Frontiers of Network Science Fall 2022

Class 14 Robustness
 (Chapter 8 in Textbook)

Boleslaw Szymanski

based on slides by
Albert-László Barabási
and Roberta Sinatra
www.BarabasiLab.com

Apply the Malloy-Reed Criteria to an Erdos-Renyi Network

A giant cluster exists if each node is connected to at least two other nodes.

$$
\kappa \equiv \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=2
$$

$K>2$: a giant cluster exists;
$K<2$: many disconnected clusters;

$$
\begin{aligned}
& \langle k\rangle=\langle k\rangle \\
& \left\langle k^{2}\right\rangle=\langle k>(1+\langle k>) \\
& \sigma_{k}=\left(\left\langlek^{2}>-\left\langle k>^{2}\right)^{1 / 2}=\langle k\rangle^{1 / 2}\right.\right.
\end{aligned} \quad \kappa \equiv \frac{\left\langle k^{2}\right\rangle}{\langle k>}=\frac{\langle k\rangle(1+\langle k\rangle)}{\langle k\rangle}=1+\langle k\rangle=2
$$

Malloy-Reed; Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

RANDOM NETWORK:

DAMAGE IS MODELED AS AN INVERSE PERCOLATION PROCESS

$\mathrm{f}=$ fraction of removed nodes

(Inverse percolation phase transition)

FINAL REMARKS: EFFECT OF ASSORTATIVE MIXING: PERCOLATION

BREAKDOWN THRESHOLD FOR ARBITRARY P(k)

Problem: What are the consequences of removing a fraction f of all nodes?
At what threshold f_{c} will the network fall apart (no giant component)?
Random node removal changes
the degree of individual nodes $\left[k \rightarrow k^{\prime} \leq k\right]$
the degree distribution $\left[P(k) \rightarrow P^{\prime}\left(k^{\prime}\right)\right]$
A node with degree k will loose some links and become a node with degree k ' with probability:

Let us asume that we know $<k>$ and $<k^{2}>$ for the original degree distribution $P(k)$ \rightarrow calculate $\left\langle k^{\prime}\right\rangle,\left\langle k^{\prime 2}\right\rangle$ for the new degree distribution $P^{\prime}\left(k^{\prime}\right)$.

BREAKDOWN THRESHOLD FOR ARBITRARY P(k)

$P^{\prime}\left(k^{\prime}\right)=\sum_{k=k^{\prime}}^{\infty} P(k)\binom{k}{k^{\prime}} f^{k-k^{\prime}}(1-f)^{k^{\prime}} \quad$ Degree distribution after we removed f fraction of nodes.
$<k^{\prime}>_{f}=\sum_{k^{\prime}=0}^{\infty} k^{\prime} P^{\prime}\left(k^{\prime}\right)=\sum_{k^{\prime}=0}^{\infty} k^{\prime} \sum_{k=k^{\prime}}^{\infty} P(k) \frac{k!}{k^{\prime}!\left(k-k^{\prime}\right)!} f^{k-k^{\prime}}(1-f)^{k^{\prime}}=\sum_{k^{\prime}=0}^{\infty} \sum_{k=k^{\prime}}^{\infty} P(k) \frac{k(k-1)!}{\left(k^{\prime}-1\right)!\left(k-k^{\prime}\right)!} f^{k-k^{\prime}}(1-f)^{k^{\prime}-1}(1-f)$

The sum is done over the triangle shown in the right, so we can replace it with

$$
\text { } \mathrm{K}=\left[\mathrm{K}^{\prime}, \infty\right)
$$

k'

$\sum_{k=0}^{\infty}(1-f) k P(k) \sum_{k^{\prime}=0}^{k}\binom{k-1}{k^{\prime}-1} f^{k-k^{\prime}}(1-f)^{k^{\prime}-1}=\sum_{k=0}^{\infty}(1-f) k P(k)=(1-f)<k>$

