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Abstract We study the dynamics of the Naming Game [Baronchelli et al.,
(2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This
stylized agent-based model captures essential features of agreement dynam-
ics in a network of autonomous agents, corresponding to the development
of shared classification schemes in a network of artificial agents or opinion
spreading and social dynamics in social networks. Our study focuses on the
impact that communities in the underlying social graphs have on the outcome
of the agreement process. We find that networks with strong community struc-
ture hinder the system from reaching global agreement; the evolution of the
Naming Game in these networks maintains clusters of coexisting opinions in-
definitely. Further, we investigate agent-based network strategies to facilitate
convergence to global consensus.

1 Introduction

Agent-based models and simulations provide invaluable frameworks and tools
to gain insight into the collective behavior of social systems (Epstein and Ax-
tell, 1996; Challet et al, 2005; Anghel et al, 2004). Opinion spreading and social
dynamics (Durlauf, 1999; Castellano et al, 2008) on regular and random net-
works are examples of the latter. A large number of studies have investigated
models of opinion dynamics (Castellano et al, 2005; Ben-Naim, 2005; Deffuant
et al, 2000; Hegselmann and Krause, 2002; Lorenz, 2007, 2008; Krapivsky
and Redner, 2003; Sood and Redner, 2005; Sznajd-Weron and Sznajd, 2000;
Kozma and Barrat, 2008a; Benczik et al, 2008; Antal et al, 2005; Jung et al,
2008) and the dissemination of culture (Axelrod, 1997; San Miguel et al, 2005;
Mazzitello et al, 2007), while fundamental models for residential and ethnic
segregation have also attracted strong interest (Schelling, 1971; Zhang, 2004;
Vinkovic and Kirman, 2006; Lim et al, 2007). Most recently, researchers have
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also turned their focus to models where both the network topology and opin-
ions change over time (Kozma and Barrat, 2008a,b). With the availability
of empirical data sets and cheap and efficient computing resources, one can
implement stylized socio-economic models on empirical social networks, and
evolve “artificial societies” (Epstein and Axtell, 1996) to study the collective
properties of these systems.

Here, we focus on one such stylized model, the Naming Game (NG) (Baronchelli
et al, 2006b). The NG is a minimal model, employing local communications,
that can capture generic and essential features of an agreement process in
networked agent-based systems. For example, in the context of a group of
robots (the original application), the NG dynamics mimics the emergence of
shared communication schemes (synthetic languages), while in the context of
sensor networks, such an agreement process can describe to the emergence of
a shared key for encrypted communications. In a system of human agents,
the NG can be considered as a minimal model to describe the recent phe-
nomenon of collaborative tagging or social bookmarking (Cattuto et al, 2006,
2007; Golder and Huberman, 2006) on popular web portals like like Del.icio.us
(http://del.icio.us), Flickr (www.flickr.com), CiteULike (www.citeulike.org),
and Connotea (www.connotea.org). Another common example is the evolution
and spread of coexisting dialects in everyday use (see, e.g., the geographical
distribution of “Pop” vs “Soda” for soft drinks in the US (McConchie, 2002)).
In a broader context, the NG can be employed to investigate the emergence of
large-scale population-level patterns arising from empirically supported local
interaction rules between individuals.

The common feature in the above examples and applications is that global
agreement can emerge spontaneously (without global enforcement) purely as
a result of local (e.g., pairwise agent-to agent) communications. The NG has
been studied intensively on regular and random complex network models (see
next Section). Here we investigate the evolution of the agreement process in
the NG on empirical social graphs. It is well known that empirical social graphs
exhibit strong community structure (Girvan and Newman, 2002; Newman and
Girvan, 2004; Onnela et al, 2007; Palla et al, 2005, 2007). It is also known
that in networks with community structure, reaching global agreement can
be hindered (Lambiotte and Ausloos, 2007; Candia and Mazzitello, 2008).
Here, we investigate the NG precisely from this viewpoint. Further, we analyze
strategies to destabilize otherwise indefinitely coexisting clusters of opinions,
to reach global consensus of a selected opinion. The later can also be considered
as an abstract agent-based marketing approach.

The paper is organized as follows. In Sec. 2 we briefly review recent results
on the NG on various regular and complex networks models. In Sec. 3, we
present results for the NG on empirical social networks. In particular, we
investigate the effect of communities in the underlying static social graphs on
the agreement process (typically leading to indefinitely coexisting clusters of
opinions). In Sec. 4, we study and analyze node-selection strategies to facilitate
the convergence to a global opinion. In Sec. 5, we conclude our paper with a
brief summary.



