Overview

- Given are two images, I_0 and I_1, taken in close proximity both spatially and temporally, a pixel location x, and a surrounding neighborhood $N(x)$ of image I_0.

- The problem is to compute the motion at x from the coordinate system of I_0 to the coordinate system of I_1.
 - This motion can be considered as representative of the neighborhood as well.

- The mathematical model of the motion could be as simple as translation. Affine models are often used. Higher order models are less common.

- The region may range from a small neighborhood (e.g. when x is a feature location x) to the entire image.

- For image motion estimation we are likely to be interested in a regularly-sampled grid of regions.

- For tracking applications (and structure from motion), we are likely to choose a set of feature locations. The choice of these locations will be discussed later in these notes.

- The result is called the Lucas-Kanade or Lucas-Kanade-Tomasi (KLT) algorithm.
 - It is the most common of a wide diversity of techniques that have been developed and applied to this problem.

Small-Scale Translational Motion — The Simplest Case

- We will start with the simplest case where the motion model is just a translation vector $t = (t_x, t_y)^\top$. This translation, applied to each pixel in the region, is appropriate for small regions and for some types of tracking.

- The objective function is
 \[
 E(x; t) = \sum_{x_i \in N(x)} w(x_i - x)[I_1(x_i) - I_0(x_i + t)]^2
 \]

where $w(\cdot)$ is a weight function that depends on the position of a point relative to the center of the neighborhood.

- Steps involved in the derivation:
 - First-order Taylor expansion of I_0 at x, with t playing the role of Δx. (This is why we are assuming small motion.)
 - Result produces what is known as the “optic flow constraint equation” inside the parentheses.
Compute the derivative with respect to \(t \).
Set the resulting (vector) equation to 0 and solve for \(t \).
The result is
\[
\mathbf{t} = \left(\sum_{x_i \in \mathcal{N}(x)} w(x_i - x) \nabla I_0(x)\top \nabla I_0(x_i) \right)^{-1} \left(\sum_{x_i \in \mathcal{N}(x)} w(x_i - x) \nabla I_0(x)\top I_t(x) \right)
\]
where
* \(\nabla I_0(x) = (I_x(x), I_y(x)) \) is the (row vector) intensity gradient at \(x_i \), and
* \(I_t(x_i) \) is the temporal intensity derivative at \(x_i \).

Discussing the Result
- We will consider three main issues:
 1. What happens when the inverse involved in solving for \(t \) is not invertible?
 2. What is the effect of linearization?
 3. How to handle higher-order motion models?

Studying the Inverse
- The matrix \(\mathbf{M} = \sum_{x_i \in \mathcal{N}(x)} w(x_i - x) \nabla I_0(x_i)\top \nabla I_0(x_i) \) is the summed, gradient outer product of the points in the neighborhood.
 - We have seen this matrix before in our discussion of feature extraction.
- An important concern is whether or not \(\mathbf{M} \) is invertible.
- Here are important cases where it is not:
 - If the intensity is constant, then the gradients will all be \(\mathbf{0}\top \) and \(\mathbf{M} \) will be rank 0.
 - If the intensity is planar, then the gradients will coincide and \(\mathbf{M} \) will be rank 1.
 - If there is just a single linear step edge in \(\mathcal{N} \) then \(\mathbf{M} \) will also be rank 1.

All these are examples of what’s known as the *aperture problem* in computer vision.
- For computing image motion, we can’t get a true motion when \(\mathbf{M} \) is rank 1. Instead, we get the motion along the gradient direction, which is called “normal motion” or “normal flow”.
 - In this case, we use image smoothing operations to combine the estimate of motion within the image region with other nearby motion estimates. There is an entire, large literature on this topic.
 - In general we get only a normal motion when the smaller of the two eigenvalues of \(\mathbf{M} \) is too small.
- For tracking applications we can use \(\mathbf{M} \), which can be quickly computed at each pixel in an image, to determine which locations are good for tracking (i.e. most easily matched in the next image):
– Compute the eigenvalues of M. Call them λ_1 and λ_2 and assume $\lambda_1 \geq \lambda_2$. By construction, $\lambda_2 \geq 0$.
– A location has strong contrast if $\lambda_1 \lambda_2 = \det M$ is large.
– A location has significant variation in all directions if $\lambda_1 / \lambda_2 \geq 1$ is relatively small.
– Various combinations of these measures have been proposed in the vision and medical imaging research literatures.
– We will discuss the relationship with SIFT features and edge effects in class.