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

BREAKDOWN THRESHOLD FOR ARBITRARY P(k)

$$
\begin{aligned}
& P^{\prime}\left(k^{\prime}\right)=\sum_{k=k^{\prime}}^{\infty} P(k)\binom{k}{k^{\prime}} k^{k-k^{\prime}}(1-f)^{k} \quad \text { Degree distribution after we removed } \mathrm{f} \text { fraction of nodes. } \\
& \quad\left\langle k^{\prime 2}>_{f}=\left\langle k^{\prime}\left(k^{\prime}-1\right)-k^{\prime}>_{f}=\sum_{k=0}^{\infty} k^{\prime}\left(k^{\prime}-1\right) P^{\prime}\left(k^{\prime}\right)-\left\langle k^{\prime}\right\rangle_{f}\right.\right.
\end{aligned}
$$

The sum is done over the triangle shown in the right, i.e. we can replace it with

$$
\uparrow \mathrm{k}=\left[\mathrm{k}^{\prime}, \infty\right) / \sum_{k^{\prime}=0}^{\infty} \sum_{k=k^{\prime}}^{\infty}=\sum_{k=0}^{\infty} \sum_{k^{\prime}=0}^{k}
$$

k'

$$
\begin{gathered}
<k^{\prime}\left(1-k^{\prime}\right)>_{f}=\sum_{k=0}^{\infty} \sum_{k=k^{\prime}}^{\infty} P(k) \frac{k(k-1)(k-2)!}{\left(k^{\prime}-2\right)!\left(k-k^{\prime}\right)!} f^{k-k^{\prime}(1-f)^{k-2^{\prime}}(1-f)^{2}}=\sum_{k=0}^{\infty}(1-f)^{2} k(k-1) P(k) \sum_{k=0}^{k} \frac{(k-2)!}{\left(k^{\prime}-2\right)!\left(k-k^{\prime}\right)!} f^{k-k}(1-f)^{k-2}= \\
\sum_{k=0}^{\infty}(1-f)^{2} k(k-1) P(k) \sum_{k^{\prime}=0}^{k}\binom{k-2}{k^{\prime}-2} f^{k-k^{\prime}}(1-f)^{k^{\prime}-2}=\sum_{k=0}^{\infty}(1-f)^{2} k(k-1) P(k)=(1-f)^{2}<k(k-1)>
\end{gathered}
$$

$$
<k^{\prime 2}>_{f}=<k^{\prime}\left(k^{\prime}-1\right)-k^{\prime}>_{f}=(1-f)^{2}\left(<k^{2}>-<k>\right)-(1-f)<k>=(1-f)^{2}<k^{2}>+f(1-f)<k>
$$

BREAKDOWN THRESHOLD FOR ARBITRARY P(k)

Robustness: we remove a fraction f of the nodes.
At what threshold f_{c} will the network fall apart (no giant component)?
Random node removal changes
the degree of individuals nodes $\left[k \rightarrow k^{\prime} \leq k\right)$
the degree distribution $\left[P(k) \rightarrow P^{\prime}\left(k^{\prime}\right)\right]$
$\begin{aligned} & <k^{\prime}>_{f}=(1-f)<k> \\ & <k^{\prime 2}>_{f}=(1-f)^{2}<k^{2}>+f(1-f)<k>\end{aligned} \quad K \equiv \frac{<k^{\prime 2}>_{f}}{\left\langle k^{\prime}>_{f}\right.}=2_{K<2: \text { many disconnected clusters }}^{\begin{array}{l}k>2: \text { a giant cluster exists } \\ K<2\end{array}}$
Breakdown threshold: $f_{c}=1-\frac{1}{\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}-1}$
$\mathrm{f}<\mathrm{f}_{\mathrm{c}}$: the network is still connected (there is a giant cluster)
$\mathrm{f}>\mathrm{f}_{\mathrm{c}}$: the network becomes disconnected (giant cluster vanishes)
f_{c}
Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

ROBUSTNESS OF SCALE-FREE NETWORKS

Scale-free networks do not appear to break apart under random failures. Reason: the hubs.
The likelihood of removing a hub is small.

