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Abstract. Influence maximization is the task of finding the smallest
set of nodes whose activation in a social network can trigger an activa-
tion cascade that reaches the targeted network coverage, where threshold
rules determine the outcome of influence. This problem is NP-hard and it
has generated a significant amount of recent research on finding efficient
heuristics. We focus on a Balance Index algorithm that relies on three
parameters to tune its performance to the given network structure. We
propose using a supervised machine-learning approach for such tuning.
We select the most influential graph features for the parameter tuning.
Then, using random-walk-based graph-sampling, we create small snap-
shots from the given synthetic and large-scale real-world networks. Using
exhaustive search, we find for these snapshots the high accuracy values
of BI parameters to use as a ground truth. Then, we train our machine-
learning model on the snapshots and apply this model to the real-word
network to find the best BI parameters. We apply these parameters to
the sampled real-world network to measure the quality of the sets of ini-
tiators found this way. We use various real-world networks to validate
our approach against other heuristic.

Keywords: Influence maximization · Threshold Model · Supervised
machine learning · Random forest classification

1 Introduction

In a social network setting, influence maximization (IM) is a task motivated
by viral marketing. Its goal is to identify the smallest set of social network
nodes, which if initially activated to a new state, will collectively influence others
to activate. Originally defined by Kempe et al. [1], the problem assumes the
known directed social network with either weighted or unweighted edges. The
problem uses a stochastic influence propagation model (i.e., the Linear Threshold
Model (LTM) [2], in which threshold rules determine influence outcome). The
challenge is to find the minimal set of initiators that maximize the spread of
their initiated state. The corresponding influence maximization problem is NP-
hard [1] and it has generated a significant amount of recent research on finding
efficient heuristics. One approach focuses on various node indexing heuristics
[3,4], in which all nodes in the graph are indexed based on their properties, and
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the highest ranking nodes are selected to the seed set. In this approach graph
features related percolation, such as degree, or betweenness, are often used for
indexing [5–8].

From the application perspective, it helps to include the specific context
information into the node indexing heuristic. In a survey paper [9], the authors
concluded that the IM challenge includes finding how the graph structure affects
the solution and how to identify a robust set of initiators given a limited num-
ber of graph changes. To address this challenge, we use a Balance Index (BI)
algorithm [10] that relies on three parameters to tune its performance to the
given network structure. Here, we propose to use Machine-Learning (ML) for
such tuning.

We use a standard supervised ML approach in which the ML model learns
from the training data, validates the model performance on the test data, and
predicts the best parameters for the given network. In summary, we use ML to
find the most influential graph features and apply them to the parameter tuning
for the BI algorithm.

The main contributions of this work are as follows. We propose a random-
walk-based graph-sampling that quickly creates snapshots of large-scale real-
world networks as training data. We developed a method of finding the most
influential graph features for the BI algorithm. We also validated the applicability
of the synthetic network trained ML model to various real-world networks.

2 Methodology

We use the following notation. We consider a social network with N nodes and
set of E edges, so with |E| edges, undergoing conversion from the old to new state
using Threshold Model spread process. We denote by ri the resistance of node
i to spreading, which is the number of neighbors of i that need to turn active
in order for node i to become active. Each node in the network has a fractional
threshold for activation, which represents the node’s resistance to peer pressure.
The spreading rule is that an inactive node i, with in-degree kin

i and threshold
φi, is activated by its in-neighbors only when their fraction of activated nodes
is higher than the node’s threshold, that is

∑
j∈Ni

1 ≥ φik
in
i , where Ni denotes

set of neighbors of node i. This is a deterministic process and once activated, a
node cannot return to its previous state. In addition, kout

i stands for out-degree
of node i, which represents the immediate decrease of the network resistance to
spread when i is activated. kout,1

i is the number of i neighbors with resistance
1. Such neighbors will be immediately activated once i is activated. Hence, this
value represents the immediate increase in the number of activated nodes when
i is activated.

The Balanced Index (BI) introduced in [10] quantifies the combined potential
of being effective initial spreader based on node’s resistance, out-degree, and the
number of out-neighbors ready for activation with resistance 1, using parameters
defined as:

BIi = ari + bkout
i + c

∑

j∈∂i|rj=1

(kout
j − 1) (1)
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where a + b + c = 1 and a, b, c ≥ 0.
Given a large social network, attempting to find effective parameters for

applying the BI algorithm to this network would be prohibitively expensive. So,
our approach first creates many of its subgraphs to avoid random variance in
their quality and then uses a supervised classification task to find those param-
eters. Next, the averaged parameters are applied to the original graph. Here, we
use a number of real-world networks, instead of just one, to measure efficiency
of our approach for each of these graphs.

