
Dynamic Policy Enforcement using Restriction Set
Theoretic Expressions (RSTE)

S. Yousaf Shah and Boleslaw K. Szymanski
Department of Computer Science and Network Science and Technology Center (NeST)

Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
Email: {shahs9, szymab}@rpi.edu

Abstract—Service Oriented Sensor Networks consist of various
assets and host variety of services, some of which are composed
of other services. Policies are widely used for regulating access
to assets and services specially when these assets are owned
by different parties in a coalition environment. In this paper,
we present a novel mechanism for policy implementation to
provide or restrict access to resources using policies. We present
“Restriction Set Theoretic Expressions (RSTE)” to represent
assets and policies in the form of sets at system level, therefore
RSTE is independent of high-level representation of policies and
assets. High-level representation of network assets and policies
can be easily translated to semantically defined RSTE sets and
then different RSTE operations are applied to restrict or release
access to resources. RSTE defines sets and operations that can
be performed on the sets to implement policies. We describe
semantics of RSTE sets and operations for assets in service
configuration in WSNs and show how the services and policies
can be represented as sets. We then leverage the capabilities of
relational databases by representing sets as tables and applying
policies as set operations executed as SQL queries. Operations
performed on the database tables yield restricted sets of policy
enforced services. Such services can then be provided to the
user or used by service configuration to compose complex
services. If service composition cannot be performed due to
policy restrictions, the restricting conditions are reported to user
through presentation layer for policy negotiation and relaxation.

Keywords- Sensor Networks; Policies; Service-Oriented Archi-
tecture; Service Composition; Service Configuration;

I. INTRODUCTION

Various languages and frameworks have been proposed for
policy description, management and application [1], [2]. Every
approach has its features and shortcomings. Recently, research
on expressing and managing policies in human understandable
language is getting significant traction. Researchers have used
controlled natural language (CNL) to express user require-
ments and efforts are being made to devise frameworks that
can manage policies using human readable languages [3].
However, translating these requirements from human readable
format into system level constraints is a challenging issue. In

Research was sponsored by US Army Research Laboratory and the
UK Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the US Army Research
Laboratory, the U.S. Government, the UK Ministry of Defence, or the UK
Government. The US and UK Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

general, policy representation frameworks tightly couple the
actual implementation of policies with the higher level policy
representation. This tight coupling leaves minimal flexibility
for using alternative low-level policy implementation. Policy
languages that are highly humanly expressive such as CNL
based policies, have lower policy enforcement capabilities. On
the other hand policy languages that support very sophisticated
operations on system level are coupled with representation
layer which is very programming oriented and too complex
for an end user. Therefore, there is a need for decoupling
the presentation layer from low level policy execution, so
that policies can be expressed in user friendly format at
presentation level and can be easily transformed into lower
level policies for actual enforcement. Thus, maintaing a re-
quired level of semantic compatibility, the low-level policy
enforcement and higher level representation should be as
independent as possible to achieve design goal at two separate
levels.

In this paper, we consider system for service configura-
tion in a mobile sensor network at the application layer[4].
Each service hosted in the sensor network produces one or
more outputs and requires zero or more inputs from other
services, thus composite services are hierarchical in nature
forming a workflow graph for data processing. In a coalition
environment, services are owned by different collaborating
organizations or partners, these services are hosted on sensor
nodes owned by different partners. Policy makers define policy
rules to restrict or allow access to the resources in the network.
Users make requests for services with certain requirements, the
requests are handled by the configuration system and based
on policies and users’ authorization corresponding services
are configured for the requestor. In this paper, we show
how Restriction Set Theoretic Expressions (RSTE) works for
such a service configuration scenario. Due to space limitation
details of Application Layer and controlled english based
Presentation Layer are not provided.