Albert, Jeong, Barabási, Nature 406378 (2000)

ROBUSTNESS OF SCALE-FREE NETWORKS

Scale-free networks do not appear to break apart

 under random failures. Why is that?$$
\begin{aligned}
& <k^{m}>=(\gamma-1) K_{\min }^{\gamma-1} \int_{K_{\min }}^{K_{\max }} k^{m-\gamma} d k=\frac{(\gamma-1)}{(m-\gamma+1)} K_{\min }^{\gamma-1}\left[k^{m-\gamma+1}\right]_{K_{\min }}^{K_{\max }} \quad K_{\max }=K_{\min } N^{\frac{1}{\gamma-1}} \\
& <k^{m}>=\frac{(\gamma-1)}{(m-\gamma+1)} K_{\min }^{\gamma-1}\left[K_{\max }^{m-\gamma+1}-K_{\min }^{m-\gamma+1}\right] \\
& \gamma>3: \quad \kappa=\frac{(2-\gamma)}{(3-\gamma)} \frac{K_{\max }{ }^{3-\gamma}-K_{\min }{ }^{3-\gamma}}{K_{\max }{ }^{2-\gamma}-K_{\min }{ }^{2-\gamma}}=\left|\frac{2-\gamma}{3-\gamma}\right| K_{\min } \\
& \frac{<k^{2}>}{<k>}=\frac{(2-\gamma)}{(3-\gamma)} \frac{K_{\max ^{3-\gamma}}{ }_{\max ^{2-\gamma}-K_{\min }}{ }^{3-\gamma}}{2-\gamma} \\
& 3>\gamma>2: \quad \kappa=\frac{(2-\gamma)}{(3-\gamma)} \frac{K_{\max }{ }^{3-\gamma}-K_{\min }{ }^{3-\gamma}}{K_{\max }{ }^{2-\gamma}-K_{\min }{ }^{2-\gamma}}=\left|\frac{2-\gamma}{3-\gamma}\right| K_{\max }{ }^{3-\gamma} K_{\min }^{\gamma-2} \\
& 2>\gamma>1: \quad \kappa=\frac{(2-\gamma)}{(3-\gamma)} \frac{K_{\max }{ }^{3-\gamma}-K_{\min }{ }^{3-\gamma}}{K_{\max }{ }^{2-\gamma}-K_{\min }{ }^{2-\gamma}}=\left|\frac{2-\gamma}{3-\gamma}\right| K_{\max }
\end{aligned}
$$

ROBUSTNESS OF SCALE-FREE NETWORKS

$$
\begin{gathered}
f_{c}=1-\frac{1}{\kappa-1} \kappa=\frac{<k^{2}>}{<k>}=\left|\frac{2-\gamma}{3-\gamma}\right|\left\{\begin{array}{cc}
K_{\min } & \gamma>3 \\
K_{\max }^{3-\gamma} K_{\min }^{\gamma-2} & 3>\gamma>2 \\
K_{\max } & 2>\gamma>1
\end{array}\right. \\
K_{\max }=K_{\min } N^{\frac{1}{\gamma-1}}
\end{gathered}
$$

$\gamma>3$: κ is finite, so the network will break apart at a finite f_{c} that depens on $K_{\text {min }}$
$\mathrm{y}<3$: κ diverges in the $\mathrm{N} \rightarrow \infty$ limit, so $\mathrm{f}_{\mathrm{c}} \rightarrow 1$!!!
for an infinite system one needs to remove all the nodes to break the system.
For a finite system, there is a finite but large f_{c} that scales with the system size as: $\kappa \cong 1-\mathrm{CN}^{-\frac{3-\gamma}{\gamma-1}}$
Internet: Router level map, $\mathrm{N}=228,263 ; \mathrm{p}=2.1 \pm 0.1 ; \quad \kappa=28 \quad \rightarrow \quad f_{c}=0.962$

$$
\text { AS level map, } N=11,164 ; \gamma=2.1 \pm 0.1 ; \quad \kappa=264 \quad \rightarrow \quad f_{c}=0.996
$$

NUMERICAL EVIDENCE

Scale-free random graph with $\boldsymbol{P}(\boldsymbol{k})=\boldsymbol{A} \boldsymbol{k}^{-\gamma}$, with $\boldsymbol{k}=\boldsymbol{m}, \ldots \boldsymbol{K}$
$f_{c}=1-\frac{1}{\frac{\gamma-2}{\gamma-3} m-1}$ if $\gamma>3$
$f_{c}=1-\frac{1}{\frac{\gamma-2}{3-\gamma} m^{\gamma-2} K^{3-\gamma}-1}$ if $2<\gamma<3$

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

Infinite scale-free networks with $\gamma<\mathbf{3}$ do not break down under random node failures.

