Building a Montage or Mosaic from Two (or More) Images

We will investigate the problem of estimating interimage transformations in this context.

- Keypoint extraction and description in each image
- Keypoint matching between images
- Using the best matches
- Estimating the transformation parameters between two images.
- Eliminating false matches
- Estimating the transformation parameters for all images.
- Mapping the images

This lecture will focus on the last four steps.

Using the Keypoints

We already know how to extract and match keypoints, but...

- Keep the “best” matches — those with SIFT descriptor ratio scores below 0.8.
- Not every keypoint is used — in fact most are not
- Even among those with ratio below 0.8, some of the matches can be wrong, having a disastrous effect on the transformation.
- Before we consider how to handle these, we will focus on the least-squares estimation assuming the correspondences are correct.

Formulating the Estimation Problem

- Given are sets of corresponding keypoint locations between two images, I_1 and I_2
- The set is $\{(\tilde{x}_{i,1}, \tilde{x}_{i,2})\}$.
- The problem we want to solve is to find the parameters of the 3×3 homography matrix H that minimizes the sum of the square distances between

$$H\tilde{x}_{i,1} \quad \text{and} \quad \tilde{x}_{i,2}.$$
Difficulties This Poses

- Measuring the distance for homogeneous coordinates
- Dealing with the resulting non-linearities
- Different meanings of the different parameters
- Restructuring the equations

We’ll start with the simpler problem of the affine transformation

Estimating the Affine Transformation Parameters

In this case, we can easily use image distances

- Measuring the distance in image \(I_2 \), we obtain the least-squares objective function:

\[
\sum_i \| x_{i,2} - (Ax_{i,1} - t) \|^2
\]

Here

- \(x_{i,2} \) and \(x_{i,1} \) are non-homogeneous
- \(A \) is the \(2 \times 2 \) matrix of affine terms
- \(t \) is the \(2 \times 1 \) vector of translation terms

- The components of \(A \) and \(t \) are unknown and must be estimated by minimizing this equation.

Completing the Estimation

Look at this in component form makes it clearer how to solve this

- This allows us to re-arrange the summation to rewrite the object function as

\[
\sum_i \| x_{i,2} - X_{i,1}a \|^2
\]

where

\[
X_{i,1} = \begin{pmatrix} x_{i,1} & y_{i,1} & 1 & 0 & 0 \\ 0 & 0 & x_{i,1} & y_{i,1} & 1 \end{pmatrix}
\]

and

\[
a^\top = (a_{1,1}, a_{1,2}, t_x, a_{2,1}, a_{2,2}, t_y).
\]

- Computing the derivative of this with respect to the vector \(a \), setting the result equal to \(0 \), and solving yields the estimate, \(\hat{a} \):

\[
\hat{a} = \left(\sum_i X_{i,1}^\top X_{i,1} \right)^{-1} \left(\sum_i X_{i,1}^\top x_{i,2} \right)
\]
Discussing the Affine Solution

- The derivation (which we will work on in class) illustrates the importance of vector and linear algebra.
- The inversion of the 6×6 matrix $\sum_i X_{i,1}^T X_{i,1}$ may be split into the inversion of two identical 3×3 matrices,
- Whenever inverting matrices to solve estimation problems, we need to be careful of the relative size of the terms of the matrix, as we will discuss in class.
 - This problem is about to become much worse!

Turning to the Homography Estimation Problem

- Recall that the correspondence set is $\{(\tilde{x}_{i,1}, \tilde{x}_{i,2})\}$.
 - Here we are back to homogeneous coordinates.
- We need to estimate the parameters of the 3×3 matrix H minimizing the distance between the $\tilde{x}_{i,2}$ image location and the transformed image location $H\tilde{x}_{i,1}$.

Measuring the Distance

- Remember, in order to convert $H\tilde{x}_{i,1}$ back to affine coordinates, we need to divide by the third row.
- We write
 $$H = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} = \begin{pmatrix} h_1^T \\ h_2^T \\ h_3^T \end{pmatrix}$$
- Then, the distance measured in image I_2 is
 $$d(\tilde{x}_{i,2}, H\tilde{x}_{i,1}) = \left[(x_{i,2} - \frac{h_1^T \tilde{x}_{i,1}}{h_3^T \tilde{x}_{i,1}})^2 + za(y_{i,2} - \frac{h_1^T \tilde{x}_{i,1}}{h_3^T \tilde{x}_{i,1}})^2 \right]^{1/2}$$
- Finally, the objective function is then
 $$\sum_i d(\tilde{x}_{i,2}, H\tilde{x}_{i,1})^2$$