2.1 Random-Walk, Graph-Sampling and Supervised Classification
Task

We need a graph-sampling method that could create subgraphs that are similar
to the original graph in features relevant to the values of the BI parameters.
Many graph-sampling methods were tested for the similarity between the orig-
inal network and the resulting subgraphs in [11]. The author found that the
random-walk sampling preserves the structural graph features well. This conclu-
sion motivates us to use the random-walk sampling in our approach.

Each sample is created in one complete walk with no restarts to ensure the
created subgraph is fully connected.

We denote the dimension of input space (also known as feature space)
of this task as n. Here, n is the number of graph features selected for our
task and the feature space is Rn. Each feature vector xi is represented as
xi = (x(1)

i , x
(2)
i , ..., x

(n)
i ). The output (target) space of dimension m is defined as

yi = (y(1)
i , y

(2)
i , ..., y

(m)
i ). The targets could be further sliced into classes {Cj}l,

enabling us to transform our task to a multi-class or binary (two-class) classifi-
cation problem.

Given the dataset of size D, we split it into two disjoint parts. The training
dataset of size M is represented as T = (x1, y1), (x2, y2), ..., (xM , yM ), and the
complementary testing dataset is represented as V = (xM+1, yM+1), ..., (xD, yD).

Several methods of classification have shown good performance for a small
number of features, including the Logistic Regression Classification and Random
Forest Classification [12]. We chose the Random Forest Classification method for
our task because of its high adaptability to input scales, input noise and fitting
to both linear and nonlinear problems with no precedence hypotheses.

2.2 Datasets and Baseline Comparison

We use two types of original networks on which we want to run the BI algorithm,
the synthetic ER graphs with edge swapping, and real-world networks. For both
types, we generate sample subgraphs for model training. All those networks are
summarized in Table 1.

By generating synthetic graphs based on random graphs, we get a dataset
covering a broad range of graph features, so we expect that the BI parameters
values obtained with them will perform worse on real-world networks than the
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Table 1. Listing of datasets used for sample generation for learning and testing

Synthetic networks

Network generation model Parameters Count

ER with edge swapping N = 100, k = 5, 10 75 * 2

N = 300, k = 5, 10 75 * 2

N = 500, k = 5, 10 75 * 2

Real-world networks

Network name Parameters Count

Amazon Co-purchasing network samples N ∼ 1000 1000

Twitter retweet network samples: “center” N ∼ 1000 50

Twitter retweet network samples: “lean left” N ∼ 1000 50

Facebook network samples N ∼ 500 50

CA-CondMat network samples N ∼ 500 50

CA-HepPh network samples N ∼ 500 50

parameters obtained by real-word network sampling. We expect that subgraph
generated from a real-world network will preserve well its graph structure char-
acteristics.

For finding the ground-truth best parameter values in each subgraph setting
(cascade coverage and threshold distribution), we simply perform the search over
the triangle grid of �max(a)

2prec + 1�×�max(b)
prec + 1� points, where prec = 0.01, so this

is a triangle grid of 51 × 101 points, which require 5, 151 executions of indexing
of the nodes with complexity in the order of O(Nkout), and then running the
spread that also requires O(Nkout) steps. Then, the best values of a and b are
selected for generating the smallest number of initiators.

The synthetic dataset is split using M = 2D/3, so 2/3 of data for training
and 1/3 for testing. After the model is trained on synthetic dataset, it is vali-
dated using the real-world network data. We called the new approach a tuned
BI heuristic.

The performance of each solution is measured using the number of initia-
tors needed by this solution to reach the targeted network coverage, so smaller
measurement indicates better performance.

We compare the tuned BI heuristic with the following node indexing based
heuristics:

1. res: Node resistance based indexing, which corresponds for the BI with the
values for (a;b;c) equal to (1;0;0).

2. deg: Adaptive high out-degree based indexing [4] corresponding to the BI
with the parameter values set to (0;1;0).