SIZE OF THE GIANT COMPONENT DURING RANDOM DAMAGE _without proof.

S : size of the giant component, f fraction of randomly removed nodes, not damage for $f<f_{c}$
(i) $\quad \gamma>4$: $S \approx f-f_{c}($ similar to that of a random graph)
(i) $3>\gamma>4: S \approx\left(f-f_{c}\right)^{1 /(\gamma-3)}$
(i) $\mathrm{Y}<3: \mathrm{f}_{\mathrm{c}}=0$ and $\mathrm{S} \approx \mathrm{f}^{1+1 /(3-\mathrm{r})}$
R. Cohen, D. ben-Avraham, S. Havlin, Percolation critical exponents in scale-free networks
Phys. Rev. E 66, 036113 (2002);
See also: Dorogovtsev S, Lectures on Complex Networks, Oxford, pg44

ACHILLES' HEEL OF SCALE-FREE NETWORKS

Albert, Jeong, Barabási, Nature 406378 (2000)

INTERNET'S ROBUSTNESS TO RANDOM FAILURES

$f_{c}=1-\frac{1}{\kappa-1}$
R. Albert, H. Jeong, A.L. Barabasi, Nature 406378 (2000)

Internet: Router level map, $N=228,263 ; ~ \gamma=2.1 \pm 0.1 ; \quad \kappa=28 \quad \rightarrow \quad f_{c}=0.962$

Internet parameters: Pastor-Satorras \& Vespignani, Evolution and Structure of the Internet: Table 4.1 \& 4.4

ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
At what threshold f_{c} will the network fall apart (no giant component)?
Hub removal changes
the maximum degree of the network $\left[\mathrm{K}_{\text {max }} \rightarrow \mathrm{K}_{\text {max }}^{\prime} \leq \mathrm{K}_{\text {max }}\right)$
the degree distribution $\left[P(k) \rightarrow P^{\prime}\left(k^{\prime}\right)\right]$
A node with degree k will loose some links because some of its neighbors will vanish.

Claim: once we correct for the changes in $K_{\max }$ and $P(k)$, we are back to the robustness problem. That is, attack is nothing but a robusiness of the network with a new $K_{\max }$ and $P(k)$.

ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
the maximum degree of the network $\left[\mathrm{K}_{\max } \rightarrow \mathrm{K}_{\text {max }}^{\prime} \leq \mathrm{K}_{\max }\right)^{\text {. }}$

If we remove an f fraction of hubs, the maximum degree changes:

$$
\begin{aligned}
& \int_{K_{\max }^{K_{\max }}}^{K_{\max }} P(k) d k=f \\
& \int_{K_{\max }} P(k) d k=(\gamma-1) K_{\min }^{\gamma-1} \int_{K_{\max }}^{K_{\max }} k^{-\gamma} d k=\frac{\gamma-1}{1-\gamma} K_{\min }^{\gamma-1}\left(K_{\max }^{1-\gamma}-K_{\max }^{1-\gamma}\right)
\end{aligned}
$$

As $\mathrm{K}_{\text {max }}^{\prime} \leq \mathrm{K}_{\text {max }}$ we can ignore the $\mathrm{K}_{\text {max }}$ term

$$
\left(\frac{K_{\min }}{K_{\max }^{\prime}}\right)^{\gamma-1}=f \quad K_{\max }^{\prime}=K_{\min } f^{\frac{1}{1-\gamma}}
$$

\leftarrow The new maximum degree after removing fraction of the hubs.

