂e and T̂n correspond to the kinetic energies of the electron and nuclear coordinates,
respectively written in the traditional manner. Like wise V̂ee, V̂ne, and V̂nn correspond to
the electron-electron, nuclear-electron, and nuclear-nuclear potential operators written in
the usual sense. Finally we note that r and R correspond to the electronic and nuclear
coordinates, respectively.

Due to the complexity of the coupled terms, the molecular Hamiltonian quickly becomes
difficult to solve, which is why the Born-Oppenheimer (BO) approximation is typically

∗University of California, Irvine, fsagredo@uci.edu
†Sandia National Laboratories, acangi@sandia.gov
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used [8,9]. Within the BO approximation, the nuclear and the electronic contributions of
the Hamiltonian are separated, and are rewritten in a manner so that

Ĥmol = ĤBO(r,R) + T̂n(R). (2.2)

Here, the ĤBO corresponds to the BO Hamiltonian. The usefulness of the BO approximation
arises from the large mass difference between electrons and the nucleus (electrons are ≈ 1800
times lighter). This large mass difference allows the electronic Hamiltonian to be solved
for, independently. This is what is calculated in electronic structure theory, hence its name.
Typically, V̂nn(R) is first left out of the electronic Schrödinger equation since R acts as a
parameter, and therefore V̂nn(R) is a constant which shifts the eigenvalues by a constant
amount. The solution of the electronic Hamiltonian then give rise to the corresponding
wavefunctions, and potential energy surfaces for each electronic state.

The main problem in electronic structure methods arise from the electron-electron
interaction in the electronic Hamiltonian. This term describes the repulsion between electrons
within atoms and molecules. This term, and the configuration space of the wavefunction
increase exponentially with the number of electrons, N . To explicitly demonstrate this
problem you can imagine the many body electronic Hamiltonian for a single oxygen atom.
Since the oxygen atom has 8 electrons, its wavefunction should have the form

ΨO(r1, ..., r8). (2.3)

Thus meaning the wavefunction in 3 dimensions has 24 coordinates that must be evaluated.
Clearly, this is already a difficult problem to solve, even though it is a trivial system that is
not of interest. If this wavefunction were written for a material, or larger molecular system
(e.g. a protein), its wavefunction becomes too complex to be solved computationally. This
electron-electron interaction is approximated by the exchange-correlation (XC) functional in
DFT.

3. Background on DFT. Density functional theory (DFT) is currently used across
disciplines from chemistry and physics to materials science [10]. DFT is applied in a wide
range of interdisciplinary fields from molecules and materials to even simulate inertial
confinement fusion [10,24]. In its original formalism, DFT provides in principle an exact way
to determine the ground-state energy of a given system, which becomes extremely valuable
when studying chemical and physical systems. Starting with the Schrödinger equation

{T̂ + V̂ee + V̂ }Ψ = EΨ, (3.1)

the Hamiltonian is broken up in the typical manner where T̂ is the kinetic energy, V̂ee is
the electron-electron repulsion operator, and V̂ is the external potential, or the interaction
between the nucleus and the electrons. Then by use of the variational principle the ground
state energy can be found by the minimization over all normalized, antisymmetric trial
wavefunctions,

Egs = min
Ψ
〈Ψ|Ĥ|Ψ〉. (3.2)

In the original Hohenberg-Kohn (HK) paper [13], (i) a one-to-one correspondence between
the density n(r), and the potential v(r), proved that the ground-state properties of a given
system can be uniquely determined by its density (for example, the ground state energy),
and (ii) that a universal functional F [n] exists. Although the HK theorem provided the
foundation for the beginning of DFT it does not include the cases of degenerate ground
states or non v representable densities; that is, ground state densities that cannot be defined
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in terms of their potential. The generalized constrain search proposed by Levy [18], provides
a clear and straightforward way in which to rewrite the variational principle to include the
degeneracies and non v representability that the original HK theory did not include. Using
the Levy formalism it is simple to write the energy minimization over all wavefunctions that
yield the density

E = min
Ψ
〈Ψ|T̂ + V̂ee + V̂ |Ψ〉 = min

n
{F [n] +

∫
drv(r)n(r)}, (3.3)

given the universal functional F [n] defined as

F [n] = min
Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉. (3.4)

In practice we rarely solve this minimization over wavefunctions (except for very simple
cases). When minimized over all densities n(r), this immediately gives the ground state
energy. In practice approximations must be used but it is important to remember that the
theory is exact.