As we focus on producing policy complaint services for
mission specific applications [4]. Such missions include, multi-
organization led rescue and recovery missions, military mis-
sion, monitoring and surveillance etc. Policy enforcement in
application used in such dynamic scenarios are more chal-
lenging than traditional policy enforcement where all assets
are indigenously owned by a single organization and the flow
of data is pre-defined for applications. In dynamic service

 Proc. IEEE Military Communications Conference, MILCOM2014, Baltimore. MD, Oct. 6-8, 2014

composition, the service graph is not pre-known as the status
of the mission at a particular time defines the architecture of
the services, moreover, services which are owned by different
organizations dynamically appear and disappear during the
course of a mission. Another important aspect of such systems
is the nature of the policies, policies in such cases can be
temporal in nature and as they are updated/negotiated by policy
makers the effect should be instant. So, the challenges are: (1)
how to policy enforce such dynamic services with minimal
delay after a change in policy and report over restricting
conditions for negotiation, (2) how to make policy description
and management user friendly without overly limiting the
capabilities of policy enforcement engine. The main contri-
butions of this paper are,

1) A mid-layer RSTE language with semantics and opera-
tions for policy enforcement.

2) Utilization of relational algebra and relation database for
policy enforcement using RSTE.

The Remainder of the paper is organized as follows, in
Section II, we present background and an application scenario
for RSTE. In Section III, we provide detailed description of
RSTE and Section IV provides implementation details on how
RSTE can be implemented using relational database. Finally,
Section V concludes the the paper.

II. APPLICATION SCENARIO AND RELATED WORK

A. Emergency Response Coalition Scenario

Imagine an emergency response coalition formed between
US and UK forces to evacuate a disaster stricken area. A
sensor network is setup to monitor the area as well as to
provide support to the rescue forces. Network assets are owned
by either US or UK, therefore, sharing policies have been
defined to allow partners to access each others’ resources. As
other nations join the rescue mission, more policies are defined
to manage resources in coalition. Resources are not always
equally accessible to all partners but as the situation evolves
policies are defined to provide access to coalition partners. We
show policy enforced services sharing using RSTE for such a
scenario.

B. Related Work

Asset sharing and management in coalition environments
has been studied in the past and various techniques for
resource allocation have be suggested by researchers [5], [6].
Policy enforcement and management techniques for different
computing paradigms have been proposed in the past [7], [8],
[9]. In [8], [9], more programatic and standardized approaches
have been proposed, however, the policy description and
representation is closer to computer programs thus not very
friendly to non-technical users. Goal oriented and formal logic
based frameworks have also been propped in the past for
policy management [10], but their capabilities are limited by
the underlaying OWL version. Other semantic representation
based frameworks such as [11], [12] have also been pro-
posed. Deontic logic based approaches to address paradoxes
in Standard Deontic Logic (SDL) have been proposed in

[13], however, our approach differ from deontic logic based
approaches and other formal logic based approaches such as
[14], [10] in policy representation as well as enforcement
because the latter are not feasible for dynamic compositions
of services. In [2] attribute based policy enforcement has
been investigated, but this approach also utilizes [8] and has
more programming approach for policy representation, also
it does not support backtracking and suggestions for policy
negotiation.

III. THE RSTE LANGUAGE

We present a Restriction Set Theoretic Expressions (RSTE)
language, that is simple yet expressive enough to map user
requirements to lower level system constraints so that lower
level execution engines can produce desired result. This set
language is understandable by both higher layers of framework
dealing directly with the user and low level system engines.
Therefore, this language enables two way information flow
from user to the system level objects and back. Figure 1 shows
layered view of three major components of the system.

Fig. 1: Set Language is incorporated as layer between Presen-
tation layer and Application

For high level of user friendliness in our approach, we
propose that policies are represented in Controlled English [3]
as Controlled Natural Language (CNL) on presentation layer,
as shown in Figure 1, however this is not a requirement for
RSTE. Policies can be represented in any language at Policy
Presentation Layer, but the policies and constraints should be
compliant with or transformable to semantics of RSTE.

The CNL for Policy Management layer is responsible for
policy management on presentation layer. Policies are defined
and modified at this level. If there are any conflicts between
different policies, this layer also resolves them by running
conflict resolution algorithms. Moreover, this layer performs
negotiations in case conflicts cannot be resolved between
policies or no valid system configuration can be produced
under specified policies.