Effect of Linearization

- The solution discussed so far is just an approximation: it is the solution given the Taylor expansion. It is not the solution to the original problem.
- To solve the original problem, we need to iterate starting from an initial translation vector t (0 or the previous estimate for the feature location):
 1. Taylor expansion to linearize about $x + t$.
 2. Solve for Δt.
 3. Assign $t = t + \Delta t$.
 4. Repeat until Δt is sufficiently small.
- The objective function before linearization is
 \[
 E(x; \Delta t) = \sum_{x_i \in N(x)} w(x_i - x)[I_1(x_i) - I_0(x_i + t + \Delta t)]^2
 \]

- The update value Δt is
 \[
 \Delta t = \left(\sum_{x_i \in N(x)} w(x_i - x)\nabla I_0(x+t)^\top \nabla I_0(x+t) \right)^{-1}\left(\sum_{x_i \in N(x)} w(x_i - x)\nabla I_0(x_i+t)^\top (I_1(x_i) - I_0(x_i+t)) \right)
 \]

- Importantly, in each iteration,
 - The image gradient is being computed at location $x_i + t$, a new location (and potentially subpixel location) each time.
 - The intensity difference $I_1(x_i) - I_0(x_i + t)$ is also based on differences in changing image locations.

Longer-Distance Motion

In order to capture larger motions, we must work with a Gaussian image pyramid

- Start at the top of the pyramid and solve for t at each pixel.
- At the next level of the pyramid — next “finer” resolution — which has double the image dimensions in both x and y
– The value of t computed at the previous level (coarse) location $x = (x, y)^\top$ is used to initialize the estimate as $2t$ at locations $(2x, 2y)^\top$, $(2x+1, 2y)^\top$, $(2x, 2y+1)^\top$, $(2x+1, 2y+1)^\top$ at this next level.
– The iterative refinement described just above is then repeated at each of the finer resolution image locations.

• This is repeated until reaching the finest resolution.

More General Motion Models

• Consider a more general motion $T(x; a)$ where a is the vector of parameters in the motion model.

 – For translation, a is a two-component vector, and
 $$T(x; a) = x + a$$

 – For affine motion, a is a six-component vector, and
 $$T(x; a) = \begin{pmatrix}
 (1 + a_1) & a_2 & a_3 \\
 a_4 & (1 + a_5) & a_6
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 1
 \end{pmatrix}$$

 Reasons for this new (to us) version of the affine model will be discussed in class.

• The overall objective function becomes
 $$E(x; a) = \sum_{x_i \in N(x)} w(x_i - x)[I_1(x) - I_0(T(x; a))]^2$$

• The same iterative scheme as just discussed is applied. Now, the update objective function becomes
 $$E(\Delta a) = \sum_{x \in N} w_x[I_1(x) - I_0(T(x; a + \Delta a))]^2$$

• We take a first-order Taylor expansion at a to obtain a least-squares function of Δa and solve from there.
• If we have time in class, we will work through the derivation, a good exercise in the use of the chain rule.

Summary

• Region-based computation of low-order motion models based on differences and gradients of intensity
 – Gaussian smoothed images and even gradient magnitude images can be used in place of I_0 and I_1.
• Incremental steps of linearization and estimation, returning to the images to recompute derivatives.
• More general, more efficient, and symmetric techniques exist in the literature.
• Used for image motion, optical flow, and tracking.