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SUMMARY: ACHILLES’ HEEL OF COMPLEX NETWORKS

— failure

— attack
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R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)



HISTORICAL DETOUR: PAUL BARAN AND INTERNET

1958

A network of n-ary
degree of connectivity
that has n links per
node was simulated

+~—Link

"\ station

CENTRALIZED DECENTRALIZED DISTRIBUTED
(A) (B8) (€)

The simulation revealed that networks where n = 3 had a significantly increased
resilience against the large failure involving at least 50% node loss. Baran's insight
gained from the simulation was that redundancy was the key.



SCALE-FREE NETWORKS ARE MORE ERROR TOLERANT,
BUT ALSO MORE VULNERABLE TO ATTACKS
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* squares: random failure

» circles: targeted attack

S surviving fraction of GC

« | average distance between
nodes

Failures: little effect on the
integrity of the network.

Attacks: fast breakdown
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REAL SCALE-FREE NETWORKS SHOW THE SAME DUAL BEHAVIOR
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* blue squares: random failure

* red circles: targeted attack

* open symbols: S (size of surviving
component)

« filled symbols: I (average distance)

» break down if 5% of the nodes are eliminated selectively (always

the highest degree node)
* resilient to the random failure of 50% of the nodes.

Similar results have been obtained for metabolic networks and

food webs.



CASCADES

Potentially large events triggered by small initial shocks

Information cascades

social and economic
systems

diffusion of innovations
Cascading failures
infrastructural networks

complex organizations



CASCADING FAILURES IN NATURE AND TECHNOLOGY

Blackout

Flows of physical quantities Cascades depend on

* congestions e Structure of the network

* instabilities * Properties of the flow

* Overloads * Properties of the net elements

e Breakdown mechanism



NORTHEAST BLACKOUT OF 2003

Origin

A 3,500 MW power surge (towards Ontario)
affected the transmission grid at 4:10:39 p.m.
EDT. (Aug-14-2003)

the blackout the blackout
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¥ Consequences

¥ More than 508 generating units at 265
power plants shut down during the
outage. In the minutes before the event,
the NYISO-managed power system was
carrying 28,700 MW of load. At the height
of the outage, the load had dropped to
5,716 MW, a loss of 80%. 8
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Cascading disaster in Japan
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FuLr RerorT: Pace B13

Blast shakes a
second reacton
death toll soar

By Martin Fackler
and Mark McDonald
NEWYORK TIMES

SENDAI, Japan — Japan reel
from a rapidly unfolding disaster
epic scale yesterday, pummeled by 1
death toll, destruction, and homele
ness caused by the earthquake a
tsunami and new hazards from da
aged nuclear reactors. The prime m
ister called it Japan's worst crisis si
World War I1.

Japan’s $5 trillion economy, t
world’s third largest, was threater
with severe disruptions and partial |
ralysis as many industries shut do
temporarily. The armed forces and v
unteers mobilized for the far more
gent crisis of finding survivors, eva
ating residents near the strick
power plants and caring for the v
tims of the record 8.9 magnitu
quake that struck on Friday.

Network Science: Robustness Cascades



probability

|. Dobson, B. A. Carreras, V. E. Lynch, D. E.

CASCADES SIZE DISTRIBUTION OF BLACKOUTS
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1 Probability of energy =
1unserved during North 4
i American blackouts

11984 to 1998.

10 100 10* 10° 10?

energy unserved (MWh)

Unserved energy/power magnitude (S) distribution

PWlS)~S§ % 1<a<?2

Source Exponent Quantity
North America 2.0 Power
Sweden 1.6 Energy
Norway 1.7 Power
New Zealand 1.6 Energy
China 1.8 Energy

Newman, CHAOS 17, 026103 (2007)
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Earthquake Cumulative Number

CASCADES SIZE DISTRIBUTION OF EARTHQUAKES

Preliminary Determination of Epicenters
358,214 Events, 1963 - 1998
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P Shallow (0 70 km) earthquakes ‘ "'\\ s

- === T Intermediate (70 300 km)

Deep (300 700 km) =

1 Earthquake size S distribution

Earthquakes during 1977-2000.