The Dynamic Service Configuration/Composition layer is
responsible for producing policy enforced low cost compos-
ite services based on user requirements. This layer deals
with input/output matching of different services as well as
spatial relevancy constraints to produce composite services
that are cost effective and geo-spatially relevant to the user’s
interests. In case when this layer fails to produce service
configuration requested by the user, it notifies the Controlled

Natural Language for Policy Management via RSTE layer
about the need for appropriate actions. The Dynamic Service
Configuration/Composition layer accesses resources that are
policy constrained by the RSTE layer, therefore this layer
considers only resources that are accessible by the requesting
user in compliance with policies. If the resources are too scarce
for service composition, it generates corresponding output
message that is sent to the presentation layer.

A. The Semantics and Operations of RSTE Language

In this section we define RSTE operations and semantics
for RSTE sets. A request for service is represented by SReq
set and its corresponding service response is represented by
SRes. Following are the sets used by RSTE for representing
assets, policies, requests/response and users. Alongside
these sets we define various set operations, such as Union,
Intersection, Subtraction, Cardinality, that are performed on
these sets to produce a restricted set of assets which is then
provided to the system layer for configuration.

Service Set = SS = {{ServiceName,NodeId,
GeoSpatialCoverage, Capabilities,Ownership}}

Node Set = NS = {{NodeId,Ownership, Location,
Conditions, Permissions}}

Service Request Set = SReq = {{RequestId, UserId,
ServiceName,Capabilities, Properties,Restrictions}}

Policy Set = PS = {{PolicyId, ServiceOwnership,
ServiceName,Conditions, UserAffiliation,
Restrictions,Action}}

User Set = US ={{UserId, UserName,UserAffiliation
,Role, UserProperties}}

RSTE Response Set = RRS =
{{ServiceName,NodeId,
GeoSpatialCoverage, ServiceCapabilities,
ServiceOwnership, PolicyId, PolicyConditions,
UserAffiliation, PolicyRestrictions,RequestId, UserId,
SReqCapabilities, SReqRestrictions,Action}}

Service Response Set = SRes = {{RequestId, Logs,
ReturnV alue, Failures}}

B. Definitions of the Sets

1) Service Set (SS): This set represents the snapshot of the
available services. This set is provided by the upper layer
i.e., the CNL Layer. This set is subset of all the services
hosted in the asset database. During the set operations
this set is filtered based on policies and restrictions
applied by the user.

2) Node Set: This set represents nodes that host member
services of SS. This set is used to access detailed

TABLE I: Service Set

Set Element Name Description
Service Name Name of the service, e.g., LOBR
NodeId Unique ID of node hosting the service
GeoSpatialCoverage Geospatial coverage provided by the service
Capabilities Capabilities provided by the service, e.g,

{<Sensor, Video>, <Resolution, HD>}
Ownership Organization that owns the service, e.g., US.

information about the infrastructure hosting the service
and will be used as needed.

TABLE II: Node Set

Set Element Name Description
NodeId Unique ID of node hosting the service
Ownership Organization that owns the node, e.g., UK.
Location Physical Location of the Node, e.g., <

LAT,LONG,ALT >
Conditions Conditions that applies to usage of the

Node.
Permissions Permissions on this node

3) Service Request Set: This set describes service requests
made by users.

TABLE III: Service Request Set

Set Element Name Description
RequestId Unique ID of the service requests to distin-

guish different requests.
UserId Unique IDs of the users.
ServiceName Name of the service that has been request.
Capabilities Capabilities that are required by the service,

e.g., High resolution video
Properties Configuration settings of the service e.g.,

{<ModeofOperation, Distributed>}
Restrictions Restrictions on the requested service, e.g.,

{<Ownership, US>}

4) Policy Set: The Policy Set represents policies that need to
be applied to the SS using various RSTE operations. This
set captures various other aspects of the policies (e.g.,
restrictions) along with conditions and actions policy
enforcement paradigm.