Problems Introduced By This Formulation

- Two problems:
 1. Scaling H by a non-zero constant has no effect on the distance.
 2. Unknown components of H appear in the denominator.
- The first problem is solved by imposing the constraint that the “Frobenius norm” (the sum of the squares of the matrix parameters) is 1.
- The second problem has two different solutions, which we will study in turn:
 1. Clear the denominator and solve the resulting problem. This produces what is called the “algebraic” distance.
 2. Directly solve the non-linear optimization problem.
Forming and Minimizing the Algebraic Distance

- “Clear” the denominator, giving an objective function of
 \[
 \sum_i (x_{i,2}^\top h_3^\top \tilde{x}_{i,1} - h_1^\top \tilde{x}_{i,1})^2 + (y_{i,2} h_3^\top \tilde{x}_{i,1} - h_2^\top \tilde{x}_{i,1})^2.
 \]

- We now minimize this subject to the Frobenius constraint, which we can write as
 \[h_1^\top h_1 + h_2^\top h_2 + h_3^\top h_3 = 1.\]

- I know there is a fair amount of linear algebra here, so we will work through the details in class.

Results are Disastrous

- Heavily skewed results, usually almost meaningless!

- Problem:
 - The terms of \(h_3\) are affected by the product of image coordinate values, whereas
 - The terms of \(h_1\) and \(h_2\) are only affected by the image coordinates individually.
 - So errors in the image coordinates differentially affect the \(h_3\), which tend to be small to begin with...

- Solution is to “normalize” the constraints

Normalization

Center and scale the pixel coordinates:

- In each image, compute the center of mass of the pixel coordinate vectors — the sets \(\{x_{i,1}\}\) and \(\{x_{i,2}\}\) — and shift the coordinate vectors by these centers.

- Scale each resulting set of coordinates so that the average magnitude of the pixel coordinate vectors (in each image separately) is 1.

- These centering and scaling can be described by affine transformation matrices, denoted \(S_1\) and \(S_2\), producing homogenous coordinates
 \[
 \tilde{x'}_{i,1} = S_1 \tilde{x}_{i,1} \quad \text{and} \quad \tilde{x'}_{i,2} = S_2 \tilde{x}_{i,2}
 \]

Estimating the Homography

- Use the previous technique “algebraic distance” technique to solve for \(H'\).

- Gives the homography between the centered and normalized pixel values.

- Previous issue with the different types of error is mostly gone because of the normalization — errors are no longer magnified in different ways.

- We convert back to our unnormalized final estimate as
 \[
 H = S_2^{-1} H' S_1
 \]
Discussion
Beware of Bias!

• The foregoing solution works because we have eliminated most of the bias.

• Informally, bias is the disproportionate influence of a measured variable on the optimization, usually due to a non-linearity in the objective function.

• Nearly all computer vision problems have this bias.

• Normalization is one simple tool that can often be used to address bias. Sometimes more sophisticated tools are needed.

Solving the Geometric Distance Optimization

• Recall that the objective function is

\[\sum_i d(\tilde{x}_{i,2}, H\tilde{x}_{i,1})^2 \]

where we are back to using the geometric distance.

• We can think of this as a function \(f(h) \), where \(h \) is formed from the nine entries in \(H \).

• We now need an iterative minimization technique, with the added constraint that \(h^\top h = 1 \).

• Initialized by the normalized estimated.

• Work in normalized coordinates(!)

• Solution is beyond our discussion.

Resetting the Stage
Subtitle: What about mismatches?

• One incorrect match can have a disastrous effect — worse even than for line estimation.

• Even with the ratio threshold of 0.8 from SIFT keypoint descriptor matches, we can not be assured of correct matches, especially for the harder image cases.

• Need a method for locating correct matches rather than throwing out bad matches after the estimation process has started.

Random Sampling — Outline

1. Randomly choose a “minimal subset” of matches — enough to generate an estimate:
 • Four for the homography transformation
 • Three for the affine transformation

2. Generate an estimate from the minimal subset. Call it \(\hat{H} \).
3. Compute the error distances \(d(\hat{x}_{i,2}, \hat{H}\hat{x}_{i,1})\) for the remaining \(N-4\) (or \(N-3\)) matches.

4. Evaluate the distances by either:

 (a) Counting the number whose error distance is less than a threshold (the “Ransac” method)

 (b) Computing an order statistic (such as the median) on the values.

5. **Repeat the foregoing** for some number, \(K\), of randomly chosen minimal subsets, keeping the estimate and set of “inliers” that produces the best evaluation.

