Frontiers of Network Science Fall 2022

Class 17: Robustness II (Chapter 8 in Textbook)

Boleslaw Szymanski

based on slides by Albert-László Barabási and Roberta Sinatra

www.BarabasiLab.com

SUMMARY: ACHILLES' HEEL OF COMPLEX NETWORKS

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)

HISTORICAL DETOUR: PAUL BARAN AND INTERNET

1958

3

A network of n-ary degree of connectivity that has n links per node was simulated

The simulation revealed that networks where $n \ge 3$ had a significantly increased resilience against the large failure involving at least 50% node loss. Baran's insight gained from the simulation was that redundancy was the key.

SCALE-FREE NETWORKS ARE MORE ERROR TOLERANT, BUT ALSO MORE VULNERABLE TO ATTACKS

- squares: random failure
- circles: targeted attack
- S surviving fraction of GC
- *I* average distance between nodes

Failures: little effect on the integrity of the network. **Attacks:** fast breakdown

REAL SCALE-FREE NETWORKS SHOW THE SAME DUAL BEHAVIOR

- blue squares: random failure
- red circles: targeted attack
- open symbols: S (size of surviving component)
- filled symbols: I (average distance)

- break down if 5% of the nodes are eliminated selectively (always the highest degree node)
- resilient to the random failure of 50% of the nodes.

Similar results have been obtained for metabolic networks and food webs.

CASCADES

Potentially large events triggered by small initial shocks

- Information cascades
 social and economic
 systems
 diffusion of innovations
- Cascading failures infrastructural networks complex organizations

CASCADING FAILURES IN NATURE AND TECHNOLOGY

Flows of physical quantities

- congestions
- instabilities
- Overloads

Cascades depend on

- Structure of the network
- Properties of the flow
- Properties of the net elements
- Breakdown mechanism

NORTHEAST BLACKOUT OF 2003

Origin

A 3,500 MW power surge (towards Ontario) affected the transmission grid at 4:10:39 p.m. EDT. (Aug-14-2003)

Consequences

More than 508 generating units at 265 power plants shut down during the outage. In the minutes before the event, the NYISO-managed power system was carrying 28,700 MW of load. At the height of the outage, the load had dropped to 5,716 MW, a loss of 80%.

A NEW WEAK

TODAY: Partly sunny and colder. H 37-42. Low 27-32. TOMORROW: Mostly sunny, milde High 42-47. Low 32-37.

High Tide: 6:42 a.m., 7:25 p.m. Sunrise: 6:59 Sunset: 6:49 Full Report: Page B13

MONDAY, MARCH 14, 2011

Cascading disaster in Japan

Blast shakes a second reactor death toll soar

By Martin Fackler and Mark McDonald

SENDAI, Japan — Japan reel from a rapidly unfolding disaster epic scale yesterday, pummeled by death toll, destruction, and homele ness caused by the earthquake a tsunami and new hazards from da aged nuclear reactors. The prime m ister called it Japan's worst crisis sin World War II.

Japan's \$5 trillion economy, world's third largest, was threater with severe disruptions and partial ralysis as many industries shut do temporarily. The armed forces and y unteers mobilized for the far more gent crisis of finding survivors, eva ating residents near the strick power plants and caring for the y tims of the record 8.9 magnitu quake that struck on Friday.

CASCADES SIZE DISTRIBUTION OF BLACKOUTS

Unserved energy/power magnitude (S) distribution

$$P(S) \sim S^{-\alpha}, 1 < \alpha < 2$$

Source	Exponent	Quantity
North America	2.0	Power
Sweden	1.6	Energy
Norway	1.7	Power
New Zealand	1.6	Energy
China	1.8	Energy

I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

CASCADES SIZE DISTRIBUTION OF EARTHQUAKES

Preliminary Determination of Epicenters 358,214 Events, 1963 - 1998

Y. Y. Kagan, Phys. Earth Planet. Inter. 135 (2–3), 173–209 (2003)

FAILURE PROPAGATION MODEL

Initial Setup

- •Random graph with N nodes
- •Initially each node is functional.

Cascade

- •Initiated by the failure of one node.
- •**f**_i : fraction of failed neighbors of node *i*. Node *i*
- fails if f_i is greater than a global threshold ϕ .

OVERLOAD MODEL

I. Dobson, B. A. Carreras, D. E. Newman, Probab. Eng. Inform. Sci. 19, 15-32 (2005)

SELF-ORGANIZED CRITICALITY AKA SANDPILE MODEL

Initial Setup

•Random graph with N nodes •Each node *i* has height $h_i = 0$.

Cascade

•At each time step, a grain is added at a randomly chosen node *i*: $h_i \leftarrow h_i + 1$

•If the height at the node *i* reaches a prescribed threshold $z_i = k_i$, then it becomes unstable and all the grains at the node topple to its adjacent nodes: $h_i = 0$ and $h_j \leftarrow h_j + 1$ •if *i* and *j* are connected.

Homogenous network: <k²> converges $P(S) \sim S^{-3/2}$

Scale-free network : $p_k \sim k^{\gamma}$ (2< γ <3) $P(S) \sim S^{-\gamma/(\gamma-1)}$

K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett. 91, 148701 (2003)

BRANCHING PROCESS MODEL

Branching Process

Starting from a initial node, each node in generation *t* produces *k* number of offspring nodes in the next *t* + 1 generation, where *k* is selected randomly from a fixed probability distribution $q_k = p_{k-1}$.