3

2 Background, Model, and Prior Results on the Naming Game on

Regular and Complex Network Models

In the simplified version of the NG, agents perform pairwise games in order
to reach agreement on the name to assign to a single object. This version
of the NG was investigated on the complete graph (CG) (corresponding to
mean-field or homogeneous mixing) (Baronchelli et al, 2006b, 2005), on regu-
lar (Baronchelli et al, 2006a), on small-world (SW) (Dall’Asta et al, 2006a;
Lin et al, 2006), and on scale-free (SF) networks (Dall’Asta et al, 2006b;
Baronchelli et al, 2006c). On a CG, each agent has a chance to meet with
all others and compare their current local vocabularies (list of “synonyms”)
before updating them. On regular networks, agents have only a small number
of nearest neighbors with whom they can interact/communicate (e.g., four
nearest neighbors in two dimensions). The communication in both cases is
“local”, in that pairs of agents are selected to interact and to update their vo-
cabularies. The basic algorithmic rules of the NG are as follows (Baronchelli
et al, 2006b,a). A pair of neighboring nodes (as defined by the underlying com-
munication topology), a “speaker” and a “listener”, are chosen at random.1

The speaker will transmit a word from her list of synonyms to the listener. (If
the speaker has more than one word on her list, she randomly chooses one;
if it has none, it generates one randomly.) If the listener has this word, the
communication is termed “successful”, and both players delete all other words,
i.e., collapse their list of synonyms to this one word. If the listener does not
have the word transmitted by the speaker (termed “unsuccessful” communica-
tion), she adds it to her list of synonyms without any deletion. In this paper,
we measure time in units during which N agents are selected at random as
speakers, where N is the number of agents in the network. The above rules
are summarized in Fig. 1.

Here, we considered initial conditions when all agents have an empty vo-
cabulary. Then such an agent, when chosen to be a speaker, invents a random 
word to be transmitted to the listener. (For initial conditions with a single 
random word per agent, see the Electronic Supplementary Material.) In terms 
of the number of different words, the evolution of the game will go through 
stages of growth (due to unsuccessful communications) and stages of elimina-
tion (due to successful ones). In all of the above mentioned networks, starting 
from empty vocabularies, an early time explosion of words is followed by a 
slow elimination of all synonyms, except one; that is agents come to global 
agreement on the naming of the object in question.

Also recently, the NG was studied on homogeneous random geometric
graphs (RGGs) (Lu et al, 2006, 2008). RGG is both spatial and random

1 Note that on strongly heterogeneous (scale-free) graphs, the order whether the listener or
the speaker is chosen first, strongly impacts the efficiency toward global agreement. Choosing
the listener first at random will increase the chance for selecting a node (as a neighbor) with
larger degree for speaker. In turn, hubs will be the most frequent speakers, giving rise to
faster convergence to global agreement at a mildly elevated memory cost (Dall’Asta et al,
2006b; Baronchelli et al, 2006c).
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Fig. 1 Schematic rules of the Naming Game (Baronchelli et al, 2006b) as described in the
text. If the speaker has more than one word on her list, she randomly chooses one; if it has
none, it generates one randomly.

(Meester and Roy, 1996; Penrose, 2003; Dall and Christemsen, 2002). Mo-
tivated by the deployment of sensor networks, nodes are randomly scattered
in a two-dimensional area, and two nodes are connected if they fall within each
others transmission range. Further, pairwise communications were replaced by
local broadcasts to capture the essential features of communication protocols
in sensor networks. Similar to earlier findings on regular, SW, and SF net-
works, we found that the NG on RGG with homogeneous node density also
leads to global consensus, facilitating an application to autonomous key cre-
ation for encrypted communication in a community of sensor nodes (Lu et al,
2006, 2008).

