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ABSTRACT substantially between images. (3) Two images taken many

An automatic retinal image registration algorithm would be months apparent can exhibit major physical changes in the
an important tool for detecting visible changes in the retina structure and color of the retina. (4) Diseased eyes often
caused by the progress of a disease or by the impact of dhave relatively few features on which to base registration.
treatment. Developing such an algorithm is difficult, espe- (5) Except under well-controlled conditions, the part of the
cially for feature-poor images of diseased eyes. In this pa-retina visible in different images can differ substantially.

per, a new retinal image registration algorithm is described  Several of these challenges are addressed in the litera-
that bootstraps an estimate of the parameters of a high-orderture. For example, most published techniques are feature-
inter-image transformation model based on just one or twobased — using the retinal vasculature, which is generally
initial retinal image landmark correspondences. Hypothe- quite stable — to accommodate illumination variations be-
sized sets of initial correspondences are obtained throughtween images [5, 6]. Our own recent work has introduced
invariant indexing. For each such set, an initial, low-order a quadratic inter-image transformation based on combining
transformation covering a small image region is estimated. models of unknown retinal curvature, viewpoint changes,
Sufficiently accurate initial estimates are gradually expandedand camera parameters [7]. We have demonstrated a regis-
to a high-order transformation that covers the entire retinatration algorithm to estimate the parameters of this model
using constraints generated by alignment of the vasculatureusing a hierarchical, robust technique. While this algorithm
The expansion and switch in model orders is entirely driven is fast and generally produces registration errors of less than
by the covariance matrix of the estimated transformation pa-one pixel onl024 x 1024 images, it requires at least six land-
rameters. The resulting algorithm registers images to accu-mark (branchings and cross-over points of the vasculature,

racies of less than a pixel in just a few seconds. illustrated in Fig. 2) correspondences. Images of a diseased
eye often do not have nearly enough landmarks in common
1. INTRODUCTION Fig 1. Thus, from a technical viewpoint, the fundamental

challenge is “bootstrapping” reliable, accurate registration
A fully-automatic algorithm for registering a pair of reti- from as few landmark correspondences as possible.
nal images will have a substantial impact on analyzing, di- This paper presents a new retinal image registration al-
agnosing and treating a number of diseases of the humargorithm designed to address exactly this problem. The fun-
retina (Figure 1). Potential applications include real-time damental and novel ideas of the algorithm, illustrated in
tracking for treatment of blindness-causing conditions [1], Fig. 3, are (1) to initialize the transformation estimate using
change detection to measure the progress of a disease [2} low-order model covering only a small region around a
or the impact of treatments [3], and multimodel integration single landmark correspondence or a pair of landmark cor-
to aid in diagnosis and surgical planning [4]. Solving the respondences, and (2) to gradually extend and refine this
retinal image registration problem requires estimating the to estimate a high-order, image-wide transformation. Cru-
parameters of a transformation model mapping the coordi-cially, the initial correspondences are insufficient to con-
nates of one image onto a second. This poses a numbestrain the high-order transformation, but they are sufficient
of significant challenges, several of which are illustrated in to initialize locally and at a low order. The processes of ex-
Figure 1: (1) The retina is a curved surface and usually no panding the region covered by the transformation estimate
camera calibration parameters are available. (2) lllumina- and shifting to a higher-order model are both driven by an-
tion and camera settings such as focus and zoom can vangalyzing the transformation uncertainty as measured by the



Fig. 2. Extracted vascular landmarks and vessel centerlines
drawn on top of an image of a healthy eye. In images of
diseased eyes, such as Fig. 3, these landmarks and centerline
contours are much more sparsely distributed.

mappingp ontoq may be written
q:M(p; 9) = @(l,x,y,xQ,xy,yQ)T (1)

where® is a2 x 6 parameter matrix, which must be es-
timated. Importantly, this transformation is locally well-
approximated by affine and even similarity transformations,
which have 6 and 4 degrees of freedom, respectively, instead
of 12.

