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SUMMARY: ACHILLES’ HEEL OF COMPLEX NETWORKS

Internet

failure
attack

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)
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HISTORICAL DETOUR: PAUL BARAN AND INTERNET

1958

A network of n-ary
degree of connectivity 
that has n links per 
node was simulated

The simulation revealed that networks where n ≥ 3 had a significantly increased 
resilience against the large failure involving at least 50% node loss. Baran's insight 
gained from the simulation was that redundancy was the key. 3



SCALE-FREE NETWORKS ARE MORE ERROR TOLERANT, 
BUT ALSO MORE VULNERABLE TO ATTACKS 

• squares: random failure
• circles: targeted attack
• S surviving fraction of GC
• l average distance between 
nodes

Failures: little effect on the 
integrity of the network. 
Attacks: fast breakdown

S

l
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REAL SCALE-FREE NETWORKS SHOW THE SAME DUAL BEHAVIOR 

• blue squares: random failure
• red circles: targeted attack
• open symbols: S (size of surviving 
component)

• filled symbols: l (average distance)

• break down if 5% of the nodes are eliminated selectively (always 
the highest degree node)
• resilient to the random failure of 50% of the nodes.

Similar results have been obtained for metabolic networks and 
food webs.

S
S

l
l
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CASCADES

• Information cascades
social and economic 
systems
diffusion of innovations

• Cascading failures
infrastructural networks
complex organizations

Potentially large events triggered by small initial shocks
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CASCADING FAILURES IN NATURE AND TECHNOLOGY

Cascades depend on
• Structure of  the network 
• Properties of the flow
• Properties of the net elements
• Breakdown mechanism

Blackout

Flows of physical quantities 
• congestions
• instabilities
• Overloads

Earthquake Avalanche
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Consequences
More than 508 generating units at 265 
power plants shut down during the 
outage. In the minutes before the event, 
the NYISO-managed power system was 
carrying 28,700 MW of load. At the height 
of the outage, the load had dropped to 
5,716 MW, a loss of 80%.

Origin
A 3,500 MW power surge (towards Ontario) 
affected the transmission grid at 4:10:39 p.m. 
EDT. (Aug-14-2003)

Before the blackout         After the blackout

NORTHEAST BLACKOUT OF 2003
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Network Science: Robustness Cascades 



CASCADES SIZE DISTRIBUTION OF BLACKOUTS

Probability of energy 
unserved during North 
American blackouts 
1984 to 1998.

Source Exponent Quantity

North America 2.0 Power

Sweden 1.6 Energy

Norway 1.7 Power

New Zealand 1.6 Energy

China 1.8 Energy

Unserved energy/power magnitude (S) distribution 

I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

P(S) ~ S −α, 1< α < 2
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CASCADES SIZE DISTRIBUTION OF EARTHQUAKES

P(S) ~ S −α,α ≈ 1.67
Earthquake size S distribution 

Y. Y. Kagan, Phys. Earth Planet. Inter. 135 (2–3), 173–209 (2003)

Earthquakes during 1977–2000.
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FAILURE PROPAGATION MODEL

D. Watts, PNAS 99, 5766-5771 (2002)

Initial Setup
•Random graph with N nodes
•Initially each node is functional.
Cascade
•Initiated by the failure of one node.
•fi : fraction of failed neighbors of node i. Node i
fails if fi is greater than a global threshold φ.

Erdos-Renyi network

P(S) ~ S −3/2

□ Critical
● Overcritical

Overcritical

Undercritical

Critical

φ =0.4

f = 0

f = 1/3
f = 1/2

f = 1/2

f = 1/2

f = 2/3

<k>

Network 
falls apart 
(<k>=1)
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OVERLOAD MODEL

Initial Conditions
•N Components (complete graph)
•Each components has random initial load Li
drawn at random uniformly from [Lmin, 1].
Cascade
•Initiated by the failure of one component.
•Component fail when its load exceeds 1. 
•When a component fails, a fixed amount P is 
transferred to all the rests.

P(S) ~ S −3/2

I. Dobson, B. A. Carreras, D. E. Newman, Probab. Eng. Inform. Sci. 19, 15-32 (2005)

Critical
Overcritical

Undercritical

Undercritical Overcritical

Critical

Li =0.8

P=0.15

Li =0.9Li =0.7

Li =0.95

Li =1.05Li =0.85

Lmin
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SELF-ORGANIZED CRITICALITY AKA SANDPILE MODEL

K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett. 91, 148701 (2003)

Homogenous case

Scale-free network

Initial Setup
•Random graph with N nodes
•Each node i has height hi = 0.
Cascade
•At each time step, a grain is added at a randomly 
chosen node i: hi ← hi +1
•If the height at the node i reaches a prescribed 
threshold zi = ki, then it becomes unstable and all 
the grains at the node topple to its adjacent 
nodes: hi = 0 and hj ← hj +1
•if i and j are connected.
Homogenous network: <k2> converges 

P(S) ~ S −3/2

Scale-free network : pk ~ k-γ (2<γ<3)

P(S) ~ S −γ/(γ −1)
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BRANCHING PROCESS MODEL

Branching Process
Starting from a initial node, each node in 
generation t produces k number of 
offspring nodes in the next t + 1 
generation, where k is selected randomly 
from a fixed probability distribution qk=pk-1. 