It was found that the NG dynamics on the above networks will lead to
global consensus among all agents, i.e., after some time, agents’ vocabularies
eventually converge to a unique word, the same for all agents (Baronchelli et al,
2006b, 2005, 2006a; Dall’Asta et al, 2006a). The major differences between the
NG on CGs (homogeneous mixing) and on low-dimensional networks (such as
regular one- or two-dimensional grids, and RGGs) arise in the scaling of the
memory need and in the scaling of the time tc with the number of agents N
to reach global agreement. [The memory need in the present context is the
typical value of the largest number of words an agent may posses throughout
the evolution of the game (Baronchelli et al, 2006b,a).] In CGs, the conver-
gence process to global agreement is fast, tc ∼ O(N1/2) (measured in units of
communications per agent), but large memory, O(N1/2), is needed per agent
(Baronchelli et al, 2006b). For a regular two-dimensional network or RGG,
spontaneous evolution toward a shared dictionary is slow, tc ∼ O(N), but the
memory requirement per agent is much less severe, O(1) (Baronchelli et al,
2006a). When the NG is implemented on Watts-Strogatz (Watts and Strogatz,
1998) SW networks (Dall’Asta et al, 2006a), or when long-range random links
are added to the RGG (Lu et al, 2008), the agreement dynamics performs
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optimally in the sense that the memory needed is small, while the conver-
gence process is much faster than on the respective low-dimensional network,
tc ∼ O(N0.4), closer to that of CGs or homogeneous mixing.

The above results, on spatial graphs, can be understood within the frame-
work of coarsening, a well know phenomenon from the theory of domain and
phase ordering in physical and chemical systems (Bray, 1994). Starting from
empty vocabularies, agents invent words randomly. After time of O(1) [on av-
erage one communication per node], O(N) different words have been created.
Following the early-time increase of the number of different words (essentially
corresponding to the number of different clusters of agents) Nd(t), through
pairwise or local communications, agents slowly reconcile their “differences”,
and eventually will all share the same word. First, a large number of small spa-
tial clusters sharing the same word develop. By virtue of the slow coalescence
of the interfaces separating the clusters, more and more of the small clusters
are being eliminated, giving rise to the emergence of larger clusters, eventually
leading to one cluster in which all nodes are sharing the same word, i.e., Nd=1
(Baronchelli et al, 2006a; Lu et al, 2008). In domain coarsening, the typical
size of domains (each with already agreed upon one word) is governed by a
single length scale ξ(t) ∼ tγ with γ=1/2. Thus, in d dimensions the average
domain size (inside which all agent share the same word) scales as ξd(t) ∼ tdγ

and the total number of different words Nd at time t scales as the typical
number of domains Nd(t) ∼ N/ξd(t) ∼ Nt−dγ . Global consensus is reached
when ξd(tc) ∼ N (or equivalently Nd(t) ∼ 1), hence the typical time to global
agreement scales as tc ∼ N1/(dγ).

On SW and SF random network models with no community structure,
the long-time behavior of the NG is essentially governed by the mean-field
fixed point,2 and global consensus time scales as tc ∼ N1/2 (although with
noticeable finite-size corrections) (Dall’Asta et al, 2006a,b; Lu et al, 2008). On
the other hand, Dall’Asta et al (2006b) found that on stylized network models
with community structure (composed of fully connected cliques with a single
link between cliques) the evolution of the NG runs into long-living meta-stable
configurations, corresponding to different co-existing words (different for each
clique). Here we study precisely this later scenario by implementing the NG
on static empirical social graphs.

In this work we employ the basic NG where agents have infinite memories 
(i.e., the number of words they can store on their individual lists is unlimited). 
For a finite-memory version (Wang et al, 2007) of the model on social networks 
see the Electronic Supplementary Material.

In passing we note that the issue of the emergence of meta-stable or frozen 
opinion clusters and fostering consensus have been discussed for models of 
opinion formation under bounded confidence (Deffuant et al, 2000; Hegsel-
mann and Krause, 2002; Lorenz, 2007, 2008). In those models, however, com-
munity formation or opinion segmentation is the result of the agents’ inter-

2 Here, by the mean-field fixed point, we refer to the characteristic scaling behaviors of the 
NG on the complete graph (also referred to as homogenous mixing) where each agent can 
potentially interact with all others (Baronchelli et al, 2006b; Dall’Asta et al, 2006b).
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action being limited by bounded confidence: an agent can gradually adjust her 
opinion toward another one’s only if their opinions were already suffi-ciently 
close to one another to begin with. As a result, opinion segmentation can 
emerge in networks with no community structure with low-confidence agents. 
In contrast, the NG dynamics does not require that agents’ opinions are 
sufficiently close in order to potentially interact (i.e., their confidence is 
unbounded), and as mentioned earlier, the NG dynamics always lead to global 
consensus on networks without community structure. Our motivation here, by 
studying the NG on empirical social graphs, is to directly study how the com-
munity structure of the underlying graphs affects the emergence of meta-stable 
or long-living opinion clusters.