TABLE IV: Policy Set

Set Element Name Description
PolicyId Unique ID of a policy
ServiceOwnership Owner organization of the service affected

by the policy, e.g, UK.
ServiceName Name of the service affected by the policy.
Conditions Conditions on the use of the service, e.g.,

{#service instances < 5}
UserAffiliation Affiliation of the user requesting the service,

e.g., US or UK
Restrictions Restrictions on the use of the service, e.g.,

{< Role, Commander >}
Action Access to service based on the policy, i.e.,

Allow or Deny

5) User Set: User Set describes user of the network. Each
user has certain properties as well as associated orga-

nization. The UserId enables the set to access more
detailed information about the user from the detailed
assets database in case details are needed. This set
is primarily used for policy validation through RSTE
operations. Various conditions are matched based on the
user profile before authorizing user to access services.

TABLE V: User Set

Set Element Name Description
UserId Unique ID of a user.
UserName Name of the user.
UserAffiliation Affiliated organization of the user, e.g., US
Role Role of the user in organization or in a

mission, e.g., < Role, Commander >
UserProperties Other properties of the user, e.g.,

< SkillSet, Expert >

6) RSTE Response Set: The RSTE Response Set is the
set that is supplied to system layer along with Service
Request Set (SReq) for final service configuration. This
set contains services that fulfill the policy and user
requirements.

TABLE VI: RSTE Respnse Set

Set Element Name Description
Service Name Name of the service, e.g., LOBR
NodeId Unique ID of node hosting the service
GeoSpatialCoverage Geospatial coverage provided by the service
ServiceCapabilities Capabilities provided by the service, e.g.,

{<Sensor, Video>, <Resolution, HD>}
ServiceOwnership Organization that owns the service, e.g.,

UK.
PolicyId ID of policy applied to this service.
PolicyConditions Conditions from policy applied to this ser-

vice.
UserAffiliation Affiliation of the user, e.g., US, UK.
PolicyRestrictions Restrictions specified by policy.
RequestId ID of the user’s request.
UserId ID of the user of this service.
SReqCapabilities Capabilities requested in the Service Re-

quest
SReqRestrictions Restrictions specified in the Service Re-

quest.
Action Authorization based on policy.

7) Service Response Set: The service response set is pri-
marily for feedback purposes. This set is supplied to the
CNL Layer in order to be presented to the user or to
negotiate/relax policies.

TABLE VII: Service Response Set

Set Element Name Description
RequestId Unique ID of the service request
Logs Any logs produced by the service configu-

ration at the system level.
ReturnValue Exit state of the service configuration, e.g,

0,1,-1.
Failures In case of failures, reason of failure.

C. The RSTE Operations

The RSTE operations are like normal Set Operations but
these operations can also be performed based on a specific
condition (which can be imposed on set members), which is
checked in the corresponding sets. Consider two sets A and
B, members of these sets are also sets of same semantics. Let
{e-1,e-2,e-3} be the semantics of sets A and B.
A = {{1, 2, 3}, {a, b, c}}
B = {{1, 5, 10}, {e, f, g}, {a, x, y}, {a, b, c}}

1) Union (∪) The union operation combines two sets into
one. An union operation is defined as,
A ∪B = {x : x ∈ A or x ∈ B}
A union with a condition ν can be written as,
(A ∪B)ν = {x : x ∈ A or x ∈ B and ν = true}
A simple union of the two sets will be as follows,
A∪B = {{1, 2, 3}, {a, b, c}, {a, x, y}, {1, 5, 10}, {e, f, g}}
A union operation defined on a condition “ν : (A.e-
1=B.e-1)”, produces following set,
(A ∪B)ν = {{1, 2, 3}, {1, 5, 10}, {a, b, c}, {a, x, y}}

2) Intersection (∩) The intersection of two sets results
into a set with common members among the sets.An
intersection operation is defined as,
A ∩B = {x : x ∈ A and x ∈ B}
An intersection with a condition ν is written as,
(A ∩B)ν = {x : x ∈ A and x ∈ B and ν = true}
A simple union of the two sets is,
A ∩B = {{a, b, c}}
An union operation defined on a condition “ν : (A.e-
1=1)”, produces an empty set.
(A ∩B)ν = {}