955 6 6.5 7 7.5 8 8.5 —U ~
Moment Magnitude P(S) S ,a g 1 ° 67

Y. Y. Kagan, Phys. Earth Planet. Inter. 135 (2—3), 173—209 (2003) H




4
14 l_-___
4
120 v—
L. No Global Ca_as!:ades
bl i . Undercritical
<k> s! i .
T
6 | I S0 B S
Critical
4| Global Cascades e n 8. 5 &
Network 2 | Overcritical
fa”S apartDn..._ln-—.—-—--—.--.—-—.—l—i—ﬂ'—.—-ﬂ

(<k>=1) 0.1 041

Cumulative Distribution

16

FAILURE PROPAGATION MODEL
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e Overcritical
0 Critical

Initial Setup
*Random graph with N nodes
eInitially each node is functional.
Cascade
eInitiated by the failure of one node.

- *f. : fraction of failed neighbors of node i. Node i
fails if f.is greater than a global threshold ¢.

f=1/3

N

A

0.0001

0.001

0.01 0.1
Cascade Size

N

Erdos-Renyi network

P(S) ~ S —3/2

D. Watts, PNAS 99, 5766-5771 (2002)

f=2/3

f=12

12
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OVERLOAD MODEL

Initial Conditions

Critical *N Components (complete graph)
*Each components has random initial load L;
Undercritical Overcritical drawn at random uniformly from [Z,, .., 1].
Cascade

eInitiated by the failure of one component.
*Component fail when its load exceeds 1.

B 0.6 0.7 0.8 0.9 1 *When a component fails, a fixed amount P is
- initial load L L, - transferred to all the rests.
g, _1L Overcritical
= . Tt Critical
'§ 0.01} .
= "o Undercritical
0.001
e L=0.8
0.0001} L=0.9'°..
o oo0orl % Wieos L;=0.85  [,=1.05
1 é lb * 50 160 5501060

initial load L.

|. Dobson, B. A. Carreras, D. E. Newman, Probab. Eng. Inform. Sci. 19, 15-32 (2005) 13
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SELF-ORGANIZED CRITICALITY AKA SANDPILE MODEL

10710 +

Initial Setup

*Random graph with N nodes

*Each node i has height ;= 0.

Cascade

*At each time step, a grain is added at a randomly
chosen node i: h; < h; +1

*If the height at the node i reaches a prescribed
threshold z; = k;, then it becomes unstable and all
the grains at the node topple to its adjacent
nodes: ;=0 and h; < h; +1

*if i and j are connected.

Homogenous network: <k?> converges

P(S) ~ S —3/2

Scale-free network : p, ~ k7 (2<y<3)

P(S) ~ S 70~D

14

K.-l. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett. 91, 148701 (2003)



BRANCHING PROCESS MODEL

Branching Process

Starting from a initial node, each node in
generation t produces kK number of
offspring nodes inthe next t + 1

— generation, where k is selected randomly
| from a fixed probability distribution g,=p, ;.

A ANTA
1 / "\h y \ \ | Hypothesis Fix <k>=1 to be

critical > power

10° g - * No loops (tree structure) law P(S)
”’; §§ ] * No correlation between branches
10 Q _ 1
10°° 5 : D
SR Do ] Narrow distribution: <k?> converged
= ¥ = 2.01(0) T XEHe
-10 | = 22 (+) i —
10 3= 2_5(;) . P(S) ~ S 3/2
102t y=30@m %
Ll Y= 40 . . T
10y = 500 ] Fat tailed distribution: ¢, ~ k7 (2<y<3)
16

1(I)5 166 10’ P(S) ~ S —V/()/ _1)

K.-1. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett. 91, 148701 (2003)
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SHORT SUMMARY OF MODELS: UNIVERSALITY

Failure Propagation Model ER 1.5
Overload Model Complete Graph 1.5
: 1.5 (ER)
BTW Sandpile Model ER/SF
P (7 - 1)(SF)
Branching Process Model ER/SF 1.5 (ER)

/(y - 1)(SF)

Universal for homogenous networks

— Q32 Same exponent for percolation too
P(S) 5 (random failure, attacking, etc.)

16



EXPLANATION OF THE 3/2 UNIVERSALITY

Simplest Case: g, =g, = 1/2, <k>=1

S: number of nodes
X:number of open branches

% chance S =S5+1 ? S=2,Xx=0
=X-1 e =0

0
S

® S-2X=2

S=1 % ch S=5+1
Y=1 2 chance- Y= v A =2
S X >0, Branching process stops
| —— gvhen X=0

S Dead
17



EXPLANATION OF THE 3/2 UNIVERSALITY

S >
S Dead

Equivalent to 1D random walk model, where X and S are the position and time, respectively.
Question: what is the probability that X = 0 after S steps?