6. Apply the normalized, algebraic distance estimate to the inlier set and, optionally, compute a refined, non-linear estimate.

Generating the Minimal Subset

Somewhat different answers for the affine case and for the homography

- **Affine**: the least-squares solution becomes an exact solution (no error), when just 3 correspondences are involved.

- **Homography**:

 - Each correspondence yields two algebraic error terms:

 \[
 x_{i,2}\hat{x}_{i,1}^\top h_3 - \hat{x}_{i,1}^\top h_1 = 0 \\
 y_{i,2}\hat{x}_{i,1}^\top h_3 - \hat{x}_{i,1}^\top h_2 = 0
 \]

 - This may be written as \(X_i h = 0\) where \(X_i\) is \(2 \times 9\).

 - Stacking up four of these gives 8 constraints on \(h\).

 \[
 Xh = 0.
 \]

 - The ninth comes from the constraint that \(h^\top h = 0\).

 - We find \(h\) as the unit basis vector for the right null space of \(h\). (The heaviest linear algebra of the semester!)

How Many Subsets are Needed?

Choosing the value of \(K\) from above

- Let \(p\) be the probability that one match is “good”.

- Then \(p^4\) is the probability that all four are good.

- \(1 - p^4\) is the probability that at least one match is “bad”

- \((1 - p^4)^K\) is the probability that at least one match is bad in all \(K\) minimal subsets.

- \(1 - (1 - p^4)^K\) is the probability that at least one minimal subset is good.

- Given \(p\) (determined empirically), we choose \(K\) to ensure that this probability reaches some threshold value (such as 0.99).
Degeneracies

- **Affine**: given a minimal set of three keypoint correspondences, all three keypoints from I_1 or all three from I_2 are colinear.

- **Homography**: given a minimal set of four correspondences, at least three keypoints from I_1 or at least three from I_2 are colinear.

- In practice it does not matter because the associated transformation will not be good.

Summary: Solving the Two-Image Estimation Problem

1. Extract keypoints and descriptors from images I_1 and I_2.
2. Match keypoints based on matching descriptors, keeping the matches with ratio $r < 0.8$.
3. Apply random sampling algorithm to select the “good matches”
4. Compute least-squares estimate based on the final set of good matches:
 - Use the geometric distance measure for the affine transformation.
 - Use the algebraic distance measure with normalized coordinates for the homography.

Multiple Image Estimation

We will briefly consider the following two questions:

- **Which images overlap and therefore should have an H matrix computed for them?**
- **How do we align more than two images?**

Which images?

It depends on keypoint matching

- **Option 1:**
 - Consider each pair I_i and I_j and apply keypoint matching
 - If there is a *sufficient* number of inlier matches to the final estimate, then consider I_i and I_j matched.

- **Option 2:**
 - Gather all keypoints into a spatial data structure and then match each keypoint from each image against the data structure.
 - When two images have more than a few matches between them with $r < 0.8$, run the complete matching and estimation procedure.
Multiple Image Alignment

The correspondences are the key:

- Save the “good” keypoint matches for the matched image pairs
- Choose one image, call it \(I_0 \), to be the “anchor” on which to map the other images.
- Use correspondences to compute the mapping of all images onto \(I_0 \) simultaneously. If there are \(N \) images this produces \(N - 1 \) homographies.

Unfortunately, we do not have time for the details.

After Estimation: Mapping the Images

We focus again on the two image case

- Suppose we have estimated the transformation from image \(I_1 \) to \(I_2 \) and now want to map image \(I_1 \) onto image \(I_2 \).
- Actually need to “inverse map”, using the inverse transformation \(H^{-1} \).
- Start by forward mapping the image corners and computing an axis-aligned bounding box \(R \) on these corners.
- The union of this bounding box and the original \(I_2 \) is the combined image coordinate system.
- For each pixel location in \(R \), inverse map using \(H^{-1} \) to find the pixel in \(I_1 \).
- If the pixel is inside \(I_1 \), then apply bilinear interpolation to compute its intensity (color) values.

Final Step: Blending

- Simplest technique is averaging.
- Can weight the intensities according to the distance from the center in order to obtain a smoother blend.
- There are also pyramid-based techniques.
- We can also estimate seams to avoid motion and parallax artifacts.

Summary

We have now taken an end-to-end tour of the montaging application:

- Topics:
 - Image analysis
 - Keypoint and feature extraction
 - Camera modeling and transformations
 - Estimation
– Image mapping

• Many of the issues and techniques we have discussed apply to a substantial number of other problems in computer vision.