Adaptive Multiscale for Resolving Modularity Anomalies

B. Cross, X. Lu, B. Szymanski

Rensselaer Polytechnic Institute

October 19, 2022
The Problem

Community Detection in Heterogeneous Networks:

- We want to detect community structures accurately in networks with heterogeneous community structures.
- To explore this, we will discuss what makes a network heterogeneous in structure, why this is an issue for traditional community detection algorithms, and how we solve for it.
Background

Community Detection:

- Complex networks may be partitioned into sets of nodes that are better connected to each other than they are to the rest of the network.

- These communities provide insight into the structure of the network and the interaction between its components:
 - Communities of friends in a social network
 - Groups of proteins that interact with each other
 - etc...
Heterogeneous Communities

- Characterized by communities that vary in size, in/out degree, connectivity characteristics, etc.
- Most community detection methods tend to detect communities that are statistically similar, this can lead to improperly merging or splitting communities.
Stochastic Block Model: A generative model for networks, we define a block matrix that defines a set of connection probabilities for nodes within each of the blocks towards any other block.

\[e_{ij} = \begin{cases} 1 & \text{iff } e_{ij} \text{ exists} \\ 0 & \text{iff } e_{ij} \text{ d.n.e} \end{cases} \]

\[P(e_{ij} = 1) = b_{z_i z_j} \]

where \(z_i \) and \(z_j \) are the community assignments of \(i \) and \(j \) respectively, where \(b \) is the edge-existence affinity matrix.

Background

Modularity: One popular method for community detection is the maximization of a metric known as Modularity.

- Modularity, defined as:

 \[
 Q = \sum_{s=1}^{m} \left[\frac{l_s}{L} - \left(\frac{d_s}{2L} \right)^2 \right] \quad (1)
 \]

- This is the sum, over communities in the network, of the edge density within this community vs the expected edge density for those nodes randomly reconfigured.

- A higher modularity indicates a better partition of the network.

Modularity maximization is a fast and very effective way to partition networks, and therefore is used often in the context of large networks.
A more general form of Modularity exists, defined by Reichardt and Bornholdt, that takes in an additional parameter γ:

$$Q(\gamma) = \sum_{s=1}^{m} \left[\frac{l_s}{L} - \gamma \left(\frac{d_s}{2L} \right)^2 \right]$$

This additional parameter controls the "resolution" of the communities, where at low values we get larger communities and at high values we get smaller.
Resolution Limit: Modularity maximization is not without flaw, and the most well known is the resolution limit. Using (1) we can derive a formula for the change in modularity from merging communities r and s as so:

$$
\Delta Q_{rs} = \frac{m_{rs}}{m} - \frac{k_r k_s}{2m^2}
$$

where m is the total edges in our network, m_{rs} is the number of edges between communities r and s, and k_r is the degree of community r. Here we see that if the RHS becomes less than the LHS, then the change in modularity will be positive for any number of links between r and s greater than 0. If we consider very large networks, like WWW or social networks, this is a big issue.
Extreme Example:

- The ring of cliques is the classic example, each clique is an obvious example of a community, but if we have many cliques in a ring, the maximum modularity partition is one that merges adjacent cliques.
The plateau problem is an extension of the resolution limit issue, and for it we consider the community density matrix:

\[\Omega = \begin{bmatrix}
6.31 & 1.75 & 0.15 & 0.13 \\
1.75 & 7.38 & 0.68 & 0.08 \\
0.15 & 0.68 & 7.43 & 0.26 \\
0.13 & 0.08 & 0.26 & 1.36 \\
\end{bmatrix} \]

(b) Community density matrix

(a) Peaks and valleys
No single γ can resolve all communities.
Multiscale Community Detection

- To handle the Plateau problem (Lu 2020) developed the Multiscale Community Detection Algorithm

- This heuristic algorithm applies the Louvain algorithm recursively to the initial graph and discovered community subgraphs until no good partitions of those subgraphs is found.

- The recursion terminates by Bayes model selection, which attempts to determine if the derived partition is significant by seeing if our subgraph was more likely to be generated by the configuration model than the stochastic block model.
Considering our previous example, at our first level of recursion.

\[
\Omega = \begin{bmatrix}
2.104 & 0.499 & 0.071 \\
0.499 & 2.015 & 0.247 \\
0.071 & 0.247 & 3.524
\end{bmatrix}
\]

Our group of three communities has a density matrix that is manageable, no longer displaying the plateau problem, this is solvable by Louvain.
Multiscale is able to handle the modularity anomaly for a large range of resolutions.
The Multiscale algorithm performs well, allowing us to avoid the plateau problem, but can we improve on the algorithm?

Potential issues:
1) The algorithm implicitly increases the resolution parameter at each level of recursion, linearly with removed edges.
2) The resolution parameter can be unintuitive to set properly for any arbitrary network.
3) The Bayesian odds used to evaluate potential partitions can inadvertently allow us to improperly merge partitions.

We can address these issues with some modifications to the Multiscale algorithm:
Adaptive differs from multiscale in 3 important ways

1) Dynamically selects the resolution parameter at each level of recursion.

2) Changes the termination condition of recursion, instead of stopping when a poor partition is found, keep splitting until we hit the min community size and then compare split and merge partitions as we return, selecting the best.

3) Determines the better of competing partitions.
The Model selection issue: The Bayes Model Selection we use is not good at comparing the split and merge partitions of the network.