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
the degree distribution changes $\left[P(k) \rightarrow P^{\prime}\left(k^{\prime}\right)\right]$
A node with degree k will loose some links because some of its neighbors will vanish.
Let us calculate the fraction of links removed 'randomly', f', as a consequence of we removing f fraction of hubs.

$$
\int_{0}^{K_{0}} k P(k) d k
$$

$$
f^{\prime}=\frac{\int_{K_{\max }^{\prime}}^{K_{\max }} k P(k) d k}{<k>^{K}}=\frac{1}{<k>}(\gamma-1) K_{\min }^{\gamma-1} \int_{K_{\max }^{\prime}}^{K_{\max }} k^{1-\gamma} d k=\frac{1}{<k>} \frac{\gamma-1}{2-\gamma} K_{\min }^{\gamma-1}\left(K_{\max }^{2-\gamma}-K_{\max }^{\prime 2-\gamma}\right)=-\frac{1}{<k>} \frac{\gamma-1}{2-\gamma} K_{\min }^{\gamma-1} K_{\max }^{\prime 2-\gamma}
$$

$$
f^{\prime}=-\frac{1}{\langle k>} \frac{\gamma-1}{2-\gamma} K_{\min }^{\gamma-1} K_{\min }^{2-\gamma} f^{\frac{2-\gamma}{1-\gamma}}=-\frac{1}{\langle k>} \frac{\gamma-1}{2-\gamma} K_{\min } f^{\frac{2-\gamma}{1-\gamma}}
$$

$$
K_{\max }^{\prime}=K_{\min } f^{\frac{1}{\gamma-1}}
$$

$<k^{m}>=-\frac{(\gamma-1)}{(m-\gamma+1)} K_{\min }^{m} \quad f^{\prime}=f^{\frac{2-\gamma}{1-\gamma}}$
For $\gamma \rightarrow 2, f^{\prime} \rightarrow 1$, which means that even the removal of a tiny fraction of hubs will destroy the network. The reason is that for $\gamma=2$ hubs dominate the network
$<k>=-\frac{(\gamma-1)}{(2-\gamma)} K_{\text {min }}$
Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
At what threshold f_{c} will the network fall apart (no giant component)?
Hub removal changes
the maximum degree of the network $\left[\mathrm{K}_{\text {max }} \rightarrow \mathrm{K}_{\text {max }}^{\prime} \leq \mathrm{K}_{\text {max }}\right) \quad K_{\text {max }}^{\prime}=K_{\min } f^{\frac{1}{1-\gamma}}$
the degree distribution $\left[P(k) \rightarrow P^{\prime}\left(k^{\prime}\right)\right]$
A node with degree k will loose some links because some of its neighbors will vanish. $f^{\prime}=f^{1-\gamma}$ Claim: once we correct for the changes in $\mathrm{K}_{\max }$ and $\mathrm{P}(\mathrm{k})$, we are back to the robustness problem. That is, attack is nothing but a robustness of the network with a new $K_{\text {max }}^{\prime}$ and f^{\prime}.

$$
f^{\prime}=1-\frac{1}{\kappa^{\prime}-1} \quad \kappa^{\prime}=\frac{<k^{\prime 2}>}{<k^{\prime}>}=\frac{<k^{2}>}{\left(1-f_{c}\right)<k>}=\frac{\kappa}{1-f_{c}}
$$

$\kappa=\left|\frac{2-\gamma}{3-\gamma}\right| \left\lvert\, \begin{array}{cc}K_{\min } & \gamma>3 \\ \frac{K_{\max }^{3-\gamma} K_{\min }^{\gamma-2}}{K_{\max }} & 3>\gamma>2 \\ 2>\gamma>1\end{array}\right.$

$$
f_{c}^{\frac{2-\gamma}{1-\gamma}}=2+\frac{2-\gamma}{3-\gamma} K_{\min }\left(f_{c}^{\left.\frac{3-\gamma}{1-\gamma}-1\right)}\right.
$$

Cohen et al., Phys. Rev. Lett. 85, 4626^{\prime} (2000).

ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
At what threshold f_{c} will the network fall apart (no giant component)?

$$
f_{c}^{\frac{2-\gamma}{1-\gamma}}=2+\frac{2-\gamma}{3-\gamma} K_{\min }\left(f_{c}^{\frac{3-\gamma}{1-\gamma}}-1\right)
$$

- f_{c} depends on γ; it reaches its max for $\gamma<3$
${ }^{-} f_{c}$ depends on $K_{\text {min }}$ (m in the figure)
-Most important: f_{c} is tiny. Its maximum reaches only 6%, i.e. the removal of 6% of nodes can destroy the network in an attack mode. -Internet: $\mathrm{y}=2.1$, so 4.7% is the threshold.