3 The Naming Game on Empirical Social Networks

One of the most important feature of social graphs is their modularity: these
networks typically consist of a number of communities; nodes within communi-
ties are more densely connected, while links bridging communities are sparse.
Since the community structure of empirical networks is often not known a
priori, detecting communities in large networks itself is a difficult problem
(Palla et al, 2005). A number of current methods for finding community struc-
tures utilize various forms of hierarchical clustering, spectral bisection meth-
ods (Scott, 2000; Newman, 2006; Wu and Huberman, 2004), and iterative
high-betweenness edge removal (Newman and Girvan, 2004; Newman, 2004;
Girvan and Newman, 2002). A different approach involves searching for the
ground-states of generalized multi-state spin models (corresponding to differ-
ent opinions) on these networks, such as the q-state Potts model (Blatt et al,
1996; Reichardt and Bornholdt, 2004; Kumpula et al, 2007; Fortunato and
Barthelemy, 2007). Also, recently a novel method has been developed to de-
tect overlapping communities in complex networks (Palla et al, 2005).

The NG, as summarized in the Sec. 2, in low-dimensional networks ex-
hibits slow coarsening, while networks with small-world characteristic (small
shortest path, such as in SW and SF networks) facilitate faster (and guaran-
teed) convergence to a global consensus among nodes. But in all cases, global
consensus is reached, provided the network has no heterogeneous clustering or
modularity (i.e., community structure).

Here, we study the NG on networks which do exhibit strong community
structure. The set of social networks (high-school friendship networks), on
which we implemented the NG, were provided by the National Longitudi-
nal Study of Adolescent Health (Add Health)3. The high-school friendship

3 This research uses the network-structure data sets from Add Health, a program project
designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris, and funded
by a grant P01-HD31921 from the National Institute of Child Health and Human De-
velopment, with cooperative funding from 17 other agencies. For data files contact Add
Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524,
(addhealth@unc.edu, http://www.cpc.unc.edu/projects/addhealth/.
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Fig. 2 (a) Number of different words Nd vs time for a friendship network (thin lines)

and for the Watts-Strogatz network (bold line). N = 1, 127, k = 8.8, and C = 0.067 for
both systems. Results for the WS network are averaged over 1000 independent realizations.
For the high-school friendship network we show three individual realizations (thin lines),
reaching different final states with Nd = 1, Nd = 2, and Nd = 3 (indicated with horizontal
dashed lines). Note the log scales on both axes. (b) The probability (relative frequency) of
final configurations with Nd different words (opinions) for the same high school friendship
network as in (a) based on 10, 000 independent runs. Statistically, in this particular network,
the most likely final configuration exhibits three opinions.

networks investigated here, were constructed from the results of a paper-and-
pencil questionnaire in the AddHealth project (Moody, 2001). Here, nodes
represent students while the edges are for their mutual relations or friend-
ships. Two students are considered to be friends (thus have a link between
them) when one nominates the other as her/his friend and both of them par-
ticipated in some activities, e.g., talked over the phone, spent the weekend
together, etc., in the last seven days. (for this study, we considered the rela-
tionships reciprocal, and associated them with undirected links in the NG).
These networks exhibit exponential degree distributions (no hubs), with an av-
erage degree of the order of 10. For a baseline comparison we also constructed
a Watts-Strogatz (WS) network (Watts and Strogatz, 1998) network with the
same number of nodes N , average degree k, and clustering coefficient C as the
friendship network. The WS network has homogeneous clustering, hence, no
community structure.

We selected a few networks with a large number of students (on the order
of 1,000) from the available data set. Starting from an empty word list for
all agents, both the friendship network and WS network show nearly iden-
tical early-time development of the number of different words Nd. However,
the friendship-network simulations exhibit a long-time behavior very different
from the ones discussed in Section 2, and also from the baseline reference, the
NG on the WS network [Fig. 2(a)]. In the late stage of the NG, networked
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Fig. 3 Snapshots of the time-evolution of the Naming Game on a high-school friendship
network. Initially agents have an empty word list (no opinions). In the snapshots, different
colors correspond to different words. In the very early stage of the game (a), “speakers”
with no words has to create one randomly. After a slow but steady coarsening of opinions,
in the final stages of the game, the system exhibit relatively long plateaus in the number of
different opinions. The corresponding clusters, i.e., agents with the same opinions, can be
regarded as communities. For the particular network shown here, in the next to final stage
(b), the network exhibits four communities. Eventually, two of these communities coalesce,
leading to a final configuration (c) with three communities.