Kohn and Sham [16] provided the ground work for what is currently used and known in
all modern DFT calculations as the Kohn-Sham (KS) scheme. In the KS scheme an auxiliary
system of non-interacting electrons is defined which satisfies the non-interacting Schrödinger
equation,

{−1

2
∇2 + vs(r)}φj(r) = εjφj(r), (3.5)

with

n(r) =

N∑
j=1

|φj(r)|2. (3.6)

Here vs(r) is the KS potential, and the φj(r) correspond to the non-interacting orbitals,
which are referred to as the KS orbitals. Similar to Hartree-Fock, single Slater determinants
made up of KS orbitals are used to define the wavefunction of the system. The KS potential
can also be written as

vs(r) = v(r) + vH [n](r) + v
XC

[n](r), (3.7)

where V̂ =
∑N
i=1 v(ri) is the external potential, vH(r) is the Hartree potential, and v

XC
(r)

is the exchange-correlation potential. It should be noted that the Born-Oppenheimer
approximation is assumed and atomic units are used throughout, where ~ = e = me = 1.
Following the KS formalism, it can be seen that the energy components of the KS scheme
are simply a rearrangement of the traditional Schrödinger equation

Egs = min
n
{Ts[n] + U [n] + V [n] + E

XC
[n]}, (3.8)

with

v
XC

[n](r) =
∂E

XC

∂n(r)
. (3.9)

Here Ts is the non-interacting kinetic energy, and the Hartree energy U which is also known
as the Coulombic interaction, and E

XC
[n] is the exchange-correlation energy, with n being

the ground-state density of the corresponding system. In general, T, Ts, and U are positive
quantities, and can be thought of as trying to drive your system (atom) apart, and V,E

X
,

and E
C

are negative trying to keep your system together. The exchange-correlation energy
E
XC

[n] is what is approximated in DFT calculations, and what we focus on in this report.
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4. Exchange-correlation approximations and the subsystem functional
scheme. Within DFT there are several ways to approach the construction of an XC
functional. For instance, it is possible to approach it using “Jacob’s ladder” where in
principle by adding exact conditions, new and improved functionals can be derived [20]. The
ladder begins with the simplest approximation at the bottom, with the “heaven” of chemical
accuracy at the top (that will most likely not be reached). The bottom step of this ladder
begins with the local density approximation (LDA) [16]

ELDA
XC

[n] =

∫
drn(r)εLDA

XC
[n](r), (4.1)

with εLDA
XC

defined as the exchange-correlation energy per particle of the uniform electron
gas. Its exchange component is explicitly defined as

εLDA
X

= − 3

2π
(3π2n(r))1/3 , (4.2)

whereas its correlation component, εLDA
C

, is a parametrization [21,22,25] of the correlation
energy in the uniform electron gas [11]. LDA was derived using the uniform electron gas as
the reference system, and naturally does well in approximating systems with uniform, slowly
varying densities, like that of solids, phonon frequencies, and metal surface energies. Even
though LDA is the most basic, and first functional approximation proposed in DFT, it is
still used readily and provides the basis of many other functionals.

Fig. 4.1: Jacob’s ladder of chemical accuracy. Figure replicated from [20]

After LDA the natural next “step” in XC functional approximations is the generalized
gradient approximation (GGA). GGAs use the gradient of the density, and can be expressed
as

EGGA
XC

[n] =

∫
drn(r)εGGA

XC
[n, |∇n|](r). (4.3)
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The εGGA
XC

term also includes higher order terms. Although GGAs provide an improvement
to LDA, it still has many limitations and does not accurately approximate bond length and
ionization potentials.

