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Abstract —Service modeling and service composition are software architecture paradigms that have been used extensively in
web services where there is an abundance of resources. They mainly capture the idea that advanced functionality can be realized
by combining a set of primitive services provided by the system. Many efforts in web services domain focused on detecting the
initial composition, which is then followed for the rest of service operation. In sensor networks however, communication among
nodes is error-prone and unreliable, while sensor nodes have constrained resources. This dynamic environment requires a
continuous adaptation of the composition of a complex service.
In this paper, we first propose a graph-based formulation for modeling sensor services that maps to the operational model of
sensor networks and is amenable to analysis. Based on this model, we formulate the process of sensor service composition
as a cost-optimization problem and show that it is NP-complete. Two heuristic methods are proposed to solve the composition
problem: the top-down and the bottom-up approaches. We discuss centralized and distributed implementations of these methods.
Finally, using ns-2 simulations, we evaluate the performance and overhead of our proposed methods.

Index Terms —Service Composition, Sensor Networks, Service Modeling.
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1 INTRODUCTION

W IRELESS sensor networks consist of ensembles
of low-cost devices that collect raw measure-

ment data from the environment, transform it through
a series of operators into more meaningful aggregate
values, and relay these values (possibly over multiple
hops) to base stations, for collection and further pro-
cessing by end-users. Due to limited communication
bandwidth, node processing and energy resources,
sensor network applications are distributed over a
collection of nodes. Each node typically provides a
basic functionality for operating on the monitored
data, while the network of sensor nodes collectively
provides a composite service (i.e. a service that is
formed through a suitable combination of basic func-
tionalities [1]) to the end-user.

As an example of a composite service, consider
the tracking and object identification application of
Figure 1: audio measurements are collected from three
acoustic sensors and are used to localize the source
of the sound. The localization information is then
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transmitted to a camera sensor that identifies the type
of the object that produces the sound. The camera is
further used for tracking the object as it roams in the
monitored field. In this example, one can readily iden-
tify the primitive functionalities that are collectively
used to provide the more sophisticated tracking and
object identification service.

Service composition, i.e. the process through which
composite services are produced by combining sev-
eral primitive ones [2], has been the subject of exten-
sive study in the context of web services [1]. However,
the unique characteristics of sensor networks render
techniques that were devised for web service compo-
sition inadequate. Unlike the web environment where
service provider availability and ample communica-
tion bandwidth are typically assured, sensor networks
are highly dynamic as nodes often fail or become
disconnected and wireless communication capacity is
limited. Thus, web service composition approaches
(e.g. [3]-[8]) are susceptible to single-point-of-failure
and inefficient use of precious wireless communica-
tion bandwidth.

Additionally, the service paradigm exhibits qual-
itative differences in the web and sensor network
domains: in the web, service consumers are typi-
cally concerned with finding service instances from
a plurality of web providers that can accomplish
a given, abstract task or functionality [9], [10]. In
sensor network deployments, the service paradigm
is primarily concerned with the assembly of data
transformation pipelines over data flows. In Section 2,
we discuss important implications that this distinction
in the service model have on the optimization of the
service composition process.

Early programming frameworks [11], [12] proposed
for the development of sensor services recognized
the need for a component-based design that com-
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Fig. 1. A Composite Service Example

partmentalizes (at the source-code level) the trans-
formational steps that network collected data must
undertake. Recent advances in sensor network pro-
gramming further extend this concept by proposing
the use of a high-level language such as Haskell
[13], WaveScript [14] or Prolog [15] to describe the
interconnection of application components, each of
which is implemented in a lower-level, device-specific
language. However, such programming models are
also not robust enough for the dynamics of sensor
network environments, neither do they make efficient
use of the limited network resources. There is no
provisioning for flexible re-engineering of the sensor
application at runtime should the nodes that provide
the services fail or become disconnected and the
service model is not adapted to the ever-changing
processing and energy resources of the nodes.

The objective of the work presented herein is to
introduce a modeling and composition framework for
sensor services that is robust to sensor node and com-
munication failures and efficiently use the underlying
resources1.

In this service-oriented approach, sensor network
applications are represented and viewed as a col-
lection of component services assembled in a data
flow graph that describes the composite service. Each
component service provides basic operators for trans-
forming the data, has typed inputs and outputs, and
generates metadata that provides meta-information
on the values that are being transformed, as well as
on the runtime properties of the sensor nodes that
implement the service. Such runtime information may
include the cost of processing data at each node and
transferring the results between nodes in the network.

The graph-based modeling of sensor services along
with the cost information are used to formulate the
process of dynamic sensor service composition as a
cost-optimization problem, which we further prove to
be NP-complete. We devised two heuristic methods
to solve this problem, which differ on how the com-
position process proceeds: the top-down approach
starts with the high-level specification of the desired
composite service and proceeds in multiple steps of
refinement by identifying the primitive component

1. The initial exposition and results of our approach appeared in
our previous paper [16].

services that can be used to provide its inputs. In
the bottom-up approach, the service graph is topolog-
ically sorted, and each service waits for its candidate
input provider services to decide on their own com-
positions, then chooses a subset of them to satisfy its
own inputs. The top-down approach is motivated by
the need to provide cost-efficient service composition
graphs due to the limited resources in the network.
The bottom-up approach is devised to support robust-
ness in the face of sensor node and communication
failures. Centralized and distributed implementations
were evaluated for both approaches. In summary, this
paper makes the following contributions:

• a modeling framework for sensor services that
follows a data flow graph formulation, which is
amenable to analysis,

• a formulation of the dynamic sensor service com-
position process as a cost-optimization problem,
which is shown to be NP-complete,

• two algorithms that use heuristics for solving
the dynamic service composition problem, along
with an analysis of their complexity, and

• evaluation of the algorithms using ns-2 simula-
tions to measure their costs and robustness to
node failures.

The rest of the paper is organized as follows. Section
2 outlines a model of sensor services and formulates
the composition process in sensor networks. Section 3
describes our two approaches to sensor service com-
position, namely the top-down and the bottom-up,
along with their centralized and distributed imple-
mentations. Simulation results are provided in Section
4. Section 5 discusses related work on modeling and
composition of web and sensor services. The paper
concludes in Section 6.

2 SENSOR SERVICE MODELING AND COM-
POSITION

In this section, we first motivate the need for a
new modeling and composition framework for sen-
sor network services. Modeling of services utilizing
inputs, outputs, and semantic properties, as well as
the service composition problem have been examined
thoroughly for web services (a detailed description
is given in [17]) which have many commonalities
with the model we utilize within the sensor networks
domain, but with a significant difference in the reli-
ability of the environments in which the services are
deployed. For sake of completeness, the later parts
of this section present the sensor service model and
describe a formulation of the composition process
within that model as a cost-optimization problem,
which we further show to be NP-complete.