3) Difference (−) The difference or subtraction is the
relative complement of set B in A. The difference
operation is defined as,
A−B = {x : x ∈ A and x 6∈ B}
A difference operation with a condition ν is written as,
(A−B)ν = {x : x ∈ A and x 6∈ B and ν = true}
A simple difference of the two sets will be as follows,
B −A = {{1, 5, 10}, {e, f, g}, {a, x, y}}
A difference operation defined on a condition “ν : (A.e-
1=a)”, produces set.
(B −A)ν = {{a, x, y}}

4) Cardinality (| |) Cardinality of a set gives the size of a
set. In above example, |A| = 2 and |B| = 4.

D. Operations for Policy Restrictions

First we need to find out policies that apply to certain user,
then we will be able to find out services that a specific user is
authorized to access contingent to conditions and restrictions.
Moreover, there may be services that are not policy enforced,
such services should be available to all the users to use. In
order to find policies that need to be applied to a service
configuration request, we apply series of operations to the
policy set (PS).

1) PS1 = (PS ∩ US)ν ν = UserAffiliation
2) PS2 = (PS1 ∩ US)ν ν = Role ∧ UserProperties

3) SSPolicyEnforced = (SS ∩ PS)ν
ν = ServiceName ∧ ServiceOwnership

4) SSPolicyAllowed = (PS2 ∪ SSPolicyEnforced)ν
ν = ServiceName ∧Ownership

Now we find all those services, which have no restrictions
on them or there is no policy defined to restrict them. These
services are available to all the users. To find services with no
policy restrictions, we perform following operations.

5) SSNoPolicyEnforced = (SS − SSPolicyEnforced)
6) SSAllAllowedServices = (SSPolicyAllowed ∪

SSNoPolicyEnforced)
7) SS1 = (SSAllAllowedServices ∪ SReq)ν

ν = Capabilities
8) RSTE SRes = SS1 Process based on restrictions

and conditions

IV. RSTE IMPLEMENTATION

We have implemented the prototype of RSTE language using
a relational database. The Relational Algebra in Relational
Database Management Systems (RDBMS) provides a natural
support for RSTE sets and operations, therefore the capabilities
of relational databases can be used for efficient implementation
of RSTE. The sets in the language and tables in a relational
database are analogous. We represent every set by a corre-
sponding table. We then perform different operations on the
tables using relational algebra and create views for interme-
diate steps. These views are then systematically processed
to produce other views and finally the view that represents
the RSTE Response Set, which is further processed before
providing it to the service configuration layer. For some of the
operations shown in section III-D, we have created “Views” in
the database, whereas the operations that deal with temporal
requirement or that need more fine grain processing e.g., Step-
6 are done via post-processing on RSTE Response Set.

When a service request is received from the user, it is
represented by SReq set and corresponding entry is made
in the database table. The views automatically get updated
and set of all allowed services are filtered out. Now, if the
user has defined any specific restrictions or there are policies
related to the user requesting a service, further processing is
done via code, after which allowed services are provided to
the Application Layer for service configuration. For certain
services or users very restrictive sharing policies may be
defined by the policy makers. Such overly restrictive policies
limit the services available for configuration and these services
might not be sufficient for a successful configuration leading
to failure in meeting the user’s request. In such cases, the
RSTE uses backtracking mechanism to find out condition(s)
that can be relaxed in order to produce a configuration. The
condition(s) are then sent to policy management layer for
policy negotiation. When such a condition is relaxed in the
policy, the resources are immediately available to the user and
service can then be configured enforcing the updated policy.

Fig. 2: Backtracking in for policy negotiation in case of overly
restricted policies

A. RSTE Backtracking

Policies specified by policy makers might be very restrictive
which may constrain resources necessary for service config-
uration. In a very restrictive case, operations performed in
step by step policy application by RSTE may lead to empty
sets or empty views in our implementation. Which means
that there are no services available for configuration. At any
such step where we detect an empty set we back track to
previous step and negate the conditions to see if that leads
to a non-empty set. If so we can suggest this negation to
CNL layer as relaxation for polices involved. In case there
are more than one conditions applied at a particular step, each
condition is negated separately and the resultant set is checked
for not being empty, this way relaxation can be performed at
more granular level and only over-restrictive conditions will
be negotiated/relaxed.

