
CSci 6974 and ECSE 6966 Math. Tech. for
Vision, Graphics and Robotics

Lecture 15&16, March 20&23, 2006
Representing and Estimating Rotations in R3

Preliminary Notes

• This week we will complete our discussion of the perspective camera and
rotations in R3.

• Next week we will cover some topics in differential geometry.

• If you have the 2nd edition of Hartley&Zisserman, the chapter references
in the Lecture 14 notes are off by one chapter.

Problem Overview

Problem: Given corresponding sets of point vectors {p1, . . . ,pn} and {q1, . . . ,qn}
in <3, find the similarity transformation that best aligns the two sets.

• This problem arises in a number of applications in photogrammetry and
computer vision.

• The solution given here is based on a paper by Horn, which will be dis-
tributed in class.

• As part of the solution we will learn about quaternions as a means of
representing rotations.

• Following the presentation of this solution, we will introduce a second
technique that uses small angle approximations to solve the same problem.

Least-Squares Objective Function

The following is the least-squares objective function for the “exterior orienta-
tion” problem: ∑

i

‖pi − sRqi − t‖2 (1)

• s is a scale factor.

• t is the translation vector.

• R is the rotation matrix, which we will eventually represent using quater-
nions.

Center the Data

The first step is to calculate the center of mass of each set of points and rewrite
the objective function

• Let p =
∑

i pi/n.

• Write p′
i = pi − p, so that pi = p + p′

i.

• Similarly, let q =
∑

i qi/n.

• Write q′i = qi − q, so that qi = q + q′i.

• The objective function can then be rewritten:∑
i

‖p′
i − sRq′i − t′‖2 (2)

where
t′ = t− p + sRq. (3)

Solving for Translation

• Minimizing this equation requires that

t′ = 0. (4)

• Therefore, after we find s and R, we can find t as

t = p− sRq (5)

• The objective function now becomes∑
i

‖p′
i − sRq′i‖2 (6)

Solving for Scale

We can solve for scale separately as well:

• Expanding the objective function and using the orthonormality of R, we
get: ∑

i

p′
i
>p′

i − 2s
∑

i

p′
i
>Rq′i + s2

∑
i

q′i
>q′i. (7)

• The first thing to note about this is that it is minimized with respect to
R when ∑

i

p′
i
>Rq′i (8)

is maximized. This is what we will solve to find R.

2

• Now, the objective function (7) can be written

Sp − 2sD + s2Sq. (9)

• This is clearly maximized when

s = D/Sq =
∑

i

p′
i
>Rq′i /

∑
i

q′i
>q′i. (10)

• Unfortunately, this doesn’t treat the points symmetrically. Instead, we
can rewrite the objective function as∑

i

‖ 1√
s
p′

i −
√
sRq′i‖2 (11)

and solve for s to obtain

s =
[∑

i

p′
i
>p′

i/
∑

i

q′i
>q′i

]1/2

. (12)

One of your practice homework problems is to derive this result and pro-
vide a geometric interpretation.

• With the revised objective function in (11), the translation becomes

t =
1√
s
p−

√
sRq (13)

We are left with the problem of maximizing∑
i

p′
i
>Rq′i (14)

with respect to R.

Representations of Rotation

The problem is that in 3-space R is a 3 × 3 matrix but has only 3 degrees of
freedom: it must be orthonormal. Thus we have to parameterize it somehow.
Many methods have been proposed in the research literature. The solution here
is based on unit quaternions. Following presentation of the solution, we will
describe the use of small angle approximations.

Quaternions

This is a summary and restatement of the material in Section 3 of the Horn
paper.

3

• A quaternion is a 4-component vector, or a special type of complex number
having 1 real part and 3 imaginary parts:

q̇ = (q0, qx, qy, qz)> = q0 + qxi+ qyj + qzk. (15)

In effect, we will treat quaternions as vectors, but also develop special
operations on them that don’t apply to vectors. The most important of
these will be multiplication of two quaternions.

• For a unit quaternion, we must have q20 + q2x + q2y + q2z = 1.

Multiplication of Quaternions

• Using the rules

i2 = −1, j2 = −1, k2 = −1, (16)

ij = k, jk = i, ki = j, (17)

ji = −k, kj = −i, ik = −j, (18)

we can create a rule for multiplication of quaternions. Note that this is an
algebraic extension of the notion of a vector, which has no multiplication
rule:

ṗq̇ = (p0q0 − pxqx − pyqy − pzqz)
+ (p0qx + pxq0 + pyqz − pzqy)i
+ (p0qy − pxqz + pyq0 + pzqx)j
+ (p0qz + pxqy − pyqx + pzq0)k (19)

• This can be written in matrix multiplication form. We have

ṗq̇ =

p0 −px −py −pz

px p0 −pz py

py pz p0 −px

pz −py px p0

q0
qx
qy
qz

 = Pq̇ (20)

and

q̇ṗ =

p0 −px −py −pz

px p0 pz −py

py −pz p0 px

pz py −px p0

q0
qx
qy
qz

 = P̃q̇ (21)

• Note that both P and P̃ are orthogonal (orthonormal for unit quater-
nions).