agents without community structure (including the WS network) always ex-
hibit a spontaneous evolution toward a shared “dictionary” (or opinion), i.e., a
global consensus is reached. In contrast, in the empirical high-school networks,
consensus is rarely reached (for long but finite simulation times) [Fig. 2(a)].
For this particular high-school friendship network, performing 10, 000 indepen-
dent runs of the NG with a fixed simulation time of t = 104 steps, 10%, 35%,
and 55% of these runs, ended up with one, two, and three different words,
respectively, in their final configurations [Fig. 2(b)]. Thus, in this network, the
most likely (or typical) outcome of the NG is one with three different clus-
ters of opinions. Snapshots taken from the typical evolution of the NG on this
network are shown in Fig. 3. In analogy with domain formation in physical sys-
tems, we can regard these long-living configurations with coexisting multiple
opinions as “meta-stable” ones.

The emergence of different long-living clustered opinions is not unexpected.
In fact, the same high-school networks have been analyzed for community
structures in a study of friendship segregation along racial lines among high-
school students (Moody, 2001; Gonzáles et al, 2007). For example, close to the
final stage, the time-evolution of the NG on the particular network shown in
Fig. 3(b) exhibits four communities. These four clusters of opinions correspond
to segregation along the two-schools involved in the particular network, high-
school (HS) – middle-school (MS) pair, and along racial lines, whites students
– black students in each. Checking the race and school-grade attribute of the
node information in the raw data, we confirmed that the four communities
exhibited by the NG in Fig. 3(b) correspond to black HS (upper left), white
HS (upper right), black MS (lower left), and white MS (lower right) students.
Then, in the final state [Fig. 3(c)], only three communities remain; opinions,
segregated along the racial line coalesce in the middle-school portion of the
students, simply indicating that racial segregation in friendships is weaker in
this group, in this particular network set.
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Admittedly, the objective of our paper is not to draw over-ambitious con-
clusions from a social science viewpoint. Instead, we are interested in how the
evolution of the NG (a stylized model for opinion formation) is affected by the
community structure of the underlying graphs, such as the high-school friend-
ship networks which are well-known to exhibit strong community structure
(Moody, 2001; Gonzáles et al, 2007). We demonstrated that the outcome of the
NG, is strongly affected by the existence of communities in the underlying net-
work. Conversely, at some coarse level, the long-living late-stage meta-stable
clusters of words (opinions) reveal important aspects of the community struc-
ture of the underlying network. Thus, the NG, together with other stylized
models for opinion formation, can not only be used as a tool to understand
generic features of spontaneous agreement processes in a network of artificial
or human agents, but can also be employed to extract relevant information
on the community structure of complex networks (Blatt et al, 1996; Reichardt
and Bornholdt, 2004; Kumpula et al, 2007; Fortunato and Barthelemy, 2007).

4 Engineering Consensus in Social Networks

There are several ways to influence the outcome of social dynamics, e.g., to 
facilitate the outcome of a specific global opinion that one would prefer the 
system to achieve (preferred opinion for short). All methods essentially rely on 
“breaking the symmetry” of the otherwise equivalent coexisting opinions. One 
possibility is to expose and couple many or all agents to an “external” global 
signal (analogous to mass media effects) (Mazzitello et al, 2007; Candia and 
Mazzitello, 2008). Alternatively, one can break the symmetry by choosing a 
small number of well-positioned “committed” agents who will stick to a 
preferred opinion without deviation. In the next subsection, we investigate 
this latter scenario first.

4.1 Committing Agents

In the simulations, by committed agents we mean an agent who has a fixed 
opinion which cannot be changed. In the context of the NG, a committed agent 
has a single word. As a listener, she does not accept any new word from their 
neighbors, but as a speaker, always transmits her word. Of the three co-existing 
communities at the end-stage of the NG [Fig. 3(c)], we choose one community 
as the one representing the “preferred” opinion, and we “indoc-trinate” selected 
committed agents with this opinion. Fig. 4 shows snapshots of the evolution of 
the NG with committed agents. Initiating the simulations from the final 
configuration of the original NG (exhibiting three meta-stable opinion clusters), 
introducing a small number of committed agents yields a relatively fast 
convergence to the global consensus of the selected opinion.

