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Structural cut-off

Number of edges between the set of
nodes with degree k and degree k’:

Maximum number of edges between
the two groups:

M. Boguñá, R. Pastor-Satorras, A. Vespignani, EPJ B 38, 205 (2004)

High assortativity high number of links between the hubs.

If we allow only one link between two nodes, we can simply run out of hubs to connect 
to each other to satisfy the assortativity criteria. 

There cannot be more links between the
two groups, than the overall number of
edges joining the nodes with degree k.

This is true even if we allow multiple edges.

If we only have simple edges, we
cannot have more links between the
two groups, than if we connect every
node with degree k to every node with
degree k’ once.



Structural cut-off

The ratio of Ekk’ and mkk’ has to be ≤ 1 in the 
physical region!

defines the structural cut-off

M. Boguñá, R. Pastor-Satorras, A. Vespignani, EPJ B 38, 205 (2004)



Structural cut-off for uncorrelated networks
Uncorrelated networks:

ks(N) represents a structural cutoff:  
one cannot have nodes with degree larger than ks(N) , 

if there are nodes with  k> ks(N)  we cannot find sufficient links between the highly 
connected nodes to maintain the neutral nature of the network.

Solution:
(a) Introduce a structural cutoff (i.e. do not allow nodes with k> ks(N) 
(b) Let  the network become more dissasortative, having fewer links between hubs.



Example: Degree sequence introduces disassortativity

Scale-free network generated with the 
configuration model (N=300, L=450, γ=2.2).

Red hub: 55 neighbors.
Blue hub: 46 neighbors. 

Let’s calculate the expectation number of 
links between red node (k=55) and blue 
node (k=46) for uncorrelated networks!

The measured r=-0.19!  Dissasortative!

In order for the network to be neutral, we 
need 2.8 links between these two hubs.

Here N55=N46=1, hence
m55,46=1 so r55,46=E55,46



The largest nodes have knn< <knn>
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The effect is particularly clear for N=10,000:

The red curves are those of interest to us: one can see that a clear dissasortativity
property is visible in this case.
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Natural cutoffs in scale-free networks
All real networks are finite  let us explore its consequences. 
We have an expected maximum degree, Kmax

Estimating Kmax

Why: the probability to have a node larger than Kmax should not 
exceed the prob. to have one node, i.e. 1/N fraction of all nodes 

Natural cutoff: 



Structural cut-off for uncorrelated networks

Natural cut-off:

The size of the largest hub is above the 
structural cutoff, which means that it cannot 
have enough links to the other hubs to 
maintain its neutral status.
 disassortative mixing

a randomly wired network with γ<3 will be 
(a) dissasortative
(b) Or will have to have a cutoff at ks(N)< kmax(N)

Structural cutoff:

γ=3:  ks(N) and kmax(N) scale the same way, i.e. ~N1/2.

γ<3: 



Example: introducing a structural cut-off

Scale-free network generated with the 
configuration model (N=300, L=450, γ=2.2) with 
structural cut-off ~ N½.

Red hub:  12 neighbors.
Blue hubs: 11 neighbors. 

Again we can calculate the expectation 
number of edges between the hubs.

r=0.005   neutral



The largest nodes have knn~ <knn>
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The effect is particularly clear for N=10,000:

A clear case of neutral assortativity property is visible in this case thanks to 
imposing structural cut-off.



DIRECTED NETWORKS

in-in in-out

out-in out-out

J. G. Foster, D. V. Foster, P. Grassberger, M. Paczuski, PNAS 107, 10815 (2010)

α,β: {in,out}
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DIRECTED NETWORKS
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MULTIPOINT DEGREE CORRELATIONS

P(k): not enough to characterize a network

Large degree nodes tend to connect to large 
degree nodes
Ex: social networks

Large degree nodes tend to connect to small 
degree nodes
Ex: technological networks
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MULTIPOINT DEGREE CORRELATIONS

Measure of correlations:
P(k’,k’’,…k(n)|k): conditional probability that a node of degree k is connected to nodes of degree 
k’, k’’,… 

Simplest case:
P(k’|k): conditional probability that a node of degree k’ is connected to a node of degree k
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2-POINTS: CLUSTERING COEFFICIENT

# of links between neighbors

Do your friends know each other ?

• P(k’,k’’|k): cumbersome, difficult to estimate from data
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CORRELATIONS: CLUSTER SPECTRUM

• Average clustering coefficient 

= average over nodes with very different characteristics
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constC ~

P(k)  ~ k-γ

EMPIRICAL DATA FOR REAL NETWORKS
Pathlenght Clustering Degree Distr.

klog
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klog
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P(k)=δ(k-kd)

Exponential

P(k)  ~ k-γ
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CLUSTERING COEFFICIENT OF THE BA MODEL

Konstantin Klemm, Victor M. Eguiluz,
Growing scale-free networks with small-world behavior,
Phys. Rev. E 65, 057102 (2002), cond-mat/0107607

The numerical results indicate a slightly 
slower decay for BA network than for 
random networks.

But not slow enough...

Reminder: for a random graph we have:

Clustering coefficient versus size 
of the Barabasi-Albert (BA) model 
with <k>=4, compared with 
clustering coefficient of random 

graph, 
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MODULARITY IN THE METABOLISM

←Metabolic network
(43 organisms)

← Scale-free model

Clustering Coefficient:

C(k)=
# links between k neighbors

k(k-1)/2
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THE MEANING OF C(N)

Existence of a high degree of local modularity in real networks, that is not captured by 
the  current models.

C(N)– the average number of triangles around each node in a system of size N. 