4

Dot Products and Conjugates

• The dot product of two quaternions is the same as if the quaternions were
treated as 4-component vectors in R4:

ṗ · q̇ = ṗ>q̇ = p0q0 + pxqx + pyqy + pzqz. (22)

• Returning to the complex number analogy, the conjugate of a quaternion
is

q̇∗ = q0 − qxi− qyj − qzk. (23)

and it is easy to see that
q̇q̇∗ = q̇ · q̇, (24)

i.e. the “complex” components of q̇q̇∗ are 0.

• We also have

ṗ∗q̇ =

p0 px py pz

−px p0 pz −py

−py −pz p0 px

−pz py −px p0

q0
qx
qy
qz

 = P>q̇ (25)

and, similarly,
q̇ṗ∗ = P̃>q̇ (26)

• Finally, combining results on the dot product with the orthogonality of P
produces:

PP̃ = (ṗ · ṗ)I. (27)

Other Properties

• Using the matrix multiplication description of quaternion multiplication,
it is fairly easy to see that

(ṙṗ) · (ṙq̇) = (ṙ · ṙ)(ṗ · q̇). (28)

This is just ṗ · q̇ when ṙ is a unit quaternion.

• We also have the rather bizarre looking

(ṗq̇) · ṙ = ṗ · (ṙq̇∗). (29)

This can also be shown using the matrix multiplication description of
quaternion multiplication and the properties of the conjugate.

5

3-Space Vectors and Rotations

So far we haven’t shown anything about rotations and solving our original prob-
lem. We’re almost there, though.

• A 3-space vector p = (px, py, pz)> may be represented as a “purely imag-
inary” (don’t you love it!) quaternion:

ṗ = (0, px, py, pz)>. (30)

• Heading toward rotations, one of the major properties of a rotation ma-
trix is length (and dot product) preservation. With unit quaternions, we
already have (ṙṗ) · (ṙq̇) = ṗ · q̇. This is getting us close.

• It turns out that we need to use two multiplications to represent a rotation:

ṗ = ṙq̇ṙ∗ (31)

is the rotation of q̇ into ṗ. Here, we assume that ṗ and q̇ represent 3-space
vectors and ṙ is a unit quaternion.

• To show this, note that

ṙq̇ṙ∗ =
(
Rq̇

)
ṙ∗ = R̃>Rq̇, (32)

and recall that both R and R̃> are both orthonormal.

• Writing out R̃>R gives

R̃>R =

ṙ · ṙ 0 0 0
0 (r20 + r2x − r2y − r2z) 2(rxry − r0rz) 2(rxrz + r0ry)
0 2(rxry + r0rz) (r20 − r2x + r2y − r2z) 2(ryrz − r0rx)
0 2(rxrz − r0ry) 2(ryrz + r0rx) 2(r20 − r2x − r2y + r2z).

(33)

The lower 3 × 3 submatrix is exactly the rotation matrix needed when
considering ṗ and q̇ as vectors. Also, multiplication by the whole 4 × 4
matrix preserves the “pure imaginary” property of representing 3-space
vectors with quaternions.

• Finally, it can be shown that for unit quaternion ṙ representing the rota-
tion,

r0 = cos
(θ
2
)

and (rx, ry, rz)> = sin
(θ
2
)
ω̂, (34)

where θ is the angle of rotation and ω̂ is the axis of rotation.

6

Finding the Rotation

Now we can return to the problem of finding the rotation that maximizes∑
i

p′
i
>Rq′i. (35)

This is the rotation that minimizes our original objective function.

• Writing in terms of quaternions, we have∑
i

ṗ′
i · (ṙq′iṙ∗). (36)

• Manipulating using equation 29,∑
i

ṗ′
i · (ṙq̇′iṙ∗) =

∑
i

(ṗ′
iṙ) · (ṙq̇′i)

=
∑

i

(P ′
i ṙ) · (Q̃′

iṙ)

= ṙ>
[∑

i

P ′
i
>Q̃′

i

]
ṙ

= ṙ>Mṙ

• Maximizing this subject to the constraint that ṙ is a unit vector is a
problem we know how to solve!

7

Small Angle Approximations — Overview

We will introduce small angle approximation to solve the problem of minimizing∑
i

‖pi −Rqi‖2 (37)

(I’ve dropped the ’ on pi and qi to simplify notation.) Above we found that
this was equivalent to maximizing (14),∑

i

pi
>Rqi, (38)

but here we stick with the original form in using a second representation of
rotation — the small angle approximation.

More on Rotations

• Any rotation can be obtained as a composition of rotations about the X,
Y , and Z axes. These axis rotations can be written

RX =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , RY =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 , (39)

and

RZ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (40)

where θ, φ, and ψ are the angles of rotation.