Figure 2 shows the backtracking mechanism in the RSTE
implementation. As shown in the figure 2, when condition
“C4” of the policy is applied at “Step4” all services are filtered
out yielding an empty set; at this stage the policy enforcement
backtracks and applies negotiation of condition “C4” to go to
“Step4N”. If at this stage the result set is not empty then
condition “C4” is restricting the solution and it is propagated
to Presentation Layer for policy negotiation.

B. RSTE Example

We evaluated RSTE implementation using a RDBMS. For
initial evaluation, we populated various assets in the database
including 24 services, 8 users, 6 nodes and 8 policies to test
if RSTE returns policy enforced services. Here we present
some simple rules in natural language for elaboration and
show the response produced by RSTE after policy enforcement
operations were performed on sets. The following example
assumes that the transformation from CNL to RSTE sets is
performed at the Application Layer.

Policy Rule: If (user U isAffiliated with

partner ‘US’) and (the user U has the

value Role as UserRole) and (the value

Role = ‘Intel’) and (service S hasName

‘CAMERASERVICE’) and (partner ‘US’ owns

service S) then (the user U hasAccess to

service ‘CAMERASERVICE’)

User Request: A user “John Smith” requests for a service,
the user is represented in User Set as follows,
User Set = US = {7, JohnSmith, US, Intel, Analyst}
User’s request is represented by following set in the RSTE,
SReq = {4, 7, CAMERASERV ICE,HDCAMERA,

Distributed,None}
As soon as the above request is made by “John Smith”, the
system enforces policy and produces filtered services that this
user is authorized to access based on user’s particulars. RSTE
produces following set as RSTE RESPONSE.
{{11, 11, Coverage = 5, HDCAMERA,US, 5, , US,
Role = Intel, true, JohnSmith, 7, Role = Intel, Role =
Analyst, 4, CAMERASERV ICE,HDCAMERA,
DISTRIBUTED,None}}.
As shown above, there is only one service that is available for
the user, this is because the policies in the system allowed
only a subset of services to be available to this user and
then the service request had restriction on the services to
have capability of a “HDCAMERA” which further reduced the
number of services to only one, which satisfies both policies
and user’s criteria.

To test backtracking mechanism, we modified the role
of user “John Smith” from “Intel” to “Soldier”. This
produced an empty set and the user no longer can access
“CAMERASERVICE” that he was able to use with “Intel”
role. The backtracking mechanism backtracks to condition
which leads to empty set. The backtracking is only performed
on operations that filter services based on policies. So, when
we ran queries with negated conditions, we found following
query that restricts services based on roles. When that query
was negated a non-empty set was produced which signified
condition based on roles as over-restricting and the condition
was reported for negotiation. The original query was
SELECT "PS"."ID", "PS"."PolicyId",

"PS"."ServiceOwnership", "PS"."ServiceName",

"PS"."conditions", "PS"."UserAffiliation",

"PS"."Restrictions", "PS"."Action",

"US"."UserName", "US"."UserId" FROM "PS",

"US" WHERE "PS"."UserAffiliation" =

"US"."UserAffiliation" AND "US"."UserName"

= ’John Smith’ AND ("PS"."Restrictions"

= "US"."Role" OR "PS"."Restrictions" =

"US"."UserProperties");

when condition on roles is negated as
. . .WHERE "PS"."UserAffiliation" =

"US"."UserAffiliation" AND "US"."UserName"

= ’John Smith’ AND not ("PS"."Restrictions"

= "US"."Role" OR "PS"."Restrictions" =

"US"."UserProperties");

the query produced results. The condition
"PS"."Restrictions" = "US"."Role" OR

"PS"."Restrictions" = "US"."UserProperties"

is reported for negotiation. This meets our expectations as we

updated the role of John Smith from “Intel” to a “Soldier”.