Finally, meta GGAs (MGGA) are the next “step up ” in Jacob’s ladder, and include the
kinetic energy density of the KS system, τs. The kinetic energy density τs is used since it
allows the functional to use varying types of electron-electron interactions. MGGAs take the
form

EMGGA
XC

[n] =

∫
drn(r)εMGGA

XC
[n, |∇n|, τs](r). (4.4)

MGGAs do provide a substantial correction to XC approximations. Here we begin with a
specific MGGA, AM05 [4]. The exchange-correlation functional AM05, by Armiento and
Mattsson provides an alternate route to improving XC functionals within DFT. AM05 uses
the subsystem functional approach [15], which in essence uses multiple reference systems
as a means to improve the functional. Subsystem functionals use an interpolation index
to “pick out” the correct contributions depending on the system being studied. The use
multiple reference systems is particularly important since many XC approximations have
limited applicability, and only work for very specific systems, notably failing outside the
specified conditions. The subsystem functional approach uses [15],

E
XC

=
∑
j

∫
Ωj

drjn(r)εj
XC

[n](r). (4.5)

This is simply a sum over the subsystems j where Ωj denotes its volume. In particular AM05
uses two reference systems, the jellium gas (LDA), and the Airy gas. The jellium gas has a
constant potential, where as the Airy gas has a linear potential. Using these two reference
systems the AM05 functional correctly captures the physics of bulk solids (jellium), and the
correct surface physics (Airy gas). The interpolation index is also a vital part of its success,
since it can “pick” out the correct contributions depending on the system being studied. The
XC energy per particle of the reference systems can be easily expressed as

εbulkXC [n](r) = εLDAXC [n](r) (4.6)

and

εsurfXC [n](r) = εAM05
XC [n](r) . (4.7)

Although AM05 provides a good approximation to the XC functional for bulk, and
surface physics, it still misses the confinement physics found in d- and f- electron systems.
Therefore a third reference system must be used and incorporated in the construction of the
new BSC functional, in order to systematically make an improved functional.

5. Harmonic oscillator gas reference system. As mentioned, a third reference
system is needed to accurately capture the confinement physics in the BSC XC functional.
Here we choose the harmonic oscillator gas (HOG), which has a harmonic potential only
confined in the z- axis, while still being infinite in the other two dimensions. The harmonic
effective potential is defined as

veff (z) =
ω2z2

2
, (5.1)
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with oscillations, ω. Using this effective potential, solving the non-interacting KS Schrödinger
equation yields plane wave solutions for the KS orbitals. The analytic KS orbitals can be
expressed as

φj(z̄) =

(
1

2jj!l
√
π

)1/2

Hj(ẑ) exp
(
−z̄2/2

)
(5.2)

with the expected Hermite polynomials, Hj , of the the j-th eigen state. l can be defined

as l =
√

1/ω, and z̄ = r/l, with eigen values εj = l−2(j + 1/2). The HOG denisity can be
written as

[l3n(z̄)] = π−3/2
N∑
j=0

1

2jj!
H2
j (z̄)(α− j) exp

(
−z2

)
. (5.3)

The α parameter is defined in terms of the chemical potential, µ = (α+1/2)/l2. It determines
the amount of confinement in the HOG and is dependent on the number of electrons α = Ne
in the system.