3. RD: Resistance and node out-degree based heuristic strategy, corresponding
to the BI with the parameter values set to (0.5;0.5;0).
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Table 2. Graph features, where C denotes a local clustering coefficient, Nout
i stands for

average out-degree of neighbors of node i, cov is the targeted coverage of a cascade, and
ρ denotes an out-degree assortativity of the graph. The mean and standard deviation
of a distribution of values v are denoted as v, σv, respectively.

Feature Definition Complexity

N Node count -

C 1
N

∑N
i=1

|{ejk:vj ,vk∈δi,ejk∈E}|
kout
i (kout

i −1) O(Nkout
2
)

σC

√
1
N

∑N
i=1(Ci − C)2, Ci =

|{ejk:vj ,vk∈δi,ejk∈E}|
kout
i (kout

i −1) O(Nkout
2
)

kout 1
N

∑N
i=1 kout

i O(N)

σkout
1
N

√∑N
i=1(k

out
i − kout)2 O(N)

Nout 1
N

∑N
i=1

1
|δi|

∑
j∈δi

kout
j O(Nkout)

σNout
1
N

∑N
i=1

√
1

|δi|
∑

j∈δi
(kout

j − Nout)2 O(Nkout)

ρ See Eq. (21) in [13] See [13]

Ed
|E|
(N2 )

O(Nkout)

cov Nt

N
O(1)

φ 1
N

∑N
i=1 φi O(N)

σφ
1
N

∑N
i=1(φi − φ)2 O(N)

4. CI − TM : Collective influence based indexing for a sphere of influence when
L = 1 [5]. Since the metric of CI-TM is only composed of the out-degree of
the nodes surrounding the target node, so this sets the BI parameter values
to (0;0.5;0.5) [10] (Table 2).

3 Result and Analysis

Here, we first examine the relationship between different parameter values and
cases in which they deliver their best performance.

For the synthetic subgraphs and given the range of targeted cascade coverage,
Fig. 1 shows the optimal a and b values in a triangle grid search with precision
0.01 (so with 51 × 101 = 5, 151 points), while the third parameters is set as
c = 1 − a − b.

The first plot of Fig. 1 shows that as the network size increases, the plot
moves toward the diagonal. There is also an increase of the negative correlation
between the best values of a and b when the targeted cascade coverage increases,
together with the increase of their sum to one, shown in the second plot. The
third and fourth plots show the increasing importance of out-degree (b) and
resistance (a) when the larger cascade coverage is needed. The conclusion is that
the larger is the targeted cascade coverage, the less important is to focus on
ready for immediate activation out-neighbors and to concentrate instead on the
long-term strategy of selecting the most resistant (a) and influential (b) nodes.
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Fig. 1. Optimal values obtained in a triangle grid search with precision 0.01 over
synthetic subgraphs and the different targeted cascade coverage values. (Left) The
Spearman correlation between the best values of a and b. (Left-Center) Sum of the
best a and b. (Right-Center) The best a. (Right) the best b

Fig. 2. Feature importance (For cov = 0.9). (Left) Bars from the left to the right show
features in the order of importance for the BI coefficient a: σφ, standard deviation; φ,
average value of threshold; C and σC , average and standard deviation of local clustering
coefficient; ρ, assortativity; Nout and σNout , average and standard deviation of average
out-degree of neighbors; σkout , standard deviation of out-degree; Ed, edge density; kout,
average out-degree; and N , the number of nodes. (Right) For coefficient b, bars show
the same features but in the order of significance for the BI b coefficient. In both plots,
the lines above the bars show cumulative importance of features below and to the left
of a point of reference

3.1 Identifying the Most Important Features

Although the classification model can be used as a black box, knowing the impor-
tant features may reduce or increase feature dimension. For the Random Forest
model, the feature importance corresponds to the cumulative entropy reduction
as each feature is a root of the sub-tree in the decision tree of the forest. Figure 2
shows the results of both classification tasks on synthetic subgraphs. The plots
show that σφ is dominant among all features by capturing over 30% of the overall
importance. The second is φ that claims over 15% of importance. The next five
features account each for nearly 10% of importance, while the remaining four
are negligible.
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3.2 Training the Classification Tasks on Synthetic Subgraphs