Hypothesis
• No loops (tree structure)
• No correlation between branches

K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett. 91, 148701 (2003)

Narrow distribution: <k2> converged 

P(S) ~ S −3/2

Fat tailed distribution: qk ~ k-γ (2<γ<3)

P(S) ~ S −γ/(γ −1)

Fix <k>=1 to be 
critical  power 
law P(S)
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SHORT SUMMARY OF MODELS: UNIVERSALITY

Models Networks Exponents

Failure Propagation Model ER 1.5

Overload Model Complete Graph 1.5

BTW Sandpile Model ER/SF 1.5 (ER) 
γ/(γ - 1)(SF)

Branching Process Model ER/SF 1.5 (ER)
γ/(γ - 1)(SF)

P(S) ~ S −3/2

Universal for homogenous networks 

Same exponent for percolation too 
(random failure, attacking, etc.)
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EXPLANATION OF THE 3/2 UNIVERSALITY

Simplest Case: q0 = q2 = 1/2, <k> = 1

S: number of nodes
X: number of open branches

k= 0

k=2

S = S+1
X = X -1

S = S+1
X = X+1

½ chance

½ chance
S = 1
X = 1

S = 2, X = 0

S = 2, X = 2

X >0, Branching process stops 
when X = 0

X

S Dead
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Question: what is the probability that X = 0 after S steps?
First return probability  ~ S-3/2

M. Ding, W. Yang, Phys. Rev. E. 52, 207-213 (1995)

Equivalent to 1D random walk model, where X and S are the position and time , respectively.

X

S Dead
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SIZE DISTRIBUTION OF BRANCHING PROCESS (CAVITY METHOD)

S1 S2
S1

S = 1+S1 S = 1+S1+S2S = 1

k = 0 k = 1 k = 2

K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Physica A 346, 93-103 (2005)
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SOLVING THE EQUATION BY GENERATING FUNCTION

Phase Transition 
<S> = GS’(1) = 1+ Gk’(1) GS’(1) = 1 + <k> <S>, then
<S> = 1/(1- <k>)
The average size <S> diverges at <k>c = 1

Definition:

GS(x) = ΣS=0 P(S)xS

Gk(x) = Σk=0 qkxk

Property: 
GS(1) = Gk(1) = 1
GS’(1) = <S>, Gk’(1) = <k>
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Theorem:
If P(k) ~ k-γ (2<γ<3), then for δx < 0, |δx| << 1
G(1+ δx) = 1 + <k>δx + <k(k-1)/2> (δx)2 + … + O(|δx|γ - 1)

FINDING THE CRITICAL EXPONENT FROM EXPANSION

P(S) ~ S −α,1< α < 2
GS(1+ δx) ≈ 1 + A|δx|α -1

Homogenous case: <k2> converged  
<k> = 1, <k2> < ∞
Gk(1+ δx) ≈ 1 + δx + Bδx2

Inhomogeneous case: <k2> diverged
<k> = 1, qk ~ k-γ (2<γ<3)
Gk(1+ δx) ≈ 1 + δx + B|δx|γ - 1

Definition:

GS(x) = ΣS=0 P(S)xS

Gk(x) = Σk=0 qkxk
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CRITICAL EXPONENT FOR HOMOGENOUS CASE

GS(x) = xGk(GS(x))

Homogenous case
Gk(1+ δx) ≈ 1 + δx + Bδx2

GS(1+ δx) ≈ 1 + A|δx|α -1

GS(x) ≈ 1 + A|δx|α -1

xGk(GS(x)) ≈ (1+δx)[1+ (GS(1+δx)-1) + B (GS(1+δx)-1)2]
≈ (1+δx)[1+ A|δx|α -1 + AB|δx|2α -2]
= 1 + A|δx|α -1 + AB|δx|2α -2 + δx + O(|δx|α)

The lowest order reads AB|δx|2α -2 + δx = 0, which requires
2α -2 = 1and A = 1/B. Or, α = 3/2
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CRITICAL EXPONENT FOR INHOMOGENEOUS CASE

GS(x) = xGk(GS(x))

Inhomogeneous case
Gk(1+ δx) ≈ 1 + δx + B|δx|γ - 1

GS(1+ δx) ≈ 1 + A|δx|α -1

GS(x) ≈ 1 + A|δx|α -1

xGk(GS(x)) ≈ (1+δx)[1+ (GS(1+δx)-1) + B |GS(1+δx)-1|γ -1]
≈ (1+δx)[1+ A|δx|α -1 + AB|δx|(α -1)(γ -1)]
= 1 + A|δx|α -1 + AB|δx|(α -1)(γ -1) + δx + O(|δx|α)

The lowest order reads AB|δx|(α -1)(γ -1) + δx = 0, which requires
(α -1)(γ -1) = 1and A = 1/B. Or, α = γ/(γ −1)
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COMPARING THE PREDICTION WITH THE REAL DATA

Source Exponent Quantity

North America 2.0 Power

Sweden 1.6 Energy

Norway 1.7 Power

New Zealand 1.6 Energy

China 1.8 Energy

Blackout

I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

Earthquake α ≈ 1.67

Y. Y. Kagan, Phys. Earth Planet. Inter. 135 (2–3), 173–209 (2003)
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