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ABSTRACT
An automatic retinal image registration algorithm would be
an important tool for detecting visible changes in the retina
caused by the progress of a disease or by the impact of a
treatment. Developing such an algorithm is difficult, espe-
cially for feature-poor images of diseased eyes. In this pa-
per, a new retinal image registration algorithm is described
that bootstraps an estimate of the parameters of a high-order,
inter-image transformation model based on just one or two
initial retinal image landmark correspondences. Hypothe-
sized sets of initial correspondences are obtained through
invariant indexing. For each such set, an initial, low-order
transformation covering a small image region is estimated.
Sufficiently accurate initial estimates are gradually expanded
to a high-order transformation that covers the entire retina
using constraints generated by alignment of the vasculature.
The expansion and switch in model orders is entirely driven
by the covariance matrix of the estimated transformation pa-
rameters. The resulting algorithm registers images to accu-
racies of less than a pixel in just a few seconds.

1. INTRODUCTION

A fully-automatic algorithm for registering a pair of reti-
nal images will have a substantial impact on analyzing, di-
agnosing and treating a number of diseases of the human
retina (Figure 1). Potential applications include real-time
tracking for treatment of blindness-causing conditions [1],
change detection to measure the progress of a disease [2]
or the impact of treatments [3], and multimodel integration
to aid in diagnosis and surgical planning [4]. Solving the
retinal image registration problem requires estimating the
parameters of a transformation model mapping the coordi-
nates of one image onto a second. This poses a number
of significant challenges, several of which are illustrated in
Figure 1: (1) The retina is a curved surface and usually no
camera calibration parameters are available. (2) Illumina-
tion and camera settings such as focus and zoom can vary

substantially between images. (3) Two images taken many
months apparent can exhibit major physical changes in the
structure and color of the retina. (4) Diseased eyes often
have relatively few features on which to base registration.
(5) Except under well-controlled conditions, the part of the
retina visible in different images can differ substantially.

Several of these challenges are addressed in the litera-
ture. For example, most published techniques are feature-
based — using the retinal vasculature, which is generally
quite stable — to accommodate illumination variations be-
tween images [5, 6]. Our own recent work has introduced
a quadratic inter-image transformation based on combining
models of unknown retinal curvature, viewpoint changes,
and camera parameters [7]. We have demonstrated a regis-
tration algorithm to estimate the parameters of this model
using a hierarchical, robust technique. While this algorithm
is fast and generally produces registration errors of less than
one pixel on1024×1024 images, it requires at least six land-
mark (branchings and cross-over points of the vasculature,
illustrated in Fig. 2) correspondences. Images of a diseased
eye often do not have nearly enough landmarks in common
Fig 1. Thus, from a technical viewpoint, the fundamental
challenge is “bootstrapping” reliable, accurate registration
from as few landmark correspondences as possible.

This paper presents a new retinal image registration al-
gorithm designed to address exactly this problem. The fun-
damental and novel ideas of the algorithm, illustrated in
Fig. 3, are (1) to initialize the transformation estimate using
a low-order model covering only a small region around a
single landmark correspondence or a pair of landmark cor-
respondences, and (2) to gradually extend and refine this
to estimate a high-order, image-wide transformation. Cru-
cially, the initial correspondences are insufficient to con-
strain the high-order transformation, but they are sufficient
to initialize locally and at a low order. The processes of ex-
panding the region covered by the transformation estimate
and shifting to a higher-order model are both driven by an-
alyzing the transformation uncertainty as measured by the



Fig. 1. Two different images of an unhealthy eye. The vas-
culature has poor definition and different parts of the eye are
in focus in the two images. Automatic landmark extraction
only produced two vascular landmark in common between
the two images. These are drawn over top of the images.

covariance matrix of the estimate.

2. PRELIMINARIES

The new registration algorithm depends on a number of tech-
niques and results published in our prior work. The land-
marks used to establish initial correspondences are branch-
ing and cross-overs of the retinal vasculature. The con-
straints used in refinement are correspondences between cen-
terlines of the retinal vasculature. Both are detected using
a procedure that traces the retinal vasculature starting from
seed points located along a series of vertical and horizontal
grid lines [8].

The transformation describing the mapping of one im-
age coordinate system onto the other is well-approximated
by a 12-parameter, quadratic model [7]. Letp = (x, y)T

be the coordinates of a point location in one image,Ip, and
let q = (u, v)T be the coordinates of the same location on
the retina in the second image,Iq. Then, the transformation

Fig. 2. Extracted vascular landmarks and vessel centerlines
drawn on top of an image of a healthy eye. In images of
diseased eyes, such as Fig. 3, these landmarks and centerline
contours are much more sparsely distributed.

mappingp ontoq may be written

q = M(p; Θ) = Θ(1, x, y, x2, xy, y2)T (1)

whereΘ is a 2 × 6 parameter matrix, which must be es-
timated. Importantly, this transformation is locally well-
approximated by affine and even similarity transformations,
which have 6 and 4 degrees of freedom, respectively, instead
of 12.

3. GENERATING HYPOTHESIZED, INITIAL
CORRESPONDENCES

The algorithm generates hypotheses for initial correspon-
dences between a pair of landmarks or between two pairs
of landmarks. The example in Figure 3 illustrates a single
pair. Each hypothesis is used to estimate an initial similar-
ity transformation, which is then refined and verified. If it
is rejected, then a new hypothesis is generated. Hypothesis
generation is the focus of this section.

