Limits of Modularity and Greedy Algorithms

Alexander Gibson
Table of Contents

● Modularity
 ○ Motivations
 ○ Calculation
 ○ Properties
 ○ Limits

● Greedy Algorithms
 ○ Motivations
 ○ Newman Algorithm
 ○ Louvain Method
Modularity - Motivations

Modularity allows us to find communities in a graph in a quantifiable manner.

● What is a community?
● What do we mean by quantifiable?
Modularity - Motivations

- Community: A subset of nodes in a graph with a higher density of edges between them than the average density of edges in the entire network.
- “Randomly wired networks lack an inherent community structure.” - Barabási
- For a given partition, we can compare the edge density of that partition with the edge density of a randomly rewired network of the same nodes.
- In this way we can quantify the quality of a partition.
Modularity - Calculation

For a given network with

- N nodes
- E edges
- n_c communities
 - N_c nodes
 - E_c edges
 - $c = 1 \ldots n_c$
 - k_c total degree of nodes in the community

we will derive the formula for modularity.
Modularity - Calculation

Modularity is the difference between the edge density of the real network A and the expected edge density of its corresponding randomly-rewired network p.

Thus the modularity of a given community is given by

$$M_c = \frac{1}{2E} \sum (A_{ij} - p_{ij}) \text{ for } (i,j) \in C.$$

If p is BA scale-free, we have that

$$p_{ij} = \frac{k_i k_j}{2E}.$$
Modularity - Calculation

By rewriting A_{ij}, we obtain

$$M_c = \frac{E_c}{E} - \left(\frac{k_c}{2E}\right)^2.$$

We can then generalize to the modularity of the entire network:

$$M = \sum M_c \text{ for } c=1 \text{ to } n_c.$$
Modularity - Properties

- Maximum modularity $M \rightarrow$ best partition
- $M = 0 \rightarrow$ single community
- $M < 0 \rightarrow$ N communities (each node is a community)
Modularity - Limits

- Resolution Limit
- Modularity Maxima
Modularity - Limits

Resolution Limit

- Small communities are merged with larger communities
 - Assuming $k_A = k_B = k$: If $k \leq \sqrt{2E}$ then communities A and B merge.
 - $\sqrt{2E}$ is referred to as the resolution limit.

- The modularity maximization algorithm cannot detect communities smaller than the resolution limit
 - Real networks often have many small communities – MM algorithm can mischaracterize them
Modularity - Limits

Modularity Maxima

- Ideally we want to find an optimal modularity M_{max}
 - In practice on large networks, this is impossible!
- Merging two communities yields $\Delta M = \left(\frac{e_{AB}}{E} \right) - \left(\frac{2}{n_c^2} \right)$
 - ΔM decreases as n_c increases → goes to 0 for large numbers of groups
 - “Modularity Plateau”
Modularity - Limits

- a. $M=0.867$
- b. $M=0.871$
- c. $M=0.80$
Modularity - Limits
Modularity - Summary

● Question: How do we find the communities in a network?
● Answer: Maximizing modularity yields the partition that best captures the communities in a network.
 ○ $M = 0 \rightarrow$ one community
 ○ $M < 0 \rightarrow$ every node is its own community

● Limitations:
 ○ Cannot capture small communities (resolution limit)
 ○ Difficult to find true maximum modularity (modularity plateau)
Greedy Algorithms - Motivations

- Optimizing modularity is NP-hard.
 - Brute forcing M_{max} is computationally infeasible
- Question: Is there an algorithm that finds a partition with $M = M_{\text{max}}$ that doesn’t have to check every possible partition?
- Answer: Yes - greedy algorithms.
- Modularity plateau to the rescue!
 - Easy to get close to M_{max} – and on average, the larger the network the easier it is.
Greedy Algorithms - Newman Algorithm

Very simple, but very powerful.

1. Assign each node to its own community
2. Merge the two communities with maximal ΔM and record M
3. Repeat 2. until the entire network is a single community
4. Return the partition with maximal M
Network of books about American politics. Nodes are books classified by political alignment, edges represent books frequently purchased by the same readers.
Greedy Algorithms - Newman Algorithm

- Also solves the problem of the resolution limit – just run the NA on a subcommunity!
- Layering the NA can greatly increase the modularity of a given partition
By running NA on the condensed matter community, M goes from 0.713 to 0.807 → a 13% increase!
Greedy Algorithms - Newman Algorithm

Running Time Analysis:

- Calculating ΔM is $O(1)$ \Rightarrow step 2 is $O(E)$
- After merge in step 2, updating edges is $O(N)$
- Step 2 repeats $N-1$ times \Rightarrow overall complexity: $O[(E + N)N]$

Still very computationally intensive!
Greedy Algorithms - Louvain Method

- On average, getting close to M_{max} is easier the larger your network.
- The Louvain Method takes this to the extreme – approximates M_{max} in just $O(E)$.
 - Can identify communities in networks with $N > 2m$ in 2 minutes.
Greedy Algorithms - Louvain Method

1. Assign each node to its own community
2. For each node A, calculate ΔM for moving A into the community of each of its neighbors B and move it into the community with maximum ΔM
3. Repeat 2. until no positive ΔM exists
4. Construct a new network whose nodes are the communities found in 3.
5. Repeat 1. – 4. until a maximum modularity is found
Greedy Algorithms - Louvain Method

Running Time Analysis:

- **Key insight: ΔM calculations are O(1).**
 - How? The calculation for ΔM only depends on properties of the community as a whole and the node being moved – not its neighbors.

- **Step 3. is O(E) ➔ the only step which isn’t O(1).**
 - No edges are gained or lost – existing edges are just “magnified” when constructing new graphs.
 - Edges can be visited multiple times, but that’s okay.

- **Overall complexity: O(E).**
Greedy Algorithms - Louvain Method
Greedy Algorithms - Louvain Method

1ST PASS

\begin{align*}
\Delta M_{0,3} &= 0.023 \\
\Delta M_{0,2} &= 0.032 \\
\Delta M_{0,4} &= 0.026 \\
\Delta M_{0,5} &= 0.026
\end{align*}

2ND PASS

STEP I

STEP II

STEP I

STEP II
Works Cited

- http://networksciencebook.com/chapter/9#modularity
- https://doi.org/10.1088/1742-5468/2008/10/P10008