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Dynamics, topology, and resilience I

Figure 1: Illustration of mutualistic relationship between plants and pollinators.
(a) The mutualistic interaction Mij between bees and flowers. (b) From Mij , one
can construct two mutualistic networks by linking pairs of plants that share
mutual pollinators (Aij ), or pollinators that share mutual plants (Bij ).
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Dynamics, topology, and resilience II

dxi

dt
= F (xi ) +

N∑
j=1

AijG (xi , xj ) (1)

F (xi ) = Bi + xi

(
1− xi

Ki

)(
xi

Ci
− 1

)
G (xi , xj ) =

xixj

Di + Eixi + Hjxj

(2)

1 xi : the abundance of species i (the node state) .

2 Bi : the incoming migration rate of i from neighboring ecosystems.

3 Ki : carrying capacity.

4 Ci : the Allee effect, accounting for the negative growth rate with low
abundance.
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Dynamics, topology, and resilience III

5 Di ,Ei ,Hi : the parameters of the response function which represents
mutualistic relationship, indicating that j ′s positive contribution to xi

is bounded for large xi or xj .

The parameters for numerical simulations are set as Bi = 0.1, Ci = 1,
Ki = 5, Di = 5, Ei = 0.9, Hj = 0.1 for all species.
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Dynamics, topology, and resilience IV

Figure 2: Interaction topology: 10× 10 2D lattice. The number of nodes
N = 100.
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Dynamics, topology, and resilience V

One variable mapping (Gao et al. [1]):

dxeff

dt
= B + xeff

(
1− xeff

K

)(xeff

C
− 1
)

+ βeff
x2eff

D + Exeff + Hxeff
(3)

where xeff is the average state of the entire system, and βeff is the average
interaction strength.

xeff =
1TAx
1TA1

(4)

βeff =
1TAk in

1TA1
(5)
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Dynamics, topology, and resilience VI

Figure 3: The resilience diagram for one variable system. There is a critical
threshold of phase transition βc ≈ 7. β < βc , there are two stable states xL, xH

and one unstable state xu. β > βc , there is only one stable state xH .
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Motivation I

Question: For the case when all species/nodes are attracted to the low
state xL, with the weak interaction strength (β < βc ), can we recover the
system to the high state xH?
Solutions:

1 Increase interaction strength β beyond βc , and then the system
naturally evolves to the desired state xH .

2 In the real system, fluctuations are ubiquitous. We use independent
Gaussian noise ηi (t) to simulate random fluctuations of species
abundance.

〈ηi (t)ηj (t
′)〉 = σ2δijδ(t − t ′) (6)

After adding noise, the dynamics becomes

dxi

dt
= F (xi ) +

N∑
j=1

AijG (xi , xj ) + ηi (7)
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Motivation II

Our research motivation is to study whether random fluctuations can
drive the system back to desired state, and how long it takes for such
transition.
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Noise-induced nucleation and transition I

To generalize the analysis, we define the normalized state ρi between 0
and 1.

ρi (t) =
xi (t)− xL

xH − xL
(8)

The state of the entire system can be described by the average of ρi (t).

ρ(t) = 〈ρi (t)〉N =
1

N

N∑
i=1

ρi (t) (9)

In the presence of noise, the low state is ρ ≈ 0 and the high state is ρ ≈ 1.
Initially, ρ(t = 0) = 0.
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Noise-induced nucleation and transition II

Simulation setup: All the species are in the low state ρL initially.

Figure 4: β = 4, N = 100, σ = 0.08.
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Noise-induced nucleation and transition III

Figure 5: β = 4, N = 10000, σ = 0.08.

Take-away message: Random noise can drive the system from the extinct
state xL to the active state xH , leading to resilience recovery.
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Cluster mode and transition time I

(a) N = 100 (b) N = 10000

Figure 6: There are two cluster modes: single-cluster mode and
multi-cluster mode. Noise strength σ = 0.1. (a) N = 100, single-cluster
mode. (b) N = 10000, multi-cluster mode.
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Cluster mode and transition time II

(a) N = 100 (b) N = 10000

Figure 7: The evolution of the global state ρ for 100 realizations. Noise
strength σ = 0.1. (a) N = 100, single-cluster mode. (b) N = 10000,
multi-cluster mode.
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Cluster mode and transition time III

1 The first question has been answered: random fluctuations can drive
the system to the desired state. We are also interested in the time
required to complete the recovery process.

2 To quantify the time for the system to switch to the high state, the
transition time τ is defined as the time when ρ just exceeds 1

2 , which
is also the half lifetime of the initial state.

3 Because of random perturbations, it is inherently random when the
first cluster appears. One would expect lifetime τ differs for different
realizations.
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Cluster mode and transition time IV

(a) N = 100 (b) N = 10000

Figure 8: The probability distribution of waiting time Pnot , defined as the
fraction of random realizations that have not been recovered by time t.
(a) N = 100 single-cluster mode. (b) N = 10000 multi-cluster mode.

Take-away message: The larger system generates more clusters, thus
spatial self-averaging reduces the randomness of transition time τ .
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The effects of system size and noise strength on the
average transition time 〈τ〉 I

Figure 9: 〈τ〉 is averaged over 1000 realizations.

For the single variable system, 〈τ〉 ∼ e
c
σ2 .
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The effects of system size and noise strength on the
average transition time 〈τ〉 II

Figure 10: 〈τ〉 is averaged over 1000 realizations for different system sizes N and
noise strengths σ.
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Crossover and finite-size scaling I

According to Avrami’s homogeneous nucleation theory [2],

〈τ〉 ∼

{
e

c
σ2

N , N
1
2 � R0 (single-cluster mode)

e
c

3σ2 , N
1
2 � R0 (multi-cluster mode)

, (10)

where R0 ∼ e
c

3σ2 is the typical distance between separate clusters (and
N1/2 is the linear size of the two-dimensional lattice).
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Crossover and finite-size scaling II

By constructing a scaling function with the following asymptotic behavior,

f (x) ∼

{
x2, x � 1

const., x � 1
, (11)

where x = R0/N
1
2 , one can capture the average lifetime of any system size

and noise values (including the crossover between the single-cluster and
multi-cluster regimes),

〈τ〉 = e
c

3σ2 f (R0/N
1
2 ) = e

c
3σ2 f (e

c
3σ2 /N

1
2 ) . (12)

Plot 〈τ〉e−
c

3σ2 vs. e
c

3σ2 /N
1
2 .
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Crossover and finite-size scaling III

Figure 11: Finite-size scaling of two cluster modes.
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Conclusions

1 Random fluctuations can recover the system from the undesired state
to the desired state, leading to the resilience recovery.

2 Two cluster modes (single-cluster and multi-cluster modes) are
decided by system size N and noise value σ, and they exhibit different
transition patterns and lifetime features.

3 For the multi-cluster mode, the spatial-averaging effects reduce
randomness, resulting in the deterministic evolutions.

4 The average transition time 〈τ〉 for two cluster modes can be
represented by a universal scaling law.
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Appendix

For the single-cluster mode, the individual transition time τ varies a lot.
The distribution of waiting time Pnot is derived as

Pnot(t) =

{
1, t ≤ tg

e−(t−tg )/〈tn〉, t > tg

, (13)

1 tg represents the time needed for the global state ρ to exceed 1
2 after

the first cluster appears, which can be approximated as constant
independent of system size and noise strength.

2 〈tn〉 is the average time elapsing until the first transition occurs from
the initial states (i.e., the first cluster nucleates).
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