2.1 Motivation

Service modeling and composition have been exten-
sively studied for web services and business pro-
cesses over a number of years [1], [18]. A number



of standards [19]-[21] have been adopted and widely
used in real-world deployments that developed lan-
guages and tools for describing web services, en-
abling automatic discovery, composition, enactment,
and monitoring of web services. However, in the
sensor network domain, both the unique challenges of
the operating environment as well as the data-driven
approach of communication call for a rethinking of
the services paradigm.

To begin, the limited resources of sensor nodes
(caused by energy depletion from batteries, con-
strained wireless communication bandwidth, low pro-
cessing capabilities, etc.) make heavyweight web ser-
vice modeling languages, protocols and frameworks
such as WSDL [20], BPEL [19], and SOAP [22] inap-
plicable for sensor networks. For example, while there
exists the notion of cost in web services [5], the com-
munication costs incurred through the interaction of
the component services, which is expressed either in
terms of number of messages exchanged or consumed
bandwidth, is often not modeled explicitly, as it is not
typically a concern in that domain. Furthermore, as
the levels of resources continuously fluctuate in sensor
network deployments, the composite service needs to
dynamically adapt to these changing conditions.

Secondly, while web services are commonly as-
sumed to be always available as they are provided
by always-on servers and robust cloud infrastruc-
tures, node failures and communication disruptions
in sensor networks are to be expected and do occur
frequently. Any service composition approach that
depends on a single centralized planner node is prone
to such failures, making the process of composing
services less robust. Considering only the costs of
composition (as in recent efforts [7]) without taking
into account the possibility of node failures is not
sufficient for providing fault-tolerant composition in
these environments. To avoid single-point-of-failures
and increase fault-tolerance in the presence of faulty
nodes, it is desirable that the service composition
method executes in a distributed manner.

Thirdly, in the web services and business pro-
cesses case, the service model follows a process- (or
workflow-) oriented paradigm, whereas sensor appli-
cations implement a data-driven model. One impor-
tant implication of this fundamental difference lies in
the way service composition (and the assorted cost-
optimization) approach evolves: in the former case,
composition involves the binding (assignment) of an
abstract service model and its tasks to service com-
ponent instances [3], [9]. The latter case is concerned
with (potentially partial) matching of the input data
requirements of a service to another’s output data
streams, without possessing an explicit composite
service model a priori. Consequently, in web services,
QoS-measures at the local level can be optimized in
polynomial time, while for the sensor environment,
as we prove later in Section 2.6, optimization at even

the local service selection level is NP-hard.
In summary, the dynamically changing (and lim-

ited) resources, the frequent node failures, and the
data-driven notion of services in the sensor environ-
ment call for a service composition approach that
is cost-efficient, robust and suitable for data-driven
applications. In what follows, we present such mod-
eling and composition framework that possesses these
characteristics.

2.2 Modeling Sensor Network Services

A service si in a sensor network is defined by the
input data that it accepts, the transformation function
that it applies to its input, the output data that it
produces, as well as metadata that provide additional
information that characterizes the service and its out-
puts:

si = {inputi = (inputi,1, ..., inputi,m),

outputi = (outputi,1, ..., outputi,k),

fi(inputi) → (outputi),metadatai(t)} .

Following the above definition, a sensor network, in
a service-oriented sense, can be defined as a set of
services, abstracted from the sensor nodes and base
station(s) that form it:

S = {s1, s2, ..., sn}.

It is apparent that some services implemented in a
sensor network may be only source services; namely
the services that do not receive any input and only
produce data. Furthermore, we can also define a sink
service; a service that does not output anything and
only receives input. In an application, the end-user
requesting information is usually represented as a
sink service2.

In the service definition given above, metadata is
the information on the services characteristics; i.e. it
is the information shared between services to give the
properties of the data that is produced by the service
such as levels of reliability, security, etc. Metadata may
also include cost information and certain characteris-
tics of service inputs and outputs, such as energy con-
sumption per output data produced, processing de-
lays, number of other services that make use of its out-
puts, etc. The metadata of a service depends on time
(t), due to the dynamic conditions of the underlying
sensor network environment. Each specific service has
separate metadata that is transmitted to other services
offered by the sensor network. Metadata information
is used in our dynamic composition algorithms to
find which services are most cost-efficient to use for
a given composite service requested by the end-user.
More details about the approach to the modeling of

2. It is possible that the output of the end-user service is needed
for higher level services, in which case it is not a sink but an
intermediate node in this higher level service.



metadata in the service oriented architecture (SOA)
for sensor networks, which we also follow herein,
are given in [23]. Alternative approaches, e.g. ontolo-
gies, for encoding metadata might also be applicable,
however their exact application details are beyond the
scope of this work.

2.3 Service Graph of a Sensor Network

Service graph of a sensor network, GS , consists of
vertices representing services and directional edges
representing possible flow of data between the ser-
vices. The edge directed from the vertex of service
A to the vertex of service B exists if and only if
the intersection of the output of A and the input of
B is non-empty. That is, informally, A can provide
some of the data that it generates (output) for use by
the service B through this directional edge. A formal
definition of the service graph is given below:

GS = {V,E} where,

V = {si} (one vertex for each service) and,

E ⊆ V xV, where ei,j =

{

1 if (outputi ∩ inputj) 6= ∅,

0 otherwise.

Note that, although not stated explicitly in the graph
definition, two services can have an edge between
them if and only if the metadata of the connected
services match, in addition to having compatible in-
put/output. For example, if a service requires input
with certain reliability, only the services that can pro-
vide this type of data at the requested reliability level
can potentially be connected to the service description
with a directed edge. While the above definition of the
service graph seems to require exact match between
input and output fields of two services to build an
edge between them, this requirement can be relaxed
by using type hierarchies for the data fields, as de-
scribed next. It is worth noting that in case one service
can provide input to another, the actual flow of data
is the responsibility of the underlying network and
routing layers. However, through the use of metadata,
the service model and the composition algorithms are
informed of the communication costs involved when
such data flow occurs.