• Any rotation matrix R can be written as

R = RZRY RX (41)

for some appropriate choice of rotation angles.

• It is important to observe that by reordering the multiplications, e.g.
RZRXRY , the rotation matrix changes (in general).

The Approximation

• The power of using these angles comes when approximating R assuming
small angles.

• Recall that the Taylor series expansions of the sine and cosine functions
are

cos t = 1− t2

2
+
t4

4!
− . . .

sin t = t− t3

3!
+
t5

5!
− . . .

8

Using a 1st order approximation, cos t = 1 and sin t = t. Also, note
that in a 1st order approximation, the Taylor series expansion produces
sinu sin v = 0.

• We can use these facts to show that up to a 1st (small angle) approxima-
tion,

R =

 1 −ψ φ
ψ 1 −θ
−φ θ 1

 (42)

Note that this matrix is not orthogonal.

Solving the Rotation Problem Using the Approximation

• Substituting the approximation into (37) yields

∑
i

‖pi −

 1 −ψ φ
ψ 1 −θ
−φ θ 1

qi‖2 (43)

• This may easily be rearranged into∑
i

‖pi − qi −Qir‖2 (44)

where r> = (θ, φ, ψ) and

Qi =

 0 qi,z −qi,y
−qi,z 0 qi,x
qi,y −qi,x 0

 (45)

for q>i = (qi,x, qi,y, qi,z).

• This is a straight-forward, unconstrained, least-squares regression prob-
lem.

• Substituting the resulting angles back into 1 −ψ φ
ψ 1 −θ
−φ θ 1

 (46)

does not yield a rotation matrix. We still need to convert this matrix,
which we will denote by R∗, into a rotation.

• We do this using (once again!) the SVD. If

R∗ = UWV> (47)

9

is the SVD of R∗, then we can show that

R = UIV> (48)

is the closest rotation matrix to R∗ in a Frobenius norm (least-squares
distance between the individual components of the matrices) sense.

• The correction from R∗ to R is larger for large angles. Therefore, some-
times it is necessary to estimate an incremental rotation from∑

i

‖pi −∆R ·Rqi‖2 =
∑

i

‖pi −∆Rqi
′‖2 (49)

where here q′i = Rqi.

• The new estimate is
R = ∆R ·R. (50)

• These iterations can be repeated as many times as desired, but more than
once or two is rarely necessary to obtain sufficient accuracy.

Discussion

• The quaternion solution is straight-forward, simple and elegant, but it
depends heavily on the ability to separate translation and scale from ro-
tation.

• The small-angle solution is just as straight-forward, but not quite as ele-
gant. It works much better, however, for problems where separability is
not possible.

Practice Problems / Potential Test Questions

1. Prove that Equation (2) is minimized with respect to t′ when t′ = 0.

2. Give a derivation of Equation (12) from (11) and from provide a geometric
interpretation that intuitively justifies the resulting scale estimate.

3. Prove that

q̇q̇∗ =

q̇ · q̇

0
0
0

4. Prove the relation in Equation (29).

5. Show that in the small angle approximation

RXRY = RY RX ,

but that this is not true in general.

10

6. The Frobenius norm of a matrix is the square root of the sum of the
squares of the matrix entries. In other words, if

A = (ai,j)

then the Frobenius norm of A is

‖A‖F =
(∑

i,j

a2
i,j

)1/2

.

The Frobenius norm distance between two matrices, A and B, of the same
dimensions is

‖A−B‖F .

Let A be a square matrix and let the SVD of A be A = UDV>. Show
that the matrix

B = UV>

is the closest orthogonal matrix to A in the Frobenius norm.

Homework 8 Problem

The solution to the following programming problem, together with solutions to
the Homework 7 problems listed at the end of the Lecture 14 notes, is due at
the start of class on Monday, March 27. Each of the two parts of the problem
is worth 20 points toward your homework grade.

Please write Matlab or C++ programs to compute the best least-squares
estimate to the rotation matrix aligning two sets of N points, A and B — i.e.
the rotation from the coordinate system of A to the coordinate system of B.
For the first part, use unit quaternions and for the second part use the small-
angle approximation. The input will be a file containing N lines of numbers.
Each line will have 6 floating point numbers, with the first 3 numbers being the
coordinates of a point from A and the last 3 numbers being the coordinates of
the corresponding point from B.

In your solutions, you may only use vectors, matrices, the spectral decompo-
sition, and the SVD. You may not use any special quaternion implementations.
For each of your two solutions, turn in the source code and the results/output
on the data sets posted (soon) on the course web site. Both code and output
should be clearly documented. The output should contain both the computed
rotation and an analysis of the remaining error following application of the ro-
tation. In particular, if R is the estimated rotation, represented as a matrix,
then the error is [N∑

i=1

‖bi −Rai‖2/N
]1/2

.

11