Figure 3 shows the Random Forest Classification performance on the synthetic
subgraphs. The first subplot shows the absolute differences between the predicted
and optimal values of a and b obtained by a triangle grid search. The difference is
less than 0.2 on both sides of the optimal values. The padding shows boundaries
of single standard deviation from the average line. The second and the third
subplots compare performance of our method with other node indexing based
heuristics. The bar plot in the second plots shows the total number of initiators,
while the line plots chart the numbers of initiators needed by each heuristic over
the optimal number of initiators. The third plot shows the fraction of additional
initiators needed by heuristic compared to such fraction when a and b values
obtained by the triangle grid search are used. The synthetic networks contain a
spectrum of network features Fig. 4. Hence, we want to see if the result averaged
over different network realizations, characterized by varying degree assortativity,
ρ, and threshold φ distribution standard deviation σφ. Similarly, comparing the
results at each targeted cascade coverage shown in Figs. 4 and 3 shows that
our method, “tuned BI”, performs second only to the exhaustive triangle grids
search labeled as “best performance BI”. In most cases when cascade size is
small, “CI-TM” with L = 1 performs comparably with “tuned BI”. The next
two best performing approaches include “deg” and “RD”, while “res” generally
perform the worst.

Fig. 3. Comparison of performance of BI parameters found by model trained on syn-
thetic subgraphs to the other node indexing based heuristics. (Left) Range of difference
between a and b parameters found by the model and by exhaustive search. (Center)
Bars show size of the set of initiators for each heuristic with scale on the left. Plots show
additional initiators needed by each heuristic over what was required by BI parameters
found by exhaustive search with scale on the right. (Right) Fraction of the best set of
initiators needed by each heuristic to achieve the same coverage. Our tuned BI heuristic
requires the smallest such fraction, with CI-TM matching it for smaller cascades.

In summary, the results show that parameter tuning using our Random Forest
Classification has achieved a convincing performance boost on the synthetic
dataset.
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Fig. 4. Number of initiators needed for a range of values for cascade coverage and differ-
ent node ranking metrics on the synthetic subgraphs. Each plot compares heuristics for
different ranges of threshold’s standard deviation σφ (σ in the plot) and assortativity ρ

3.3 Validating the Approach on Real-World Networks

We used the model trained on synthetic networks for the real-world graphs (sub-
graph samples) that the graph metric values are not known beforehand. For the
Amazon co-purchasing network subgraph samples, we further performed the grid
search with the predicted a and b and compared to the results with a and b found
by the grid search. The difference was smaller than 0.05 for both parameters.

In real-life scenarios, for larger graphs it may take several days to finish even
one run of the linear threshold influence maximization. Hence, it is beneficial to
use the average of the predicted parameter values generated for the subgraphs on
the large-scale original graph. When utilizing subgraph-running results, the more
nodes are included in the subgraph samples, the more accurately the average
approximates the actual best parameters. Figure 5 shows this narrowing range



Learning Parameters for IM 175

effect in response to increase of numbers of nodes in the subgraph samples for
the Amazon co-purchasing network.

Fig. 5. Predictions of a and b are more stable for larger subgraph samples, indicating
a narrowing range effect

Here, we use other real-world networks for testing. The results are aver-
aged over 1000 network subgraph samples and 50 for others, and summarized in
Fig. 6 without specifying experiment settings (i.e., the distribution of resistance
thresholds) since the individual results were similar to each other.

For the six real-world networks, the tuned BI approach performs consistently
strongly for all kinds of real-world networks included (i.e., academic collabora-

Fig. 6. Comparison of performance of tested heuristics on other real-world net-work
subgraphs
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tion networks and social networks). However, the CI-TM with L = 1 shows
bifurcation behaviors for the Twitter retweet graphs and the others, indicating
that neglecting the resistance aspect of a influence propagation system could be
detrimental to the performance.

4 Conclusion

We use synthetic network data to train the Random Forest Classification to tune
the BI algorithm parameters for the high performance on influence maximization
problem. Our contributions include the following. We identified the most impor-
tant features for all the BI parameters, of which the threshold φ distribution
standard deviation dominates others. We designed a novel tuned BI heuristic,
which uses random-walk sampling to create subgraphs from the networks of
interest, which we use to train an ML model for selecting the efficient values of
BI parameters to use for solving Influence Maximization problem on the net-
works of interest. We also compared the new heuristics with other node indexing
heuristics on six real-world networks. The results demonstrate that the tuned
BI approach outperforms the other tested heuristics, and reduces the number of
needed initiators by up to 10%.
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