First return probability ~ §-3/2

M. Ding, W. Yang, Phys. Rev. E. 52, 207-213 (1995) 18



SIZE DISTRIBUTION OF BRANCHING PROCESS (CAVITY METHOD)
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S=1 S=1+S,; S=1+5,+S,
P(S) = q05(l)+qlzP(S YSA+ S, —S)+q, D P(SHP(S,)(A+S, +S, —S)+--

S1.S8,

5' P(SDP(S,)-- P(Sk)5(1+78 S)

P(S) =2 q.

\S1 5

K.-l. Goh, D.-S. Lee, B. Kahng, and D. Kim, Physica A 346, 93-103 (2005)
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SOLVING THE EQUATION BY GENERATING FUNCTION

Definition: Property:
Go(x) = 2g P(SX° Gy(l)=G(1)=1
Gi(x) = cho quk G¢'(1)=<8>, G (1) =<k>
P(S)=D q,| D P(SHP(S,)---P(S)H6A+D S, —S)
k \_S1. Sk yas y,
Gg(x) = Z Qk[ Z P(CS))--- PSS, )xHZij ] = Z q:xGs (x)k
= XG, (G (X))

Phase Transition
<$>=G(1)=1+G,.'(1) Gg'(1) =1 + <k> <S>, then
<5>=1/(1-<k>)
The average size <S> diverges at <k>_=1 20




FINDING THE CRITICAL EXPONENT FROM EXPANSION

Definition:
G(x) = 259 P(S)X°
Gix) = Ly qix*

Theorem:

If P(k) ~ k7 (2<y<3), then for ox <0, |ox| << 1
G(1+ dx) =1 + <k>0x + <k(k-1)/2> (dx)> + ... + O(]ox]’- 1)

P(S) ~ S 1< o <2
Gy(1+ dx) = 1 + A|6x|*-!

Homogenous case: <k’> converged Inhomogeneous case: <k?> diverged
<k>=1, <k*>< <k>=1, q, ~ k7 (2<y<3)

Gy(1+ 8x) = 1 + dx + Bdx? G,(1+ 8x) =~ 1 + 8x + B|dx]/-!

21



CRITICAL EXPONENT FOR HOMOGENOUS CASE

HomOgenOUS case
G,(1+6x) = 1 + dx + Box?
Gy(1+0x) = 1 + A|ox|*-!

Gy(x) = xG(G(x))

Gyx) =1+ A|ox|*!
xG(G(x) = (1+80)[ 1+ (Gy(1+8x)-1) + B (G(1+8x)-1)°]
~ (1+6x)[ 1+ A|dx|* -1 + AB|dx|** 2]
=1 + A|ox|*-! + AB|ox|**-? + dx + O(|ox|%)
The lowest order reads 4B|6x[**-> + 6x = 0, which requires
20.-2 =1and 4 = 1/B. Or, -
a=3/2

22



CRITICAL EXPONENT FOR INHOMOGENEOUS CASE

Inhomogeneous case
G,(1+0x)= 1+ dx + Blox]’-!
Gy(1+ 8x) = 1 + A|dx|*-!

Gy(x) = xG(G(x))

Gyx) =1+ A|ox|*!
xG(G(x)) = (1+80)[ 1+ (G 1+8%)-1) + B |G(1+3x)-17 1]
~ (1+6x)[ 1+ A|6x]*-1 + AB|dx|(*-D-D]
=1 + Aldx|*-! + AB|6x|(*-D@-D + §x + O(|6x]%)
The lowest order reads 4B|6x|(*-D-D + &x = 0, which requires

(@-)(y-1) = land A =UB.Ox, [ | _ 045

23



COMPARING THE PREDICTION WITH THE REAL DATA

3/2, v >3

P(S)~S “,a=
y/(y—10, 2<y<3

Blackout

2.0 Source

North America

Sweden

S 1S5r Norway
New Zealand

China

1.0

R 5
Earthquake o = 1.67
I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

Y. Y. Kagan, Phys. Earth Planet. Inter. 135 (2-3), 173-209 (2003)

4
Vv
/4

Exponent
2.0
1.6
1.7
1.6
1.8

Quantity
Power
Energy
Power
Energy
Energy
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