Figure 2 shows a simple example of a type hier-
archy, regarding the snapshot (image) collected by a
camera sensor that monitors a certain area. There are
two areas (A and B) and two quality levels (high and
low) for a picture. In the graph that describes the type
hierarchy, it can be observed that the information type
High Quality Snapshot of Area A is a subtype of Low
Quality Snapshot of Area A, since it already includes the
information that is contained within the latter type.
Another example is High Quality Wider Snapshot of
Area A & B information type, which includes informa-
tion for both areas A and B, hence it is a subtype of
both High Quality Snapshot of Area A and High Quality

Snapshot of Area A
Low Quality

Snapshot of Area A
High Quality

Snapshot of Area B
Low Quality

Snapshot of Area B
High Quality

Wider Snapshot of Area A & B
Low Quality

Wider Snapshot of Area A & B
High Quality

Fig. 2. A Simple Type Hierarchy

Snapshot of Area B. More elaborate type hierarchies can
be built for application specific purposes.

Such a type hierarchy enables two services to be
linked in the service graph GS , even though their
outputs and inputs might not match exactly. If a
service A’s output field is a subtype of a service B’s
input field, then this means that A can provide the
information that B requires and possibly more (what
is referred to as “subsumption-based similarity” in
[8]). While more complex descriptions of hierarchy
using formal logics might be applicable, we strive for
simplicity and a light-weight approach in our target
environment, hence we did not include them here.

2.4 Cost Formulation of Service Composition in
Sensor Networks

There are two basic types of cost related to a compo-
sition. The first is the processing cost of each service,
i.e. cost incurred by activating an instantiation of
a service. The second is the cost of communication
between two services exchanging information. This
latter cost is interpreted as the edge costs in the service
graph defined in the previous section. Note that, while
we refer to such values in an abstract way as costs,
different types of real costs can be represented. For
example, processing cost of a service can be the energy
spent by the sensor node that provides this service,
the delay that is incurred by this service, etc. The same
holds for the communication cost between services. In
that case, we are actually using the cost values that are
defined by the underlying structure of the network.
For example, energy spent by sending information
from service A to B includes all the energy spent by
the nodes on the route from A to B. Calculation of
such underlying costs is related to the mapping from
the sensor network topology to the service graph.
Therefore, a simplified way of evaluating this cost
could be to find the shortest path between two nodes
in the sensor network and use this value to compute
the cost of communication between the services on
these two nodes in the service graph. Note that it is
also possible to define a cost vector, which accounts
for multiple costs incurred at the same time. Then,
compositions can be ordered according to this cost
vector using appropriate weights for the cost types. In
this paper, we mainly focus on aggregates whose cost
is the sum of costs of their components, since energy



consumption (which perhaps is the most important
factor for sensor networks) is additive. However, the
approaches introduced in this paper are capable of
utilizing arbitrary cost aggregation schemes, such as
delay (maximum delay among services) and reliability
(product of component service reliabilities).

2.5 Problem Definition

Service composition requires finding such a set of ser-
vices SC ⊂ S and data flows between those services
so that every service in SC has its inputs provided
by at least one other service in SC . Furthermore,
the union of the outputs of services in SC must
satisfy a user-requested functionality Φ, given as a set
of output fields required by the end-user satisfying
certain properties:

Φ = {outputΦ,1, ..., outputΦ,n}.

Service composition may be considered as the task of
finding a subgraph of the service graph (GS) defined
in the previous section, wherein only a subset of the
possible edges (data flows) and vertices (services) is
used. Moreover, this problem requires that the cost of
the composition is minimized. A formal definition of
the problem is as follows: For given GS = {V,E} and
Φ, find the minimum cost VC ⊂ V and EC ⊂ E, such
that,

Φ ⊂
⋃

Vi∈VC

(output of Vi) and,

∀Vi ∈ VC , (input of Vi) ⊂
⋃

Vj where ej,i∈EC

(output of Vj).

As it can be seen, an edge ei,j cannot be chosen in
the composition scheme unless both Vi (representing
service i) and Vj (representing service j) are selected
for the composition. According to this problem formu-
lation, the composition process may change dynami-
cally, since the optimal composition is dependent on
the network conditions at time t. Services learn the
network conditions via the metadata mechanism.

2.6 Service Composition Problem is NP-complete

In a simple version of the above problem formulation
of sensor service composition, we have a set of source
services, which only produce output, a user-request
Φ (a sink service) and we wish to find a subset
of these source services so that their output fields
will satisfy the input fields of the user-request, while
keeping the service cost below a certain level. For
purposes of illustration, we assume that this cost
is additive, such as the total energy consumed by
the services that are used. The service composition
problem is more general than the above formulation,
but even this restricted version is NP-complete by a
simple polynomial transformation from the set cover
problem. The set cover problem accepts a set, and a

set of subsets of this set with a cost assigned to each
subset. The problem is to find a subgroup of these
subsets so that the original set is covered and cost is
below a given value. As is well-known [24], the set
cover problem is NP-complete.

Theorem 1. Service composition is NP-complete.

Proof: We will transform set cover problem to ser-
vice composition. For any set cover instance, let Scov

denote the set to be covered and for each i ≤ 2|Scov|,
let Subi denote a subset of Scov . For each Subi, we
are given the cost ci and the problem is to find a
cover Scov with cost smaller than creq . The required
transformation is as follows:

• Transform Scov to be Φ, the user-request with the
required input as the set to be covered,

• Transform each Subi into a service with no in-
put, and output being the same as Subi, cost of
running this service is ci.

After such a transformation, a procedure finding the
composition with the cost lower than creq will also
solve the set cover problem. Therefore the service
composition problem is NP-hard. Next we will prove
that it is in NP.

Given a composition solution (chosen services and
data flow), it takes linear time with input to see that
the composition satisfies all the input requirements
of the services activated in it and the end-user re-
quirements. The complexity of checking the cost of
the solution is O(|V | + |E|), since each edge in the
solution will only be checked once and each vertex
will only be traversed once. Indeed, each edge may
incur a cost of transmission and each service incurs
a cost of processing. Since we can check the given
solution to a composition problem in polynomial time,
the service composition problem is in NP.

By showing that the service composition problem is
NP-hard and in NP, we prove that it is NP-complete.
Note that the decision version of the service composi-
tion problem, which decides if there is a composition
below a cost creq is NP-complete; the optimization
problem, which calculates the least cost composition,
is NP-hard, similar to the set cover problem.

3 APPROACHES FOR SERVICE COMPOSI-
TION IN SENSOR NETWORKS

The algorithms that we present in this section aim
at achieving cost optimization across the sensor net-
work, while reacting to changing network conditions
by recomposing the service. The two proposed ap-
proaches are top-down (similar to backward chaining),
that proceeds with composition down the service hier-
archy, and bottom-up (similar to forward chaining) that
proceeds in the opposite direction. To ensure that the
heuristics terminate, we consider only service graphs
that are acyclic and directed. We leave the formulation
of service composition costs on more general graphs
to future work.