Finally, within the HOG we write the new expression and functionals in terms of the
electron localization function (ELF). ELF is a number that varies between 0 ≤ ELF ≤ 1,
and measures the probability of finding an electron surrounding a reference electron at a
given point. It can easily be defined starting with

Dσ(r) = τσ −
(∇nσ(r))2

nσ(r)
, (5.4)

with τσ as the kinetic energy density, with some spin density, nσ. ELF also uses the uniform
electron gas as a reference system

D0
σ =

3

5
(6π2)2/3n5/3

σ (r). (5.5)

Using these two expressions it is possible to define a ratio

χσ =
Dσ(r)

D0
σ(r)

, (5.6)

from which ELF can be defined

ELF (r) =
1

1 + χ2
σ(r)

. (5.7)

The HOG functional expressions are written in terms of this ELF parameter, such that
the confinement physics can be captured correctly. When the value of ELF = 1/2, it is in a
jellium state, when ELF = 0 the system behaves like a surface electron, and finally when
ELF = 1 the electron is completely localized, and in the confinement regime. Like in the
case of AM05, the XC energy per particle of the confinement regime can be expressed as

εconf
XC

[n](r) = εHOG
XC

[n, |∇|n,ELF ](r). (5.8)
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6. Results: Jellium surface calculations. Here we used the jellium surface energy
data from RPA calculations as the basis to test the new BSC XC functional [23]. The jellium
surface is simply a slab of uniform electron gas, with some set thickness, d. It is useful to use
this surface energy data as it provides a sufficient model for surface physics, whereas traditional
jellium only captures the correct bulk contributions. All of the reference data calculated
below, was determined with respect to the the Wigner-Seitz radius, rs = [3/(4πn)]1/3. To
better understand how ELF works, a figure of ELF as a function of z is seen below. In
particular we plot the ELF function with varying values of rs. The confinement region is
contained mostly on the range of [−3, 0].

rs=2.0
rs=2.07
rs=2.30
rs=2.66
rs=3.00
rs=3.28
rs=4.00
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Fig. 6.1: Plot of ELF as a function of z for varying values of rs

Two interpolations were determined and tested in the functional construction. These
interpolation indices are,

χ
AC

= 1− 1

(η2,αELF )2η1,α + 1
, (6.1)

χ
FS

=
η1,β(ELF )16

1 + exp(−η2,β(ELF − 1)2)
. (6.2)

Here we define η1,α = 1.781 and η2,α = 98.874 as. Likewise η1,β = 10758 and η2,β = −13.06.
These quantities were optimized using the jellium surface data on Mathematica. Now it is
possible to construct the BSC functional. We begin with the exchange contribution,

εBSC
X

= εsurf
X

(1− χi) + εconf
X

χi, (6.3)

with χi as the two different interpolations found. Likewise the full form of the functional
can be expressed as:

εBSC
XC

[n, |∇n|, ELF ](r) = εBSC
XC

[n, |∇n|, ELF ](r) + εHOGXC [n, |∇n|](r). (6.4)

The correlation component of the functional was approximatedby a scaled version of
LDA correlation, similar to the construction in the AM05 functional.

Our tests indicate (Table 6.2) that the BSC functional captures the bulk, surface, and
confinement physics of the jellium surface well. With a mean absolute error (MARE) of
0.024% and 0.038%, both versions of the BSC functional are significantly more accurate
than the LDA and standard semilocal functionals (PBE and AM05). The XC surface
energy densities corresponding to the two versions of the BSC functional are contrasted in
Figures 6.3a and 6.3b.
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rs	 σxc 
LDA

	 σxc 
PBE

	 σxc 
AM05

	 σxc 
BSC,AC

	 σxc 
BSC,FS

	 EXACT	

2.00	 3353.58	 3263.58	 3402.82	 3415.02	 3412.84	 3413	

2.07	 2960.12	 2879.06	 3004.37	 3015.26	 3014.61	 3015	

2.30	 2018.52	 1959.97	 2050.54	 2058.19	 2059.64	 2060	

2.66	 1187.35	 1150.46	 1208.04	 1212.34	 1213.99	 1214	

3.00	 763.394	 738.509	 777.938	 780.025	 781.434	 781	

3.28	 548.903	 530.445	 560.16	 560.852	 562.269	 563	

4.00	 261.145	 251.855	 267.61	 265.919	 268.127	 268	

MARE	 2.15%	 5.17%	 0.377%	 0.024%	 0.038%	

Fig. 6.2: Benchmarks of BSC functional compared to various other functional approximations
relative to the surface jellium data with rs corresponding to the Wigner-Seitz radius and
MARE defined as the mean absolute relative error.
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(a) BSC functional with the χAC interpolation.
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(b) BSC functional with the χFS interpolation.