Hypothesis

Fix <k>=1 to be critical → power law P(S)

- No loops (tree structure)
- No correlation between branches

Narrow distribution: $< k^2 > \text{converged}$ $P(S) \sim S^{-3/2}$

Fat tailed distribution: $q_k \sim k^{\gamma} (2 < \gamma < 3)$ $P(S) \sim S^{-\gamma/(\gamma - 1)}$

K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett. 91, 148701 (2003)

SHORT SUMMARY OF MODELS: UNIVERSALITY

Models	Networks	Exponents
Failure Propagation Model	ER	1.5
Overload Model	Complete Graph	1.5
BTW Sandpile Model	ER/SF	1.5 (ER) γ/(γ - 1)(SF)
Branching Process Model	ER/SF	1.5 (ER) γ/(γ - 1)(SF)

Universal for homogenous networks

 $P(S) \sim S^{-3/2}$

Same exponent for percolation too (random failure, attacking, etc.)

EXPLANATION OF THE 3/2 UNIVERSALITY

Simplest Case:
$$q_0 = q_2 = 1/2$$
, = 1

S: number of nodes *X*: number of open branches

Equivalent to **1D random walk model**, where *X* and *S* are the position and time , respectively. **Question**: what is the probability that X = 0 after *S* steps?

First return probability $\sim S^{-3/2}$

M. Ding, W. Yang, Phys. Rev. E. 52, 207-213 (1995)

SIZE DISTRIBUTION OF BRANCHING PROCESS (CAVITY METHOD)

K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Physica A 346, 93-103 (2005)

SOLVING THE EQUATION BY GENERATING FUNCTION

FINDING THE CRITICAL EXPONENT FROM EXPANSION

Definition:

 $G_{S}(x) = \sum_{S=0} P(S)x^{S}$ $G_{k}(x) = \sum_{k=0} q_{k}x^{k}$

Theorem:

If
$$P(k) \sim k^{-\gamma} (2 < \gamma < 3)$$
, then for $\delta x < 0$, $|\delta x| << 1$
 $G(1 + \delta x) = 1 + \langle k > \delta x + \langle k(k-1)/2 > (\delta x)^2 + \dots + O(|\delta x|^{\gamma - 1})$

 $P(S) \sim S^{-\alpha}, 1 < \alpha < 2$ $G_S(1 + \delta x) \approx 1 + A |\delta x|^{\alpha - 1}$

Homogenous case: $\langle k^2 \rangle$ converged $\langle k \rangle = 1$, $\langle k^2 \rangle < \infty$ $G_k(1 + \delta x) \approx 1 + \delta x + B \delta x^2$ Inhomogeneous case: <k²> diverged <k> = 1, $q_k \sim k^{\gamma} (2 < \gamma < 3)$ $G_k(1 + \delta x) \approx 1 + \delta x + B |\delta x|^{\gamma - 1}$

CRITICAL EXPONENT FOR HOMOGENOUS CASE

Homogenous case $G_k(1 + \delta x) \approx 1 + \delta x + B\delta x^2$ $G_S(1 + \delta x) \approx 1 + A|\delta x|^{\alpha - 1}$ $G_S(x) = xG_k(G_S(x))$

$$G_{S}(x) \approx 1 + A|\delta x|^{\alpha - 1}$$

$$xG_{k}(G_{S}(x)) \approx (1 + \delta x)[1 + (G_{S}(1 + \delta x) - 1) + B(G_{S}(1 + \delta x) - 1)^{2}]$$

$$\approx (1 + \delta x)[1 + A|\delta x|^{\alpha - 1} + AB|\delta x|^{2\alpha - 2}]$$

$$= 1 + A|\delta x|^{\alpha - 1} + AB|\delta x|^{2\alpha - 2} + \delta x + O(|\delta x|^{\alpha})$$
The lowest order reads $AB|\delta x|^{2\alpha - 2} + \delta x = 0$, which requires $2\alpha - 2 = 1$ and $A = 1/B$. Or, $\alpha = 3/2$

CRITICAL EXPONENT FOR INHOMOGENEOUS CASE

Inhomogeneous case

$$G_k(1+\delta x) \approx 1 + \delta x + B|\delta x|^{\gamma-1}$$
$$G_s(1+\delta x) \approx 1 + A|\delta x|^{\alpha-1}$$

$$G_S(x) = xG_k(G_S(x))$$

$$G_{S}(x) \approx 1 + A|\delta x|^{\alpha - 1}$$

$$xG_{k}(G_{S}(x)) \approx (1 + \delta x)[1 + (G_{S}(1 + \delta x) - 1) + B|G_{S}(1 + \delta x) - 1|^{\gamma - 1}]$$

$$\approx (1 + \delta x)[1 + A|\delta x|^{\alpha - 1} + AB|\delta x|^{(\alpha - 1)(\gamma - 1)}]$$

$$= 1 + A|\delta x|^{\alpha - 1} + AB|\delta x|^{(\alpha - 1)(\gamma - 1)} + \delta x + O(|\delta x|^{\alpha})$$
The lowest order reads $AB|\delta x|^{(\alpha - 1)(\gamma - 1)} + \delta x = 0$, which requires
$$(\alpha - 1)(\gamma - 1) = 1 \text{ and } A = 1/B. \text{ Or, } \qquad \alpha = \gamma/(\gamma - 1)$$

COMPARING THE PREDICTION WITH THE REAL DATA

$$P(S) \sim S^{-\alpha}, \alpha = \begin{cases} 3/2, & \gamma > 3\\ \gamma/(\gamma - 1), & 2 < \gamma < 3 \end{cases}$$

Blackout

Source	Exponent	Quantity
North America	2.0	Power
Sweden	1.6	Energy
Norway	1.7	Power
New Zealand	1.6	Energy
China	1.8	Energy

Earthquake $\alpha \approx 1.67$

I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

Y. Y. Kagan, Phys. Earth Planet. Inter. 135 (2–3), 173–209 (2003)