3.1 Top-down Approach

The top-down algorithm starts when the user-request
(which is represented by a sink service) is received. It
first finds a set of services that satisfy its inputs and
minimize the local cost, which is the sum of the cost
of services chosen and communication costs between
those services and user-request. Later, the chosen
services choose their input providers and so on. A
key requirement in this scheme is that the services at
the same level should be composed one after another.
It is easy to see that this approach is indeed a breadth-
first traversal in the service graph, GS , which provides
us with the ability to identify which services are
already used for composition. However, this breadth-
first traversal requirement also makes the top-down
approach difficult to implement in a distributed way,
since it requires synchronization among sensor nodes.

At each level, a set of services is chosen such that
among all sets that can supply the inputs to the
service under consideration, the selected set is the
least expensive. To make such choice, we employ a
heuristic initially proposed for the set cover problem
[25], which selects the service that adds the smallest
cost per each input covered. Critical services, which
are those that exclusively provide certain input fields
of a service, are also selected. Since these have to
be included in any feasible set of services, they are
chosen first, in case they also cover additional inputs
that would have to be provided otherwise by other
non-critical services.

A drawback of the top-down approach is that, at
any level, it may choose a set of input providers that
cannot be further decomposed (their inputs cannot
be satisfied), since it makes local decisions without
knowledge of available services at the lower levels
of the graph. Each service knows only its immediate
neighbors in the service graph.

3.2 Bottom-up Approach

The bottom-up approach sorts topologically the di-
rected and acyclic service graph GS . This means that
each service waits for its candidate input providers
to decide on which services they will activate, before
itself reaching a decision. Algorithm 1 presents a sin-
gle level algorithm which composes the input that a
service requires assuming that its neighboring services
have already run the composition algorithm sepa-
rately and know the set of services they would use for
satisfying their respective inputs at a minimum cost.
An important point to note in this algorithm is the
presence of a filter function that filters the neighbor
list of the service under consideration according to the
conditions set by the user. Metadata of the possible in-
put providers of a service are considered, and only the
neighboring providers that satisfy certain conditions
on the metadata (e.g. service reliability, location of
measurements, etc.) are included in the composition
graph. Algorithm 1 uses a function called find comp

Algorithm 1 Service Composition Algorithm with an
Abstract Method for Choosing a Set of Services used
for Input

method compose service inputs(S)
S.composition cost = 0
inputS = set of inputs of S
NS = filter(neighbor list of S,condition list)
for each neighbor Ni in NS do

inputi = set of outputs of Ni

inputN[i] = inputS ∩ inputi

costN[i] = Ni.composition cost
end for
(S.chosen services , S.composition cost) =

find comp(inputS,inputN,costN,S)

(Algorithm 2) that selects the set of services with the
smallest cost.

If the bottom-up method is implemented in a dis-
tributed manner, it incurs significant communication
overhead to transfer complete composition subgraphs
(the full list of services used by a possible input
provider) among the neighbors of a service. The al-
ternative approach of only transmitting the additive
composition cost of the service upstream is followed
instead. Once a service S chooses the set of its input
providers, only the cost is transmitted further up-
stream to services that may utilize S’s output. Sending
the cumulative cost information incurs a lighter traffic
load on the system. However, less information is also
made available about the composition of a service’s
possible input providers, which does not facilitate
service reusability, and therefore may result in com-
positions with low cost-efficiency.

Service A

Service B

Service C

Service D

Service E

Service S Service S’

Transmitted cost = cost (A)
C

Includes communication cost between A and S as

well as cost of the composition sub-graph of A

Transmitted cost = cost (S)
C

cost (S) = cost (C) + cost (E) + act-cost(S)
C C C

+ comm-cost(S S’)

Fig. 3. Sending the Collective Cost Information Up-
stream

As an example, in Figure 3, service S has five
choices that can satisfy its inputs, and chooses two
of them, C and E (double arrows) to utilize. S sends
its cost information in its metadata to S′, as the
sum of the collective costs (costC) of the services
it utilizes, its own activation cost (act-cost(S)) and
its communication cost to S′ (comm-cost(S → S′)).
Such information flows along the edges of the service
graph, GS .

The find comp function required in Algorithm 1 is
presented in Algorithm 2, and follows the heuristic



Algorithm 2 Algorithm for Choosing Services to
Cover Input Set

method find comp(input,output sets,cost set,S)
remaining in = input
remaining out = output sets
chosen services = ∅ , comp cost = 0
while remaining in != ∅ do

if ∃ Sj ∈ remaining out is a critical service then
Smin = Sj

else
for each service Sj in remaining out do

Find Smin where
cost set[Smin]+comm cost(Smin→S)

|remaining in ∩ Smin|
is smallest

end for
end if
chosen services += Smin

comp cost += cost set[Smin]+comm cost(Smin→S)
remaining in -= remaining in ∩ Smin

remaining out -= Smin

if remaining out == ∅ then
break

end if
end while
return (chosen services , comp cost)

for the set cover. At each step, it attempts to find
the neighboring service that has the smallest cost per
new input field. The cost is calculated by adding the
composition cost of the neighbor node (see Figure 3)
and communication cost between this neighbor and
the service that is being composed. As in the top-
down approach, critical services are always included
first due to the input fields that they exclusively
provide.

In the evaluation section, we will show that the
bottom-up approach achieves lower cost than the top-
down approach, and, if there is a satisfying composi-
tion solution, it always finds it. The disadvantage of
the bottom-up approach is that it requires an acyclic
service graph GS .

3.3 Complexity and Approximation Ratio Analysis

The time complexity for the top-down and bottom-
up algorithms can be computed as follows: for the
top-down algorithm, each service looks at only its
immediate input providers, or neighbors, and each
service can have at most |V − 1| of them, where
|V | is the total number of services in the system.
Since each service makes input checks as well as cost
checks, O(|V |2) operations are performed at each step
to choose a set of input providers using the greedy
algorithm to minimize cost. Since only a fraction of
services could be choosing the best service among the
remaining ones, the top-down approach takes O(|V |3)
time to complete.

In the bottom-up algorithm, for each service (Al-
gorithm 1), there is a single call to find comp (Algo-

rithm 2) to find its respective set of input providers.
This algorithm takes O(|V |2) time to complete. Since
find comp is called once for each service, the com-
plexity of the overall bottom-up algorithm is |V | times
the complexity of find comp, i.e. O(|V |3), which is the
same as the top-down approach.