The fact that C(N) does not decrease means that the relative number of triangles around 
a node remains constant as the system size increases—in contrast with the ER and BA 
models, where the relative number of triangles around a node decreases.
(here relative means relative to how many triangles we expected if all triangles that could 
be there would be there)

But C has some unexpected behavior, if we measure C(k)– the average clustering 
coefficient for nodes with degree k.
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CORRELATIONS: CLUSTER SPECTRUM

• Average clustering coefficient 

= average over nodes with very different characteristics

• Clustering spectrum:

putting together nodes which have the same degree

(link with hierarchical structures)
class of degree k
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C(k) for the ER and BA models

This is not true, however, for real networks. Let us look at some empirical data. 

N
k

pCrand ==

Erdos-Renyi Barabasi-Albert
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HIERARCHICAL NETWORKS

Hollywood

Society The electronic skin

Language

Human communication
Internet (AS)
Vazquez et al,'01

WWW
Eckmann & Moses, ‘02
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protein-gene 
interactions

protein-protein 
interactions

PROTEOME

GENOME

METABOLISM
Bio-chemical 

reactions
Citrate Cycle

Cellular networks:
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BIOLOGICAL SYSTEMS

Protein-protein interaction Regulatory networks
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SCALING OF THE CLUSTERING COEFFICIENT C(k)

Ravasz, Somera, Mongru, Oltvai, A-L. B, Science 297, 1551 (2002).

The metabolism forms a hierarchical network.
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ABSENCE OF HIERARCHY

Internet (router)

Geographically localized networks

Power Grid
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SUMMARY OF EMPIRICAL RESULTS

C(k)~k-β C(k) indep. of k

Internet (AS)
WWW
Metabolism
Protein interaction network
Regulatory network
Language

Internet (router)
Power grid

ER model
WS model
BA model
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But there is a deeper issue as stake, that need to consider– that of modularity. 
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HIERARCHICAL EXPONENT

All models predict 

Is the exponent universal? 

Or could we have for example:
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STOCHASTIC VERSION

Randomly pick a p fraction of the newly added nodes 
and connect each of them independently to the nodes 
belonging to the central module.
-use preferential attachment to decide, to which central 

node the selected nodes link to.
-at the next level p2 fraction will link, back, then p3, …pi
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SUMMARY

3. Clustering 
spectrum

2. Clustering  coefficient
independent of N

1. Scale-free

In real systems C(k) does not always decrease as a power law. 
What matters, however, that it decreases, i.e. it is not independent of k.
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THE BIG PICTURE

A.-L. Barabasi and Z.N. Oltvai, Nat. Rev. Gen.(2004)

Hierarchy is a new rather generic
network property.
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What does happen in real systems? Is a prediction that all systems with γ<3 should be 
automatically dissasortative, or have a cutoff – is this the case?
Let’s see: www, γ=2.1,  no cutoff, dissasortative NICE
Actor network, no cutoff, but it is ASSORTATIVE (how is this possible?).
Internet: γ=2.5, disassortative, cutoff , NICE

Networks with γ<3 don’t have to be assortative:
Lets suppose we have a neutral network. High assortativity means a high degree nodes neighbors 
have high average degree. If we want to make it assortative we have to increase the degree of the 
neighbors of hubs. Even if the degree of the top neighbors cannot be increased because we used up 
all of the hubs, the low degree neighbors still can be replaced with higher ones, thus making the 
network assortative.
Anyway, the social networks checked (actor network, coauthorship network) have cut-offs according 
to Newman and Stanley.
http://samoa.santafe.edu/media/workingpapers/00-07-037.pdf
http://viseu.chem-eng.northwestern.edu/site_media/publication_pdfs/Amaral-2000-
Proc.Natl.Acad.Sci.U.S.A.-97-11149.pdf
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Static model used for examples

• Start with N unconnected nodes.
• Assign a wi weight to each node i.
• Randomly select two nodes with probability proportional to wi. Connect 

these nodes. Repeat L times.

If 

Upper cut-off may be added by introducing i0:

For large N this should be equivalent to the configuration model.  
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Static model used for examples

• Start with N unconnected nodes.
• Assign a wi weight to each node i.
• Randomly select two nodes with probability proportional to wi. Connect 

these nodes. Repeat L times.

If 

Upper cut-off may be added by introducing i0:

For large N this should be equivalent to the configuration model.  
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A giant cluster exists if each node is connected to at least two other nodes.
The average degree of a node i linked to the GC, must be 2, i.e.

Malloy, Reed, Random Structures and Algorithms  (1995); Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

2)|(| =↔>=↔< ∑
mk

mmm jikPkjik

)(
)()|(

)(
),()|(

jiP
kPkjiP

jiP
jikPjikP mmm

m ↔
↔

=
↔
↔

=↔ Bayes’ theorem

P(km|i <-> j): joint probability that a node has degree km and is connected to nodes i and j.
For a randomly connected network (does NOT mean random network!) with P(k):

1
)|(

−
=↔

N
kkjiP m

m

><
=

><
=

↔
↔

=↔
∑

∑∑∑ k

kPk

k
kPkk

jiP
kPkjiPkjikPk m

mmm

k
mm

k

mm
m

k

mm
m

k
mm

)(
)(

)(
)()|()|(

2

i can choose between N-1 nodes to 
link to, each with probability 1/(N-1). 
I can try ki times.

κ>2:  a giant cluster exists
κ<2:  many disconnected clusters

MALLOY-REED CRITERIA: THE EXISTENCE OF A GIANT COMPONENT
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Apply the Malloy-Reed Criteria to an Erdos-Renyi Network

Discrete Formulation
-binomial distribution-

Continuum Formulation
-Poisson distribution-
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A giant cluster exists if each node is connected to at least two other nodes.

Malloy-Reed; Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

κ>2:  a giant cluster exists;

κ<2:  many disconnected clusters;

Apply the Malloy-Reed Criteria to an Erdos-Renyi Network
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