Each detected vascular landmark is described using 8
features, as shown in Figure 4: the center location of the in-
tersection region, three blood vessel orientations, and three
blood vessel widths. Ratios between the widths and orien-
tation differences do not change — are invariant — when
a similarity transformation is applied to them. The orien-
tations themseleves are invariant to translation and scaling.
Thus, assuming small rotations, which is almost always true
because of physical considerations, the three angles and two
width ratios form an invariant signature. For pairs of land-
marks that are sufficient near each other, a six-parameter
similarity-invariant signature [9] is computed which does
not involve vessel widths, the least accurate of the param-
eters. Thus, pair invariants allow for rotations and are less
sensitive to feature instability.



Fig. 3. An example illustrating the new registration algorithm. The left panel shows the initial alignment of the images from
Fig. 1 using a similarity transformation computed from a single landmark correspondence. Extracted vascular centerlines
from both images are shown (green and red). The vasculature is aligned in the small box around the landmark, but badly
misaligned globally. Driven by the covariance matrix of the transformation estimate, the region is gradually expanded and
the transformation refined (middle). When it is expanded to cover the entire overlapping region (right) the vasculature that is
in common between the two images is accurately aligned.

The invariant signatures vectors are computed separately
for each image. Hypotheses for correspondences are gener-
ated by finding signature vectors that are close to each other.
Vectors are stored in a k-d tree for fast look-up. Hypotheses
are ordered by chi-squared statistics on Mahalanobis dis-
tances between vectors.

Each hypothesized correspondence is used to compute a
least-squares estimate of the similarity transformation align-
ing the surrounding image regions. The covariance matrix
of the 4 similarity transformation parameters is computed
as

Σ = σ2H−1(θ̂) (2)

whereσ2 is an error variance, andH−1(θ̂) is the inverse
Hessian matrix of the least-squares objective function eval-
uated at the vector of estimated similarity parameters,θ̂.

This procedure leads to the initial estimate and region
show in Figure 3(a).

4. COVARIANCE-DRIVEN REFINEMENT

The refinement procedure extends an initial transformation
by increasing the region over which it is applied and in-
creasing the model order until the transformation is clearly
incorrect or until the region is image-wide and and the trans-
formation accurately aligns the vasculature. This relies on
the fact that an accurate alignment of the complex blood
vessel pattern of the retina can not be accidental.

The procedure itself is most easily viewed as a general-
ization of an iterative-closest point algorithm [10]. Here is
an outline of the steps, which start from an initial regionR,

Fig. 4. Landmark features:c is the center location,θj are
orientations of the three blood vessels that meet to form the
landmark, andwj are the vessel widths.

parameter estimatêθ, and covariance matrixΣ. The map-
ping is from imageIp to Iq.

1. A sampling is taken of the vascular centerline (trace)
points (Fig. 2) within regionR of Ip. For each point
pi the current transformation estimate is applied to
mappi ontoIq, producing pointp′i.

2. For each transformed point,p′i, the closest trace point,
qi, on a vascular centerline contour inIq is found.

3. The transformation parameter vector is re-estimation
using robust estimation techniques [11] and constraints
based on the match between the pointspi andqi. The
constraints are the distances between the transformed
pi and a linearization of the contour atqi.

4. The new error variance is robustly estimated and the
new covariance matrix is calculated as in (2).



Fig. 5. Alignment of two images having only 25% overlap.

5. The region is expanded based on the “point transfer”
[12, Ch. 4] of the transformation at the boundaries.
For a pointp on the boundary ofR, let Jp be the
Jacobian of the current transformation estimate with
respect top. Then the transfer error atp is the point
covariance matrixΣp = JpΣJTp . Growth is inversely
proportional to| Σp |, so that more stable estimates
lead to faster growth.

6. If region growth is too slow, a switch is made to a
higher order model (similarity to affine or affine to
quadratic).

Termination with success occurs when the region expands
to cover the entire area of overlap between the two images
and the transformation error is sufficiently low (1.5 pixels,
as determined empirically [7]). Termination with failure oc-
curs when the initial error is too large or when the region is
too unstable at the quadratic model to expand.

5. RESULTS AND DISCUSSION

An initial round of experimental results has been completed.
In a large suite of image pairs taken from healthy eyes the
algorithm succeeds xx% more often than our earlier algo-
rithm [7]. An example result is shown in Fig. 5. In a smaller
dataset of images from diseased eyes, the new algorithm has
not yet failed to produce an alignment. The example shown
in Fig. 3 is the most extreme case we’ve tried. The algorithm
works in just a few seconds, on average.

The new registration algorithm succeeds because of the
combination of two major ideas. The first is generating ini-
tial transformation hypotheses that are of insufficent com-
plexity and only locally accurate. This gives the algorithm
only a “foot-in-the-door” for a good transformation esti-
mate, but, crucially, it avoids the need for a large number

of initial correspondences. The second idea is the gradual
extension and refinement of the transformation using the es-
timate’s covariance matrix as a guide. The genesis of the
technique can be seen in our recent work [9], but the cur-
rent algorithm is novel in its ability to use a single corre-
spondence and, most importantly, in the application of the
covariance matrix. The ideas presented here can be applied
to many other medical image registration problems.
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