V. CONCLUSION

In this paper, we present a novel mechanism for dynamic
policy enforcement on services in sensor networks. We present
RSTE language and we show that the network assets, user
requirements and policy constraints can be represented as
sets. We then show that we can apply set operations to these
sets to enforce policy constraints and report any overly strict
constraints to the user. We demonstrate that RSTE can be
implemented using RDBMS and various Relational Algebra
operations can be utilized to implement RSTE operations. We
show that RSTE can enforce policies and perform backtrack-
ing. In future, we aim to perform detailed evaluation of RSTE
in combination with the controlled english as well as service
configuration to test its capabilities for broad range of policies

REFERENCES

[1] R. Boutaba and I. Aib, “Policy-based management: A historical perspec-
tive,” Journal of Network and Systems Management, vol. 15, no. 4, pp.
447–480, 2007.

[2] R. Dilmaghani, S. Geyik, K. Grueneberg, J. Lobo, S. Y. Shah, B. K.
Szymanski, and P. Zerfos, “Policy-aware service composition in sensor
networks,” in Services Computing (SCC), 2012 IEEE Ninth International
Conference on. IEEE, 2012, pp. 186–193.

[3] Ibm controlled english. [Online]. Available:
https://www.ibm.com/developerworks/community/groups/service/
html/communityview?communityUuid=558d55b6-78b6-43e6-9c14-
0792481e4532

[4] S. Y. Shah, B. Szymanski, P. Zerfos, C. Bisdikian, C. Gibson, and
D. Harries, “Autonomous configuration of spatially aware sensor ser-
vices in service oriented wsns,” in 2013 IEEE International Conference
on Pervasive Computing and Communications (PerCom Demos). IEEE,
2013, pp. 312–314.

[5] T. Pham, G. H. Cirincione, D. Verma, and G. Pearson, “Intelligence,
surveillance, and reconnaissance fusion for coalition operations,” in
Information Fusion, 2008 11th International Conference on. IEEE,
2008, pp. 1–8.

[6] A. Preece, T. Norman, G. de Mel, D. Pizzocaro, M. Sensoy, and T. Pham,
“Agilely assigning sensing assets to mission tasks in a coalition context,”
IEEE Intelligent Systems, vol. 28, no. 1, pp. 57–63, 2013.

[7] G. Karjoth, “Access control with ibm tivoli access manager,” ACM
Transactions on Information and System Security (TISSEC), vol. 6, no. 2,
pp. 232–257, 2003.

[8] Ibm research, policy management library. [Online]. Available:
https://www.ibm.com/developerworks/community/groups/service
/html/communityview?communityUuid=ed556565-1d91-4289-94ae-
213df1340350

[9] J. Lobo, “Cim simplified policy language (cim-spl),” Specification
DSP0231 v1. 0.0 a, Distributed Management Task Force (DMTF),
vol. 10, 2007.

[10] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou, and
A. L. Lafuente, “Using linear temporal model checking for goal-oriented
policy refinement frameworks,” in Policies for Distributed Systems and
Networks, 2005. Sixth IEEE International Workshop on. IEEE, 2005,
pp. 181–190.

[11] M. Sensoy, T. J. Norman, W. W. Vasconcelos, and K. Sycara, “Owl-
polar: A framework for semantic policy representation and reasoning,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 12, pp. 148–160, 2012.

[12] S. A. Chun, V. Atluri, and N. R. Adam, “Using semantics for policy-
based web service composition,” Distributed and Parallel Databases,
vol. 18, no. 1, pp. 37–64, 2005.

[13] H. Prakken and M. Sergot, “Dyadic deontic logic and contrary-to-duty
obligations,” in Defeasible deontic logic. Springer, 1997, pp. 223–262.

[14] A. K. Bandara, E. C. Lupu, J. Moffett, and A. Russo, “A goal-based
approach to policy refinement,” in Policies for Distributed Systems and
Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE International
Workshop on. IEEE, 2004, pp. 229–239.