Fig. 1. Two different images of an unhealthy eye. The vas-
culature has poor definition and different parts of the eye are
in focus in the two images. Automatic landmark extraction 3. GENERATING HYPOTHESIZED, INITIAL
only produced two vascular landmark in common between CORRESPONDENCES
the two images. These are drawn over top of the images.
The algorithm generates hypotheses for initial correspon-
dences between a pair of landmarks or between two pairs
covariance matrix of the estimate. of landmarks. The example in Figure 3 illustrates a single
pair. Each hypothesis is used to estimate an initial similar-
ity transformation, which is then refined and verified. If it
2. PRELIMINARIES is rejected, then a new hypothesis is generated. Hypothesis
generation is the focus of this section.
The new registration algorithm depends on a number oftech-  Each detected vascular landmark is described using 8
niques and results published in our prior work. The land- features, as shown in Figure 4: the center location of the in-
marks used to establish initial correspondences are branchtersection region, three blood vessel orientations, and three
ing and cross-overs of the retinal vasculature. The con-blood vessel widths. Ratios between the widths and orien-
straints used in refinement are correspondences between cefation differences do not change — are invariant — when
terlines of the retinal vasculature. Both are detected usinga similarity transformation is applied to them. The orien-
a procedure that traces the retinal vasculature starting fromations themseleves are invariant to translation and scaling.
seed points located along a series of vertical and horizontalThus, assuming small rotations, which is almost always true
grid lines [8]. because of physical considerations, the three angles and two
The transformation describing the mapping of one im- width ratios form an invariant signature. For pairs of land-
age coordinate system onto the other is well-approximatedmarks that are sufficient near each other, a six-parameter
by a 12-parameter, quadratic model [7]. het= (z,y)” similarity-invariant signature [9] is computed which does
be the coordinates of a point location in one imafe and not involve vessel widths, the least accurate of the param-
letq = (u,v)” be the coordinates of the same location on eters. Thus, pair invariants allow for rotations and are less
the retina in the second imagk, Then, the transformation  sensitive to feature instability.



Fig. 3. An example illustrating the new registration algorithm. The left panel shows the initial alignment of the images from

Fig. 1 using a similarity transformation computed from a single landmark correspondence. Extracted vascular centerlines
from both images are shown (green and red). The vasculature is aligned in the small box around the landmark, but badly
misaligned globally. Driven by the covariance matrix of the transformation estimate, the region is gradually expanded and
the transformation refined (middle). When it is expanded to cover the entire overlapping region (right) the vasculature that is

in common between the two images is accurately aligned.

The invariant signatures vectors are computed separately
for each image. Hypotheses for correspondences are gener-
ated by finding signature vectors that are close to each other.
Vectors are stored in a k-d tree for fast look-up. Hypotheses
are ordered by chi-squared statistics on Mahalanobis dis-
tances between vectors.

Each hypothesized correspondence is used to compute a
least-squares estimate of the similarity transformation align-
ing the surrounding image regions. The covariance matrix
of the 4 similarity transformation parameters is computed
as Fig. 4. Landmark featurese is the center locatiorq; are

> — a2H*1(é) 2) orientations of the three blood vessels that meet to form the
landmark, andv; are the vessel widths.

whereo? is an error variance, anH~!(9) is the inverse
Hessian matrix of the least-squares objective function eval-
uated at the vector of estimated similarity paramet@rs,

This procedure leads to the initial estimate and region
show in Figure 3(a). 1. A sampling is taken of the vascular centerline (trace)
points (Fig. 2) within regiorR of I,,. For each point
p; the current transformation estimate is applied to
mapp; ontoI,, producing poingp.

parameter estimai@, and covariance matriX. The map-
ping is from imagel,, to I,.

4. COVARIANCE-DRIVEN REFINEMENT

The refinement procedure extends an initial transformation 2. For each transformed poimt;, the closest trace point,
by increasing the region over which it is applied and in- q,, on a vascular centerline contouripis found.
creasing the model order until the transformation is clearly
incorrect or until the region is image-wide and and the trans-
formation accurately aligns the vasculature. This relies on
the fact that an accurate alignment of the complex blood
vessel pattern of the retina can not be accidental.

The procedure itself is most easily viewed as a general-
ization of an iterative-closest point algorithm [10]. Here is 4. The new error variance is robustly estimated and the
an outline of the steps, which start from an initial regi®n new covariance matrix is calculated as in (2).

3. The transformation parameter vector is re-estimation
using robust estimation techniques [11] and constraints
based on the match between the popitandq;. The
constraints are the distances between the transformed
p; and a linearization of the contour @t.



(2]
Fig. 5. Alignment of two images having only 25% overlap.
5. The region is expanded based on the “point transfer” [3]

[12, Ch. 4] of the transformation at the boundaries.
For a pointp on the boundary of?, let J,, be the

of initial correspondences. The second idea is the gradual
extension and refinement of the transformation using the es-
timate’s covariance matrix as a guide. The genesis of the
technique can be seen in our recent work [9], but the cur-
rent algorithm is novel in its ability to use a single corre-
spondence and, most importantly, in the application of the
covariance matrix. The ideas presented here can be applied
to many other medical image registration problems.
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