To quantify this phenomena we investigated the temporal behavior of this
agreement process, in particular, its dependence on the method of selecting
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Fig. 4 Snapshots of the Naming Game on a high-school friendship network with committed
agents. The system is initialized from a state with three coexisting meta-stable communities
[see (a)] with a small number of well-positioned committed agents (indicated with yellow
core around the nodes as indicated in (b). Global consensus (i.e., a single opinion) is reached
exponentially fast. Here we employed 50 committed agents, selected according to their degree
ranking.

committed agents and on the number of these selected agents. Among the
methods to select committed agents are selecting nodes with the highest de-
grees (nodes with the highest number of neighbors), with the highest between-
ness (likely to bridge different communities), with hop-distance proximity to
the core cluster (nodes outside, but no farther than two hops from the core
cluster of “preferred” opinion), and for comparison, also selecting committed
agents at random.

Our main observation is that once the number of committed agents is suffi-
cient to induce global consensus, it happens exponentially fast, independently of 
the selection method. More precisely, we ran 10, 000 realizations of the NG with 
committed agents. The initial configuration here is the final multi-opinion 
meta-stable configuration of the original NG with no committed agents (with 
Nd = 3) [Fig. 4]. We kept track of the fraction of surviving runs, ns(t), defined 
as the fraction of runs that have not reached global consensus by time t, i.e., 
runs that have more than one opinion at time t. (This quantity then can also 
be interpreted as the probability that a single run has not reached consen-
sus by time t.) We choose committed agents, to maximize their influence in 
reaching global consensus, according to their ranking in a number of graph 
theoretical measures. We selected the top M agents according to their degree, 
shortest-path betweenness centrality, (Newman and Girvan, 2004; Newman, 
2004), hop-distance proximity to the preferred core opinion cluster, or at ran-
dom, for reference. Figure 5 displays the fraction of surviving runs ns(t) for the 
degree and for the betweenness ranking for a number of different committed 
agents.

A common feature of all methods is that a very small fraction (f = M/N)
of committed nodes is sufficient to induce global consensus. I.e., there seems
to be a very low threshold in fc1, such that for f > fc1 the dynamics with
committed nodes leads to global agreement. Further, in this case, the fraction
of surviving runs (fraction of runs with more than one opinion), ns(t), in the
long-time regime, decays exponentially

ns(t) ∝ e−t/τ . (1)
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Fig. 5 Fraction of surviving runs as a function of time for varying number of committed
agents M when agents are selected according to their (a) degree ranking and (b) (shortest-
path) betweenness ranking. The total number of agents is N = 1, 127. For the degree-based
ranking selection method different symbols represent the fraction of surviving runs for 12,
13, 15, 25, 40, 60, and 80 committed agents, from top to bottom. In betweenness selection
method the number of committed agents M ranges from 22, 25, 30, 35, 40, 50, 60, to 70,
from top to bottom.

The time scale of the exponential decay τ , of course, depends on the selection
method and the fraction of committed nodes. The inverse time scale 1/τ , i.e.,
the rate at which global consensus is approached is, initially, an increasing
function of the number of committed nodes, but it quickly saturates and es-
sentially remains constant. This can be seen in Fig. 5, as the slopes of the
exponential decays are becoming progressively steeper, up to a certain M ,
then they remain constant. Thus, there is second characteristic fraction of
committed agents, such that for f > fc2 the rate of reaching global consensus
becomes essentially a constant (saturates).

These three features, (i) small threshold fc1 required for global consensus,
(ii) exponential decay of ns(t) if f > fc1 [Figs. 5 and 6], and (iii) satura-
tion of the rate to reach consensus for f > fc2 [Fig. 7], are exhibited by all
selection method we considered here. Further, both characteristic values and
the gap between them are very small, fc1, fc2, fc2−fc1≪ 1. These results are
essentially summarized in Fig. 7. The convergence rate for the randomly se-
lected committed nodes is also shown for comparison. On this particular social
network, selecting a small number of the nodes with the highest degree works
best, followed by the hop-distance proximity (to the core cluster) ranking. (We
refer to a strategy as more efficient if the convergence rate 1/τ is larger for
the same fraction of committed agents.) For example, selecting the committed
agents according to their degree ranking, fc1 ≈ 0.01 and fc2 ≈ 0.03 [Fig. 7].
Selecting committed agents just above this latter fraction is optimal, since the
rate of convergence does not improve beyond this value.
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Fig. 6 Fraction of surviving runs as a function of time for different strategies with the same
number of committed agents on the same network (M = 35, N = 1, 127, f ≃ 0.031.). The
three strategies (selection of committed agents) shown here are based on degree ranking
(squares), hop-distance proximity to the core cluster (diamonds), and shortest-path be-
tweenness (circles). For comparison, the result of selecting committed agents randomly is
also shown (triangles).