Fig. 6.3: Surface energy plots comparing various approximations.

7. Results: Implementation. After the benchmarks on the jellium surface, the BSC
functional was implemented into the ELK code. ELK is a quantum mechanical code which
is used here to benchmark the BSC functional on materials. Due to the nature of the code
implementation, we do not describe specific procedures here.

8. Conclusions. We have explained the need of an accurate XC functional that cor-
rectly captures, bulk, solid, and confinement physics. Its need is vital for chemical accuracy
of the “heavier” elements of the periodic table with d- and f- orbitals. The jellium surface
benchmarks are very promising, with MARE of ≈ 0.024%. Current and future work includes
implementing the code into the widely used libxc library. This will allow the BSC functional
to be tested extensively on materials of interest, and also be compared with new functional
approximations.
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functional theory and nio photoemission spectra, Phys. Rev. B, 48 (1993), pp. 16929–16934.

[3] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and mott insulators: Hubbard u
instead of stoner i, Phys. Rev. B, 44 (1991), pp. 943–954.

[4] R. Armiento and A. E. Mattsson, Functional designed to include surface effects in self-consistent
density functional theory, Phys. Rev. B, 72 (2005), p. 085108.

[5] F. Aryasetiawan and S. Biermann, Generalized hedin’s equations for quantum many-body systems
with spin-dependent interactions, Phys. Rev. Lett., 100 (2008), p. 116402.

[6] R. J. Bartlett and M. Musia l, Coupled-cluster theory in quantum chemistry, Rev. Mod. Phys., 79
(2007), pp. 291–352.

[7] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior,
Phys. Rev. A, 38 (1988), pp. 3098–3100.

[8] M. Born and K. Huang, Dynamical theory of crystal lattices, American Journal of Physics, 23 (1955),
pp. 474–474.

[9] M. Born and R. Oppenheimer, Zur quantentheorie der molekeln, Annalen der Physik, 389, pp. 457–484.
[10] K. Burke, Perspective on density functional theory, J. Chem. Phys., 136 (2012).
[11] D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys.

Rev. Lett., 45 (1980), pp. 566–569.
[12] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical mean-field theory of

strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., 68
(1996), pp. 13–125.

[13] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp. B864–B871.
[14] P. J. Knowles and H.-J. Werner, Internally contracted multiconfiguration-reference configuration

interaction calculations for excited states, Theoretica chimica acta, 84 (1992), pp. 95–103.
[15] W. Kohn and A. E. Mattsson, Edge electron gas, Phys. Rev. Lett., 81 (1998), pp. 3487–3490.
[16] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys.

Rev., 140 (1965), pp. A1133–A1138.
[17] C. Lee, W. Yang, and R. G. Parr, Development of the colle-salvetti correlation-energy formula into

a functional of the electron density, Phys. Rev. B, 37 (1988), pp. 785–789.
[18] M. Levy, Universal variational functionals of electron densities, first-order density matrices, and

natural spin-orbitals and solution of the v-representability problem, Proceedings of the National
Academy of Sciences of the United States of America, 76 (1979), pp. 6062–6065.

[19] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple,
Phys. Rev. Lett., 77 (1996), pp. 3865–3868.

[20] J. P. Perdew and K. Schmidt, Jacob’s ladder of density functional approximations for the exchange-
correlation energy, AIP Conference Proceedings, 577 (2001), pp. 1–20.

[21] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation
energy, Phys. Rev. B, 45 (1992), pp. 13244–13249.

[22] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for
many-electron systems, Phys. Rev. B, 23 (1981), pp. 5048–5079.