As it was previously shown, sensor service compo-
sition problem is NP-complete and we proposed two
approaches that use heuristics. We will now briefly
discuss their approximation ratio. Feige has proven
that the lower bound for approximation of set cover
problem is (1 − o(1)) lnn [25] unless there are quasi-
polynomial algorithms for the problems in NP (n is
the size of the set to be covered). This lower bound
is achieved by the greedy search that chooses the
subset that covers the uncovered elements of the set
by selecting the smallest cost per element at each step.
This algorithm has a O(lnn) approximation ratio and
the method find comp based on this greedy solution
is given in Algorithm 2.

In conclusion, the greedy algorithm finds a compo-
sition of cost at most logn.opt at each step of compo-
sition, for each service. In the formulation, opt is the
cost of the optimal solution and n is the number of
input fields that should be satisfied by a service. From
this analysis, the overall composition that satisfies an
end-user’s request can be at most lognk.opt, where k

is the furthest distance from any source service in a
composition graph to the final output formed by this
composition. k can be at most the depth of the acyclic
service graph GS .

3.4 Implementing the Composition Decision Al-
gorithm

The decision making during composition construction
can be either centralized, at a central decision node
receiving information from all services, or distributed,
wherein each service separately chooses (locally at
the sensor node that they reside on) which services
it will use to satisfy its inputs. The details of these
two approaches are discussed next.

3.4.1 Centralized Implementation
The centralized approach uses a central decision-
making node, where metadata from each service is
first collected. Once metadata is received from all
services, the decision maker can run either the top-
down or bottom-up algorithms and decide on the
services to be activated. Our previous evaluation via
numerical experiments on random service graphs [16]
shows that, although the bottom-up algorithm creates
on average lower cost compositions than top-down
approach does, choosing the best of the two at each
run is an even better approach. Reference [16] pro-
vides more details.

3.4.2 Distributed Implementation
In the distributed implementation, each service de-
cides independently from the others on the services
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Fig. 4. Service Composition Process in the Distributed Algorithm

that it will employ to satisfy its inputs3. The advan-
tage of this scheme is its robustness to network faults
and the quick reaction to changes in the network
conditions. For a composition to change, services do
not have to send their information to a centralized
decision-making point, which might constitute a sin-
gle point of failure and bottleneck. Only the bottom-
up approach is applicable for a distributed implemen-
tation, according to which a service needs and collects
information only about its own neighboring services.

When a composition process starts, messages are
sent from the end-user requesting service (considered
to be at the top level of the service graph) to lower
level services. User-requested data has certain prop-
erties that are provided at the time of the request.
According to these properties, a set of services whose
outputs can satisfy the request will be considered
potential neighbors of the user-request. This process
repeats until this information is disseminated down-
stream to all the source services, which do not have
any inputs. Once this information has reached the
source services, the reverse dissemination process oc-
curs, in which, at each stage, the service composition
algorithm is executed. Once every service is aware
of its smallest composition cost, backward messaging
takes place, where certain services are activated. This
finalizes the composition graph.

In Figure 4, a distributed composition example is
presented. The solid arrows denote the feasible in-
formation flow between services in the service graph
GS . The dotted arrows denote the activation decision
of services after running the distributed composition
algorithm. The dashed arrows denote the final com-
posed graph, which is activated for operation.

3.5 Dynamic Composition

In a sensor network environment, the conditions of
services can change fairly frequently. Hence it is
important to be able to dynamically change service

3. Note that distributed composition in this context is different
than parallel computation of the composite service graph, which is
not considered in this work.

composition. For this purpose, we rely on metadata

information exchange throughout the network.

For the centralized implementation, dynamic com-
position is very similar to producing the initial one:
for each change in the system (e.g. change of a ser-
vice’s cost, or availability), the composition process is
re-executed due to the new costs and available service
set. The notification of the changes in the network
conditions are sent to the centralized decision maker
to make such recomposition possible.

In the distributed case, each service will decide
on its new input providers based on the updates
in its neighbors. When a service updates its own
information (e.g. activation/deactivation, change of
processing cost), it also notifies the other services
that may utilize its output, so that they may change
their respective compositions if they choose to do so.
Furthermore, if a service (or a connection to a service)
is not utilized anymore by the currently activated
composition, a signal will be sent to this service to
stop itself or one of its links. If the service is not
being used by any other services currently in the
active composition graph, it shuts down after sending
notifications of its status change to every other service
it utilizes for its inputs. This way, the current composi-
tion can be locally updated when changes occur. If the
local (re)composition is not feasible, then the request
is propagated upstream in the service composition
graph, until a valid composition is achieved. Such
a distributed scheme can fall into local minima (as
opposed to recomposition performed in a centralized
manner), as we further demonstrate in Section 4.
As usual, services send periodic “hello” messages to
their neighbors to inform them of their availability
and employ timeouts to avoid failures that might
arise when connectivity is lost because of unexpected
network faults.

Finally, an issue with dynamic composition is that
of the frequency of updates, which might lead to high
composition overhead when some metrics change
constantly (e.g. residual energy). Such a situation can
be prevented by setting up a composition update
period and a service can wait for significant changes
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in its condition (a threshold) before notifying the
central decision maker or the neighboring services
about them. These thresholds are application-specific
and if needed should be set by the user.

4 EVALUATION OF DYNAMIC COMPOSITION

To evaluate the dynamic composition capabilities
of the distributed and centralized schemes under
changing network conditions and node faults, we
implemented a composite sensor service application
scenario in the ns-2 simulator. The centralized im-
plementation uses the best of bottom-up and top-
down approaches, while the distributed implementa-
tion uses exclusively the bottom-up approach, which
sends only the collective cost upstream. We present
the overhead of both approaches, the cost of the com-
positions they generate over the simulation period,
the activation ratio for a feasible composite service
and the time it takes for both approaches to react to
changing network conditions.

Application scenario Figure 5 illustrates the applica-
tion scenario that serves as the basis for the simu-
lations. It assumes a monitored field consisting of six
areas labeled A to F . In each area, there are three types
of source services: low, medium and high quality
visual monitoring (e.g. A High Quality). There are
also intermediate fusion services, e.g. Combine A & B,
that receive input from two area services and provide
an intermediate result whose exact functionality is
not important for the purposes of the simulation. We
assume that these intermediate services also come in
three variants (e.g. Combine A & B High Quality), not
all of which are shown in the figure, for simplicity.
There are also several final fusion services that use the
output of the three intermediate services to provide a
result for the whole area, e.g. Combine All - 1. The
user request is submitted through one of the fusion
services.