Figure: Pastor-Satorras \& Vespignani, Evolution and Structure of the Internet: Fig 6.12

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

APPLICATION: ER RANDOM GRAPHS

Consider a random graph with connection probability p such that at least a giant connected component is present in the graph.

Find the critical fraction of removed nodes such that the giant connected component is destroyed.
$f_{c}=1-\frac{1}{\frac{\left\langle k_{o}^{2}\right\rangle}{\left\langle k_{0}\right\rangle}-1}=1-\frac{1}{p N}=1-\frac{1}{\left\langle k_{o}\right\rangle}$
S surviving giant component

The higher the original average degree,
Empty squares show S
the larger damage the network can survive. Filled squares / - avg. distance
Q: How do you explain the peak in the average distance?

SUMMARY: ACHILLES' HEEL OF SCALE-FREE NETWORKS

SUMMARY: ACHILLES' HEEL OF COMPLEX NETWORKS

-_ failure —— attack

R. Albert, H. Jeong, A.L. Barabasi, Nature 406378 (2000)

HISTORICAL DETOUR: PAUL BARAN AND INTERNET

A network of n-ary degree of connectivity has n links per node was simulated

CENTRALIZED

DECENTRALIZED
(B)

DISTRIBUTED
(C)

The simulation revealed that networks where $\mathrm{n} \geq 3$ had a significant increase in resilience against even as much as 50\% node loss. Baran's insight gained from the simulation was that redundancy was the key.

SCALE-FREE NETWORKS ARE MORE ERROR TOLERANT, BUT ALSO MORE VULNERABLE TO ATTACKS

REAL SCALE-FREE NETWORKS SHOW THE SAME DUAL BEHAVIOR

f

- break down if 5% of the nodes are eliminated selectively (always the highest degree node)
- resilient to the random failure of 50% of the nodes.

Similar results have been obtained for metabolic networks and food webs.

CASCADES

Potentially large events triggered by small initial shocks

- Information cascades social and economic systems diffusion of innovations
- Cascading failures infrastructural networks complex organizations

CASCADING FAILURES IN NATURE AND TECHNOLOGY

Flows of physical quantities

- congestions
- instabilities
- Overloads

Cascades depend on

- Structure of the network
- Properties of the flow
- Properties of the net elements
- Breakdown mechanism

Origin

A 3,500 MW power surge (towards Ontario) affected the transmission grid at 4:10:39 p.m. EDT. (Aug-14-2003)

Before the blackout

 power plants shut down during the outage. In the minutes before the event, the NYISO-managed power system was carrying 28,700 MW of load. At the height of the outage, the load had dropped to 5,716 MW, a loss of 80%.

MONDAY, MARCH14, 2011

Cascading disaster in Japan

Blast shakes a
second reactor
death toll soar
By Martin Fackler and Mark McDonald NEW YORKTIMES
SENDAI, Japan - Japan from a rapidly unfolding disaster epic scale yesterday, pummeled by death toll, destruction, and homele ness caused by the earthquake a tsunami and new hazards from da aged nuclear reactors. The prime m ister called it Japan's worst crisis si World War II.

Japan's \$5 trillion economy, world's third largest, was threaten with severe disruptions and partial ralysis as many industries shut do temporarily. The armed forces and unteers mobilized for the far more unteers mobilized for the far more
gent crisis of finding survivors, eva gent crisis of finding survivors, eva
ating residents near the strick ating residents near the strick tims of the record 8.9 magnitu quake that struck on Friday.

CASCADES SIZE DISTRIBUTION OF BLACKOUTS

I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

CASCADES SIZE DISTRIBUTION OF EARTHQUAKES

Y. Y. Kagan, Phys. Earth Planet. Inter. 135 (2-3), 173-209 (2003)

FAILURE PROPAGATION MODEL

Initial Setup

-Random graph with N nodes -Initially each node is functional.

Cascade

-Initiated by the failure of one node.
${ }^{-} f_{i}$: fraction of failed neighbors of node i. Node i fails if f_{i} is greater than a global threshold ϕ.

$f=1 / 2$

$$
f=2 / 3
$$

Erdos-Renyi network
$P(S) \sim S^{-3 / 2}$
D. Watts, PNAS 99, 5766-5771 (2002)