In general, the optimal selection method will vary, depending on the com-
munity structure of the particular underlying network. However, because we
changed the dynamics of the NG by breaking the symmetry of otherwise equiv-
alent opinions, the exponential decay and the saturation of the convergence
rate is expected to be generic for a large class of opinion formation models on
networks with community structure.

4.2 Global External Influence

As mentioned in the introductory paragraph of this Section, another natural 
way of influencing the outcome of the competition among otherwise neutral 
and meta-stable opinions, is to couple all or a fraction of agents to a global 
external “signal” [mimicking a mass media effect (Mazzitello et al, 2007; Can-
dia and Mazzitello, 2008)]. For comparison, we implemented the NG with 
an external field (affecting all agents) corresponding to the selected opinion 
among the three meta-stable ones in the final stage of the NG. Then, simi-
lar to the committed-agent approach, we initialize the system with that final 
meta-stable state with co-existing opinions of the original NG. In the presence 
of mass media, an agent, when randomly chosen, with probability p will adopt 
the externally promoted opinion. Otherwise, the usual rules of the game are 
invoked (i.e., the node, as a speaker, initiates communication with a listener). 
Our findings indicate that even for extremely small values of p, the fraction of
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Fig. 7 Convergence rate as a function of the fraction of committed agents f=M/N , for
different selection methods of committed agents, including the degree ranking (squares),
hop-distance proximity to core cluster (diamonds), and shortest-path betweenness (circles).
For comparison, the result of selecting committed agents randomly is also shown (triangles).

surviving runs (the fraction of runs that have not reached global consensus) 
decays exponentially, ultimately leading to global order Fig. 8(a)]. The rate of 
convergence 1/τ increases monotonically and smoothly with p [Fig. 8(b)]. For 
application oriented studies, one should associate a cost with the mass-media 
coupling, and a cost with committing an agent (e.g., finding these nodes and 
giving them incentives impossible to resists), then perform a relevant cost-
benefit comparative analysis for the selection or optimal combination of two 
approaches.

5 Summary

We studied the Naming Game on social networks. Earlier works have shown
that this simple model for agreement dynamics and opinion formation always
leads to global consensus on graphs with no community structure. On the
other hand, social networks are known to have rich community structure. The
Naming Game on such networks exhibits, in the late-stage of the dynamics,
several meta-stable coexisting communities; these configurations, in effect, are
the computationally observed final configurations.

In the context of models for social dynamics, communities manifest them-
selves in the context in which distinct stylized opinions (e.g., religions, cultures,
languages) have evolved and emerged over time. Clusters of nodes having
reached consensus are part of a community, reflecting the inherent community
structure of the underlying social networks. Thus, if at the late stages of the
social dynamics on the networks, several communities persist (different opin-
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Fig. 8 (a) The fraction of surviving runs as a function of time for several values of the strength 
of external influence p (p is the probability that in a time step an agent will adopt the fixed 
externally and globally promoted opinion). (b) Convergence rate to global consensus as a 
function of the strength of external field p.

ions survive), they are the authentic signatures of the underlying community
structure. The Naming Game, together with other similar models for opinion
formation, can be employed to probe these properties of complex networks.

We then considered the task of destabilizing the coexisting meta-stable
opinions (in order to reach consensus) by selecting the optimal number of
committed agents with a preferred opinion, as an alternative to a global ex-
ternal signal (mass media effect). The results implied that a small number of
committed agent is sufficient to facilitate an exponential decay toward global
consensus of the selected opinion. Further, selecting more agent than a system-
specific upper cut-off, yields no improvement in the convergence rate. Hence,
there seems to be an optimal number of agents for this task, beyond which it
does not pay off to invest in committing more agents. Selecting the committed
agents according to their degree, betweenness, or hop-distance proximity to
the core cluster of the preferred opinion, all displayed the above qualitative
features. Further, they all significantly outperformed committing the same
number of agents at random.
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Electronic Supplementary Material