The processing and communication costs have been
set according to the size of the outputs produced. For
example, the processing cost of the source services
were set as 20, 30 and 40 cost units for Low, Medium
and High Quality respectively, following the size of
the outputs of these services that was set to 4, 8 and
12 size units. We also assume that the communication
cost per hop and size unit is 5. For example, trans-
mitting the output of a high quality source service
between two sensor nodes over a single hop would
cost 5 × 12 = 60 cost units. The intermediate fusion
services that process High, Medium and Low Quality
have processing costs of 20, 30 and 40 cost units
respectively. The size of their output is set to 6 size
units. Lastly, each fusion service has a processing cost
of 15 cost units, and an output size of 3.

Implementation in ns-2 The proposed service com-
position schemes are implemented in ns-2 as an
application-layer protocol, independent of the exact
underlying routing and MAC layers used for the
messaging among nodes. For our simulations, we
used AODV and 802.11 MAC as provided by the ns-2
distribution in version 2.34.

Our ns-2 implementation consists of two applica-
tion layer agents: ServMeta and ServHolder. ServMeta
agent represents a service description (one instance
per each distinct service) and includes the service
metadata. ServHolder agent is assigned to every node
in the network. It is a container agent to which
ServMeta agents are assigned. ServHolder agents ex-
change messages with each other containing informa-
tion about the services that are assigned to them.

Services are assigned to nodes as follows: each
source service is assigned randomly to one of the
nodes in its relevant area of monitoring, and there
is one instance for each level of quality. Two in-
stances of each intermediate and final fusion service
are activated and a single instance of user request is
assigned to a sensor node, which never gets deacti-
vated throughout the simulation time. Additionally,
for the centralized implementation, we assign a de-
cision maker to one of the nodes that may also get
deactivated, to quantify the effect of single-point-of-
failure.

After service assignment, the composition protocol
for both the centralized and distributed approaches
starts with the service discovery phase: each node floods
metadata (cost, type and size of outputs/inputs) of
the services that reside on it to every other node. This
way each service discovers what other services exist in
the network, and if they are neighbors in the services
graph. It also learns the hop-distance between nodes,
which is needed to calculate communication cost.
Messaging cost for this discovery stage is O(n|S|),
where n is the number of nodes and |S| is the number
of services that reside on the sensor network. Fol-
lowing the service discovery phase, the centralized
and distributed composition steps are followed as



Parameter Value

Field Size 120x80
Area Size 40x40

Number of Areas in Field 6
Communication Radius 50
Node Activation Ratio 60%–100%
Node Inactivity Time 160–240 secs

(uniformly distributed)
Service Processing Cost Every 20–400 secs

Change Frequency
Service Processing Cost 1600–2400 secs

Change Period (uniformly distributed)
Service Processing Cost + 0%–40 %

Change Percentage (uniformly distributed)
Number of Nodes 30 (5 per area)

Total Simulation Time 20,000 secs

TABLE 1
NS-2 Simulation Parameters

described in Sections 3.4 and 3.5.

Simulation setup The parameters of the simulation
experiments run in ns-2 for the aforementioned appli-
cation scenario are shown in Table 1. Node Activation
Ratio represents the expected amount of time a node
remains inactive (with the services that run on it
being unavailable) compared to the expected time
it stays active for the duration of the simulation,
which is 1−activation ratio

activation ratio
. Node Inactivity Time denotes

the amount of time a node remains inactive, once
it changes its status to being so. Service Processing
Cost Change Frequency denotes the inter-arrival time
of events when we increase the cost of a random
service in the network by 0%-40% (Service Processing
Cost Change Percentage). Service cost falls back to its
original value after a time period of length between
1600-2400 seconds, uniformly distributed (Service Pro-
cessing Cost Change Period).

4.1 Results

The centralized and distributed composition scheme
implementations are evaluated in the erroneous con-
ditions of the sensor network deployments through
experiments that vary the activation ratio of each
node in the simulated network, while keeping the
processing costs of each service (Table 1) constant.

Figure 6 presents the composition costs of the cen-
tralized and distributed approaches as a function of
the activation ratio. Each value represents the average
of 10 runs for each activation ratio and the cost is
calculated only for those times during the simulation
when a feasible composite service exists. It can be seen
that the centralized approach performs better than the
distributed one as it generates composition graphs
that exhibit lower total processing and communica-
tion cost. This is due to two factors: first, the cen-
tralized implementation chooses the best of top-down
and bottom-up approaches. Second, the recomposi-
tion process of the distributed scheme is performed
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Fig. 6. Comparison of Composition Cost of Centralized
and Distributed Approaches for Varying Node Activa-
tion Ratios

locally, hence it can fall into local optima during the
simulation. Centralized composition recomposes the
service each time a change in the status of a node takes
place. From the figure, one can also observe that there
is a decreasing trend in the cost for both approaches
as the node activation ratio increases; as more service
instances become active concurrently, the probability
that a solution is found with a lower cost that would
require fewer recompositions increases. It should also
be noted that the choice between the best of top-down
and bottom-up approaches in our centralized com-
position scheme gives a better overall performance
compared to prior centralized composition schemes
[7].
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Fig. 7. Comparison of Service Activation Ratio of
Centralized and Distributed Approaches for Varying
Node Activation Ratios

Figure 7 shows the service activation ratio, defined
as the percentage of simulation time when there was
a feasible, active composite service. It can be seen that
due to the local recomposition process, the distributed
implementation is more resilient than the centralized
approach, evident by its higher service activation ra-
tio. Furthermore, it is more robust to the single-point-
of-failure of the decision making node from which the
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Fig. 8. Comparison of Overhead of Centralized and
Distributed Approaches for Varying Node Activation
Ratios

centralized approach suffers, which becomes deacti-
vated once such a failure occurs. Any composition
scheme, including the logical programming based
approaches [15] can perform no better in terms of
activation ratio than the centralized version presented
herein. Furthermore, the distributed decision making
approach for composition that we propose exhibits in-
creased robustness in a highly erroneous environment
such as a sensor network.

The comparison regarding messaging overhead,
measured as the number of messages that are ex-
changed between two nodes is shown in Figure 8. The
plot also includes the overhead caused by messag-
ing during the flooding phase. Clearly, the distributed
scheme incurs much higher overhead than the cen-
tralized one because changes of a service have to be
broadcast to all of its neighbors as opposed to a sin-
gle centralized decision making node. There exists a
trade-off between the activation ratio and the compo-
sition cost, complicated by the difference in overheads
of the centralized and distributed approaches, making
the choice between these two schemes application-
specific. For example, an application that can afford
low activation ratios but has to be energy-efficient
may run the centralized composition scheme, while a
mission-critical service that requires high robustness
to node failures would be more effectively served by
the distributed implementation. Such a trade-off also
affects the scalability of the approaches since with
many services activated, the overhead is large.