[23] J. M. Pitarke and A. G. Eguiluz, Jellium surface energy beyond the local-density approximation:
Self-consistent-field calculations, Phys. Rev. B, 63 (2001), p. 045116.

[24] J. C. Smith, F. Sagredo, and K. Burke, Warming Up Density Functional Theory, Springer Singapore,
Singapore, 2018, pp. 249–271.

[25] S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies
for local spin density calculations: a critical analysis, Can. J. Phys., 58 (1980), pp. 1200–1211.


	Preface A. Cangi and M. L. Parks
	Software and High Performance Computing A. Cangi and M. L. Parks
	Performance Portable SIMD Scalar Type for Effective Vectorization across Heterogeneous Architecture D. Sahasrabudhe, E. Phipps, and S. Rajamanickam
	Performance-Portable Batched Tensor Contractions: Library Design and Performance Analysis E. Hutter and S. Rajamanickam
	Fast Triangle Counting Using Cilk A. Yasar, S. Rajamanickam, M. Wolf, J. Berry, and Ü. V. Çatalyürek
	Improving ALEGRA Memory Usage O. W. Strack, C. B. Luchini, J. J. Elliott, and C. M. Siefert
	Efficient Point Merge Using Data Parallel Techniques A. D. Yenpure and K. D. Moreland
	Predicting Disk Failure with Machine Learning B. L. Morris and M. L. Curry
	What's the Stitch? An Efficient I/O Library for Extending Length Scales in Multiscale Modeling E. Chen, J. Lofstead, and J. A. Mitchell
	Computational Mathematics A. Cangi and M. L. Parks
	Applications of Optimization-Based Transport N. Holtzer, P. Bochev, and K. Peterson
	Nonsymmetric Algebraic FMM with Application to Combined Field Integral Equations J. L. Levitt, E. G. Boman, S. Rajamanickam, and G. Biros
	On Differentiable Linearity and Local Bounds Preserving Stabilization Methods for First Order Conservation Law Systems J. Bonilla, S. Mabuza, J. N. Shadid, and S. Badia
	A Scalable Approach for Solving Stochastic Inverse Problems Based on Push-forward Measures and Bayes' Rule B. Marvin, T. Wildey, and T. Bui-Thanh
	Comparing MCMC Diagnostics and Stopping Rules N. L. Robertson, M. Khalil, and B. M. Adams
	Exploring Applications of Random Walks on Spiking Neural Algorithms  L. E. Reeder, A. J. Hill, J. B. Aimone, W. M. Severa
	Partially Structured Aggregation for Multigrid P. Ohm, L. Berger-Vergiat, and R. Tuminaro
	Lagrangian Particle Methods for the Shallow Water Equations in Varied Geometries N. H. Nelsen and P. A. Bosler
	Removing Degenerate Features from Ice-Sheet Meshes I. A. Bogle, K. D. Devine, M. Perego, S. Rajamanickam, and G. M. Slota
	Curvature Based Analysis to Identify and Categorize Trajectory Subsegments P. T. Schrum, Jr., M. D. Rintoul, and B. D. Newton
	Machine Learning for Linear Solvers C. D. Smith, J. Kaushagen, M. F. Hoemmen, and C. M. Siefert
	Applications A. Cangi and M. L. Parks
	A Peridynamic Model for Direct Write A. S. Hegde, B. G. Van Bloemen Waanders, D. J. Littlewood, A. W. Cook, and H. J. Brown-Shaklee
	Simulation-Based Parameter Estimation Applied to Antenna Analysis L. T. Meredith, D. A. O. McGregor, and R. M. J. Kramer
	A Numerical Approach to Simulating Magnetic Fields and Spin-Orbit Coupling in Quantum Dots M. Brickson, N. T. Jacobson, and A. D. Baczewski
	An Exchange-Correlation Functional for Bulk, Surface, and Confinement Physics F. Sagredo and A. Cangi