The Naming Game with one-word-per-agent initial conditions

Here, we show the behavior of the Naming Game (NG) with initial configurations where each agent has exactly
one word (or opinion), different for each agent (Nd(0) = N). The rest of the rules of the NG are the same as
described in Sec. 2 of the main article. Since each agent has a word initially, no new words will be invented, and
there is no growth phase (Nd is monotonically decreasing as a function of time); pairwise communications will lead
to the gradual elimination of existing opinions. At the end, only a few opinion clusters remain, again, reflecting the
community structure of the underlying graphs. There is no significant difference in the late-stage scaling behavior

between the empty-dictionary and the one-word-per-agent initial conditions: In the former case, it takes of O(1) time
steps to reach the maximum of Nd, Nmax

d ∼ N/2 [Fig. 2(a) of the main article], after which slow “opinion coarsening”
begins. In the latter case, the number of different words initially starts from N and slowly begins to decay [Fig. S1(a).]
The relative frequencies of the final configurations with one, two, and three words are very similar [Fig. 2(b) of the
main article vs Fig. S1(b)], and the underlying opinion clusters (communities) exhibited this way are the same. Note
that for the one-word-per-agent initial conditions, out of 10, 000 independent runs, we also recorded 3 runs with four
surviving opinion clusters (Nd=4) after 104 time steps, corresponding to a 3 × 10−4 relative frequency. Since it is
three orders of magnitudes smaller than the probability of other possible final configurations, it is not visible on the
same scales and is not shown in Fig. S1(b).
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Fig. S1: The Naming Game on a friendship network where the simulations are initialized from configurations with a single
word per agent (different for each agent). (a) Number of different words Nd vs time for a friendship network with N = 1, 127,
k = 8.8, and C = 0.067 (same friendship network as in Fig. 2 of the main article). Results are shown for three individual
realizations, reaching different final states with Nd = 1, Nd = 2, and Nd = 3 (indicated with horizontal dashed lines). (b) The
probability (relative frequency) of final configurations with Nd different words (opinions) for the same friendship network as in
(a) based on 10, 000 independent runs.

The Naming Game with finite-memory agents

As was discussed by Dall’Asta et al. (2006), the typical memory need (the maximum number of words in its list at

any given time) of an agent of degree k is of
√

k. Limiting the agents’ memory to a finite value L, in general, can
slow down the consensus process (Wang et al., 2007). For the particular friendship network we used here, kmin = 1,
kmax = 33, and k = 8.8. Here we considered a “first in - first out” finite-memory version of the NG: in case of an
unsuccessful communication, if the memory of the listening agents is full, it drops the word from its list which has
been there the longest, and adds the one just heard. All the other rules of the NG, as described in Sec. 2 of the main
article, remain the same.

For comparison, here we show the agreement process in terms of number of different words (communities) vs time
for both the Watts-Strogatz network and for the friendship network with the same number of nodes, average degree,
and clustering coefficient [Fig. S2]. Since the average degree of these networks is rather small, there is very little
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Fig. S2: Naming Game with finite-memory agents. The number of different words vs time on (a) the Watts-Strogatz network;
(b) a friendship network with the same number of nodes, average degree, and clustering coefficients (N = 1, 127, k = 8.8, and
C = 0.067). All curves represent averages over 10, 000 independent runs.

variation in the late-stage agreement process and convergence times (the infinite-memory behavior is asymptotically

approached as the memory length is of order
√

k̄). The only exception is the L=1 case: here the listener simply
replaces its current opinion with the one of the speaker’s, hence the model becomes equivalent to the q-state voter
model (with q = ∞) (Howard, 1998). Unlike the NG with L≥2, the voter model on random graphs has no tendency
to form compact domains; the ‘interfaces” or boundaries separating domains stochastically disintegrate. While the
voter model on finite networks eventually orders, it is the result of a large spontaneous fluctuation of ordered regions
spanning the full system (Castellano, 2003; Castellano 2005). Global consensus for the NG with L=1 (equivalent
to the voter model) on networks with no community structure takes much longer than for L≥2 [Fig. S2(a)]. On
networks with community structure (such as the friendship network), however, the tendency of the NG with L≥2
to form domains leads to the formation of compact long-living or meta-stable opinion clusters, hence global order is
rarely reached. On the other hand, when L=1, there are no stable domain boundaries and the underlying community
structure has little or no effect on reaching global consensus [Fig. S2(b)]. The NG with L=1 (voter model) orders on
any finite network, essentially independently of the underlying community structure.
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