Our second experiment keeps the node activation
ratio at 100% to study the effect of processing cost
changes for services in the sensor network. As men-
tioned before, in this work, we use the abstract notion
of cost (processing and communication), which can be
interpreted as quality of service metrics or actual costs
such as energy spent. The results of this experiment
are given in Figure 9 and Table 2.

In Figure 9, the distributed and the centralized
composition implementations are compared in terms
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Fig. 9. Comparison of Composition Cost of Centralized
and Distributed Approaches for Varying Cost Change
Frequencies

of the cost of the compositions obtained, where the
frequency of changes of service cost varies every 20-
400 seconds on average in steps of 20 secs. The mean
value for the frequency is denoted on the x-axis of
Figure 9. The resulting composition costs denoted on
the y-axis are averaged over 10 runs, each lasting for
20000 secs of simulated time. As expected, Figure 9
shows that more frequent service cost changes (less
time between cost changes in the figure) brings higher
cost compositions for both approaches. Centralized
implementation again performs slightly better, and
the reasons for this are similar to the aforementioned
experiment with changing activation ratios.

Distributed Centralized

First Reaction (sec) 0.0751 0.0080
Last Reaction (sec) 0.3198 0.8036

TABLE 2
Comparison of Reaction Time of Centralized and

Distributed Approaches for a Service Processing Cost
Change in the Sensor Network

To demonstrate the agility of our approaches in
adapting to the dynamic conditions of the sensor
networks, we present in Table 2 the average reaction
times to a change in the processing cost of a service
in the sensor network. We denote as “first reaction”
the time it takes for an initial reaction (to a service’s
cost change in the system) such as recomposition,
addition or removal of a service to/from the current
composite service graph. The centralized approach
performs better for this metric; when there is change
in the processing cost of a service, only a single
message is sent to the centralized decision making
node, in contrast to the distributed case where all
services that may utilize this service’s outputs have
to receive a notification message. The latter leads
to increased messaging overhead and latency. The
“last reaction” represents the time when the last



action (i.e. recomposition, addition or removal of a
service to/from the current composition graph, etc.)
is processed by the network. Thus, it indicates the
time after which the composition is stable again. For
this metric of last reaction, the distributed scheme
performs better, due to its ability to recompose locally,
making it more suitable for error-prone and unstable
environments such as those of sensor networks. This
ability to quickly recompose results in an increased
robustness of the distributed method.

5 RELATED WORK

Service composition for web services has been the
subject of intense study over the past several years
[18], [26]. In the following, we discuss the prior work
that is most closely related to ours, along with the
related field of sensor network programming [27],
[28]. In the domain of web services, many works have
focused on the subject of QoS-aware web services com-
position [3], [4], [8]-[10], in which an abstract service
composition graph is provided to the system, and
the problem is to bind actual services to the abstract
services on this graph. If the system tries to optimize
an aggregate QoS function [29] comprised of different
metrics, then this problem turns out to be a variation
of the multi-variable assignment problem, hence it is
NP-hard.

Mao et al. [10] propose Automatic Path Creation

service (APC), which is a centralized dynamic web
service composition method that considers quality
of service (QoS) and network characteristics. This
method looks for a shortest path from the end-user
to the primitive services, but does not consider the
case where a subset of the outputs of a service can be
used as input to another service.

One of the main methods utilized to optimize
the metrics considered in web service composition
is genetic algorithms. In [3], the authors solve the
problem of assigning (binding) concrete services to
the abstract services in the already given service com-
position graph according to QoS measures via using
the genetic programming approach. When the QoS
values deviate, their method applies a recomposition,
i.e. rebinding of the services. In [8], the functional
metric and semantic quality fit of services is used, as
well as QoS optimization to assign services to tasks.

Another method applied in QoS-aware web services
composition is integer programming. In [4], integer
programming is used to assign service instances to
the abstract services defined in the task graph. The
authors provide negotiation techniques to reach a
feasible solution when the constraints set by the user
are too limiting. A mixed solution to the same prob-
lem is also given in [9], where both local and global
optimization is considered to maximize QoS in the
composition. The assignment is polynomial time solv-
able for local optimization for QoS-aware web services
composition, while in our case it is NP-complete. For

global optimization of QoS metrics, [9] also makes use
of integer programming.

The problem we focus on here is inherently dif-
ferent from QoS-aware web services composition. First,
we are not concerned with binding services to tasks
whose connections are already given in the pre-
defined task graph. Instead, the user presents a set
of outputs that should be provided by the overall
system, and the composition graph is generated using
the available service instances. As we have shown, it is
not always possible to replace services, and in our tar-
get domain, even the local optimization of cost is NP-
complete. Another difference lies in the composition
mechanism. Previous work provides centralized deci-
sion making, which can lead to frequent single-point
failures in the error-prone sensor networks, while our
work proposes a distributed decision making scheme,
where each service decides on its input providers
locally. As shown in Section 4, the distributed decision
making leads to faster recomposition of services and
therefore increases activation ratio of the composite
service, hence increases robustness.

Another class of related work that is close to ours
makes use of logical programming, in which services
are described as a set of pre- and post-conditions [5],
[7], [30]-[32]. Furthermore, the methods of forward
and backward chaining (resembling our bottom-up
and top-down methods) are applied to satisfy the
conditions set by the user.

[5] proposes OWLS-Xplan which is a logical planner
that utilizes the service definitions given in OWL-S
(Web Ontology Language - Services) language. This
way, the conditions can be set by the user and satis-
fied according to the pre- and post-conditions of the
services. Another solution is provided in [7]. Similarly
to our bottom-up approach, it utilizes forward chain-
ing and uses an aggregated QoS measure to choose
provider services at each point of composition along
with pre-/post-conditions, both on the properties and
the types of inputs/outputs that match between ser-
vices. Significant differences from our approach are
that in our method, we allow for distributed decision
making, which increases robustness in the presence
of node failures. Moreover, our centralized approach
combines a mix of top-down (similar to backward
chaining) and bottom-up (which resembles forward
chaining) algorithms, which produces better results.
We also show that the local optimization problem is
NP-complete and provide an approximate solution.
Finally, we address the communication costs and ac-
tivation ratios based on services availability. These
differences also apply to other logic programming-
based approaches.