(a) Ground Truth, odds: 2.34, modularity: 0.37
(b) Merged, odds: 4.09, modularity: 0.26

Figure: Comparing partition odds
Model Selection

Our Model selection step consists of comparing the posterior probabilities of having generated our network using the planted partition model vs the null model, in this case an SBM with only one module and therefore one density parameter dictating connections between nodes.

\[
\Lambda = \frac{P(g, H_1 | A)}{P(H_0 | A)} = \frac{P(A | k, g, H_1)}{P(A | k, H_0)} \times \frac{P(g)P(k)P(H_1)}{P(k)P(H_0)}
\]

Figure: Posterior odds

\[
P(A | k, g, H_1) = 2 \sum_r m_r \times \ln \frac{2 \sum_r m_r}{\sum_r \frac{k_r^2}{2m}} + (2m - 2 \sum_r m_r) \times \ln \frac{2m - 2 \sum_r m_r}{2m - \frac{k_r^2}{2m}}
\]

Figure: Posterior Probability Planted Partition Model
Work Around:

- The current workaround for the issue of poor split / merge partition comparisons is to use a tiebreaker metric when the odds of split / merge are close.
- The tiebreaker metric can be anything, modularity showed the best overall performance.
- This method is flimsy, given that modularity is directly tied to the issue we are trying to solve, but has shown good results in practice.
We test the performance of our algorithm using real world and generated test networks.

Our synthetic networks are generated to display heterogeneous community properties by re-configuring a set of base LFRs, combining them in a way that retains the internal and external density of each community, along with the degree distribution of each node.
Adaptive is able to handle the plateau problem handily.
Real Network Performance

<table>
<thead>
<tr>
<th>Network Tested</th>
<th>Metric</th>
<th>Adaptive MS</th>
<th>Multi-scale</th>
<th>Adaptive MS-Q</th>
<th>CPM</th>
<th>Leiden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse Cell</td>
<td>ARI</td>
<td>0.415</td>
<td>0.479</td>
<td>0.507</td>
<td>0.299</td>
<td>0.502</td>
</tr>
<tr>
<td></td>
<td>Topo NMI</td>
<td>0.727</td>
<td>0.736</td>
<td>0.763</td>
<td>0.676</td>
<td>0.758</td>
</tr>
<tr>
<td></td>
<td>F1-Score</td>
<td>0.624</td>
<td>0.673</td>
<td>0.719</td>
<td>0.643</td>
<td>0.715</td>
</tr>
<tr>
<td>Amazon</td>
<td>ARI</td>
<td>0.877</td>
<td>0.770</td>
<td>0.942</td>
<td>0.870</td>
<td>0.883</td>
</tr>
<tr>
<td></td>
<td>Topo NMI</td>
<td>0.992</td>
<td>0.983</td>
<td>0.993</td>
<td>0.991</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td>F1-Score</td>
<td>0.968</td>
<td>0.908</td>
<td>0.981</td>
<td>0.976</td>
<td>0.973</td>
</tr>
<tr>
<td>DBLP</td>
<td>ARI</td>
<td>0.062</td>
<td>0.106</td>
<td>0.117</td>
<td>0.012</td>
<td>0.168</td>
</tr>
<tr>
<td></td>
<td>Topo NMI</td>
<td>0.759</td>
<td>0.754</td>
<td>0.761</td>
<td>0.749</td>
<td>0.691</td>
</tr>
<tr>
<td></td>
<td>F1-Score</td>
<td>0.436</td>
<td>0.426</td>
<td>0.458</td>
<td>0.416</td>
<td>0.358</td>
</tr>
<tr>
<td>Live Journal</td>
<td>ARI</td>
<td>0.717</td>
<td>0.746</td>
<td>0.704</td>
<td>0.576</td>
<td>0.675</td>
</tr>
<tr>
<td></td>
<td>Topo NMI</td>
<td>0.970</td>
<td>0.973</td>
<td>0.969</td>
<td>0.963</td>
<td>0.954</td>
</tr>
<tr>
<td></td>
<td>F1-Score</td>
<td>0.886</td>
<td>0.915</td>
<td>0.879</td>
<td>0.832</td>
<td>0.807</td>
</tr>
</tbody>
</table>

Table: Real Network Results
Improvement Goals

While the adaptive algorithm performs well on our synthetic and real world tests, there are some things that should be improved on to increase the stability of the algorithm over different test cases:

- Improve our model selection method so that we don’t have to make use of the tie breaker metric.
- Resolution parameter selection, we can improve algorithm speed and improve the quality of our recursive partitions by intelligently choosing the resolution parameter.
Current Attempts

Nested DC-SBM: This model, proposed by Tiago Peixoto, alters the prior for the edge counts by considering a partition heirarchy.

- Each level considers each group of the partition below it to be its own nodes, keeping the same number of edges as the previous level.
- This prior now includes all the information missing from our edge count prior, which only considers the densities ω_0 and ω_1.

Figure: Nested DC-SBM

2

The Naming Game is a consensus game played on a network where the goal is for each node in the network to agree on a common label. There has been a good deal of work done showing that community structure has strong influence on the outcome of this game.

Utilizing the naming game for community detection

- Average naming game performance on target network
- Randomly rewire the network (Configuration Model), get average NG performance
- Compare the performance of the two methods, if different enough then we expect community structure
Performance on networks with and without communities:
Adaptive modularity shows strong performance over a wide array of homogeneous and heterogeneous networks.

Still work to be done with model selection improvements

A sound improvement to the model selection step would greatly increase the stability of the algorithm.