Another example which is given in [30] provides
a logical programming based composition of services
based on pre-/post-conditions of services, however, it
does not take into account the QoS or cost measures.
MARIO approach is introduced in [31]. It utilizes tags



chosen by the user to provide possible composition
schemes. Each tag represents a functional goal and
can be interpreted as a query. Type hierarchies are
used to connect outputs of a service to compatible
inputs of another service in the composition decision
process. This work however, does not take into ac-
count the changes in the network for performing a
re-composition.

The use of the OWL-S language to describe the web
services with their inputs and outputs is discussed
in [32], [33] and [34]. The first of these references
introduces methods for translating services described
in OWL-S to SHOP2-compatible descriptions (a logi-
cal planner) to compose a user-request. The planner
makes use of pre-/post-conditions of described ser-
vices. However, this method does not allow for any
type of distributed decision making. It also considers
neither the maximization of QoS, as some previous
work did, nor minimization of cost, as we do. The
methods in [33] and [34] are user supervised and a set
of possible matches for the user functionality needs is
presented to the user who selects one or more services
for use at each step.

A very similar composition problem based on the
matching of multiple outputs and inputs of semantic
web services is studied in [35] and [36]. In [35], the
authors employ a shortest path algorithm (as opposed
to our top-down and bottom-up approaches) on the
service graph generated by the match between out-
puts and inputs of the semantic web services in the
system. The authors of [36] utilize a Semantic Link
Matrix (SLM) of services which is constructed using
the similarity between the outputs and inputs of the
available web services. A regression-based search on
this SLM is proposed for automated web service com-
position. Both of these methodologies are centralized,
and they do not consider activation/deactivation of
services (although [36] does mention the updating
of SLM with newly introduced or removed services).
Naturally, they also do not consider fast reaction to
service activation/deactivation which is vital in the
domain of sensor networks.

In mobile networks, the authors of [37] propose
the use of service equivalence (both semantical and
syntactical) to replace services when the connections
between nodes are changing rapidly. [37] assumes
a pre-defined composition graph for the initial op-
eration, hence the replacement uses other services
that can function as well as the current services in
the graph. Furthermore, other approaches for service
composition, such as Petri-Nets [38] have been pro-
posed in the literature, however they do not take into
account any cost or QoS measures.

In sensor networks, few approaches have been pro-
posed for service composition. A noteworthy one is
[15] in which the authors provide a method based
on logical programming through backward chaining
for combining services. They model services as state-

ments whose truth depends on their predicates and
they set certain statements true when these predicates
are satisfied. These statements are further used by
other services as predicates. The method is used for
automated inference in sensor networks. Another ap-
proach in the sensor networks domain [39] attempts
to identify the service composition that is less likely
to be invalid in the near future due to nodes going
to sleep mode etc. The goal is to minimize the re-
composition cost at a later time. In [40], the authors
propose components for a network of sensors and
actuators from which the complex desired services
can be composed. However, the composition process
is entirely user-driven.

In [41], the authors propose a dynamic flow control
solution, applicable to sensor networks, which uses
filters and wires between services. By using filters
on the wires (which are logical conditions), the user
manually blocks data flow whenever such blocking is
needed for the functionality desired in the current net-
work conditions. This system still requires user inter-
action. Another programming framework, EnviroSuite
[42], abstracts external environmental elements into
objects, hence simplifies sensor network implementa-
tions. EnviroSuite is appropriate for implementing the
service modeling we propose herein, however it does
not include automated composition, which, to the best
of our knowledge, is novel in the sensor domain.

A model similar to our service graph can be found
in [43], which proposes abstract task graphs that con-
sist of abstract tasks and abstract channels. These are
mapped to services (nodes) and possible connections
(edges) in the service graph, respectively. However,
this paper does not address automatic composition
construction or cost measures. In [44], the authors
present MiLAN, which is a middleware for sensor
applications. MiLAN receives the application require-
ments for the needed information and chooses a set
of sensors that can provide this information according
to certain quality of service requirements. However,
MiLAN does not provide composition of services in
which outputs of services are combined to provide
inputs of other services.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have described a novel method of
service modeling and dynamic composition, which
is appropriate for the unreliable and unstable sensor
network environment. Based on the sensor service
model, the problem of sensor service composition has
been formalized and was proven to be NP-complete.
Two heuristics-based algorithms for dynamic com-
position were then described, namely the top-down
and the bottom-up approaches, based on the direc-
tion of flow of information during the composition
process. Centralized and distributed implementations
along with their advantages and disadvantages were



also discussed. The dynamic composition evaluations
were further performed through simulations.

Our future work includes the implementation of
the algorithms on an actual sensor network envi-
ronment, to further evaluate the approaches under
realistic conditions. Furthermore, we are planning to
follow a game theoretic approach to choosing services
with minimal cost. In such a scheme, each sensor
node will aim to lower its load by utilizing services
implemented on other sensors rather than itself. We
believe that such a scheme will lead to lower cost
solutions, after the initial composition is done with
our current algorithms.
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[8] F. Lécué and N. Mehandjiev, “Seeking quality of web service
composition in a semantic dimension,” IEEE Trans. Knowl. Data
Eng., vol. 23, pp. 942−959, Jun. 2011.

[9] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “Qos-aware middleware for web services com-
position,” IEEE Trans. Softw. Eng., vol. 30, pp. 311−327, May
2004.

[10] Z. M. Mao, R. H. Katz, and E. A. Brewer, “Fault-tolerant, scal-
able, wide-area internet service composition,” Univ. California,
Berkeley, Tech. Rep. UCB/CSD−01−1129, 2001.

[11] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D.
Culler, “The nesC language: A holistic approach to networked
embedded systems,” in Proc. ACM SIGPLAN, 2003, pp. 1−11.

[12] B. Greenstein, E. Kohler, and D. Estrin, “A sensor network
application construction kit (SNACK),” in Proc. ACM SenSys,
2004, pp. 69−80.

[13] G. Mainland, G. Morrisett, and M. Welsh, “Flask: Staged
functional programming for sensor networks,” in Proc. ACM
SIGPLAN, 2008, pp. 335−346.

[14] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S.
Madden, “Wishbone: Profile-based partitioning for sensornet
applications,” in Proc. NSDI, 2009, pp. 395−408.

[15] K. Whitehouse, F. Zhao, and J. Liu, “Semantic streams: A
framework for composable semantic interpretation of sensor
data,” in Proc. EWSN, 2006, pp. 5−20.

[16] S. C. Geyik, B. K. Szymanski, P. Zerfos, and D. Verma, “Dy-
namic composition of services in sensor networks,” in Proc.
IEEE Int. Conf. Service Computing, 2010, pp. 242−249.

[17] P. Bartalos and M. Bieliková, “Automatic dynamic web service
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