
 1

Abstract— This paper defines a number of Query models used
to visualize and explore the performance of Relational Algebra
queries evaluated in a Dynamic, Distributed, Federated Database
with a number of distinct network topologies. Query costs are
modelled at a coarse grained level, using a small number of
parameters and formulating only the dominant or average
behaviours of the queries and topologies considered. This allows
us to determine the prevailing factors which impact query
performance, and provide a framework to refine and focus on
more specific behaviours.

Index Terms—Database, Distributed, Federated, GaianDB,
Network Topology, Query Optimisation, Relational Algebra.

I. INTRODUCTION
HE Gaian Database [1] is a dynamic, distributed federated
database which combines the principles of large

distributed databases, database federation, and network
topology in a dynamic, ad-hoc environment.

The GaianDB has been shown to be scalable for simple
queries [2] but can be enhanced to optimise complex queries
such as joins, aggregate functions and nested queries. In
addition to identifying optimal query plans, we can determine
how to establish a network overlay topology to allow optimal
performance of queries.

It is recognised that different query strategies and different
network topologies are optimal in different situations (such as
the number of nodes in the network or the size or distribution
of the data to be retrieved).

Fig. 1 Optimal network topology varies for different query workloads

A useful step in formulating query optimisation algorithms
is to understand the main dimensions of variance and to model
query costs using coarse averages at a high level to understand
where different topologies and query strategies become
optimal at extremes of these variable dimensions. Figure 1
illustrates the principle that different network topologies can
result in the lowest query cost for different query workloads.

This paper presents the first steps to produce these coarse
grained query cost models. This paper has so far considered
simple select queries for Preferential Attachment topology and
a Content Addressable Network based on a Hypercube.

II. NETWORK TOPOLOGY MODELS
The networks must be considered to be dynamic; nodes will

frequently join and leave the network and must be able to
reconnect to more appropriate nodes as the utility of different
nodes changes.

To form robust networks in a scalable way, the decision to
which existing nodes a new node connects should be made on
a peer-to-peer basis without need for centralised management.

A. Hypercube Topology in a Content Addressable Network
In a network of nodes, we can define a hypercube topology

by assigning a hypercube label to each node. The imposition
of a hypercube structure should provide advantages when
routing queries to known destinations. Hypercube labelling
also provides an efficient mechanism to broadcast messages,
where we can guarantee that a message will be received by
each node once and only once in the broadcast procedure.

Reference [4] outlines a method for constructing and
maintaining a Content Addressable Network (CAN) within a
peer-to-peer network of labelled nodes. This provides the
ability to determine where specific content exists within a
network and to send a query to only these nodes of interest.

Instead of broadcasting a query to all nodes of a distributed
database, we propose to keep details of which nodes have
which Logical Tables, so a query can determine which nodes
host a fragment of the table and target the query only to those
nodes.

We propose the use of a CAN to maintain a Hypercube
labelled network, and the Logical Tables contained therein.

B. GaianDB Preferential Attachment Topology
The GaianDB implements a preferential attachment

algorithm so a joining node is more likely to connect to a node
which already has a large number of connections. The aim of
this approach is to reduce the diameter of the network. The
number of hops between nodes is reduced to minimise the
total time required to perform the broadcast-style queries of
the prototype Gaian Database.

Each node that joins a GaianDB network broadcasts a
request for connections and existing, networked nodes
respond with a delay that depends on the number of
connections that it already has; the more connections a node
has, the shorter the delay will be. The joining node will accept
the first connections it receives, so considering the delay, the
node is more likely to connect to a node which already has
many connections.

The average path length for this topology was initially
calculated using [3], but this was a significant underestimate
due to assumptions that the network is infinite size. By
analyzing empirical topology data, we discover that the
average path length is close to 2/log 2 N , which is the same as
for a hypercube.

Broadcasting a Gaian Query to all nodes results in 2N
messages being sent. The GaianDB topology has a fixed
average vertex degree, due to each node forming 2 outgoing

Relational Algebra
Coarse Grained Query Cost Models for DDFDs

Paul D Stone, Patrick Dantressangle, Graham Bent, Abbe Mowshowitz, Andi Toce, Boleslaw K Szymanski

T

Workload

Topology X
best

Topology Y
best

Topology Z
best

Queries

Query Size

admin
Text Box
Proc. 4th Annual Conference of International Technology Alliance, ACITA'10, London, U.K., September 15-16, 2010

 2
connections to other nodes. In other random graphs, vertex
degree may vary with network size.

III. SELECT QUERY COST MODELS
This section shows the cost formulae used. We consider the

cost of a query in terms on the total network bandwidth
required to evaluate the query.

The query costs shown here are coarse-grained averages
derived from a small set of parameters such as the number of
nodes and the data density, resulting in a coarse-grained
assessment of query costs as shown in the following sections.
The costs formulae will be refined with further research.

A. Query Cost Formulae
N is the number of nodes in the network,
LTx = proportion of fragments of the Logical table named X,
PLN = Average path length in a network with N nodes
SLL = Size of a logical table lookup message and response
(per network step)
SQ = Size of a query message and standard (no data)
response,
SQR = size of data results per logical table fragment,

Hypercube topology with Content Addressable Network:

The cost of logical table lookup in a CAN is PLN * SLL
The cost of sending the query to the specific locations with

that logical table is N * LTx * PLN * SQ
The cost of retrieving results is PLN * SQR * N * LTx

Cost(Select, hypercube CAN) = PLN * SLL + N * LTx *

PLN * SQ + PLN * N * LTx * SQR

Gaian topology:

The cost of sending the query to all nodes is 2 * N * SQ
The cost of retrieving results is PLN * N * LTx * SQR

Cost(Select, Gaian) = 2 * N * SQ + PLN * SQR * N* LTx

B. Topology Comparison
We have taken representative values of the specified

variables and then vary them to see which topologies have the
lowest cost using these cost formulae.

Select cost up to 400 nodes

0

10
20

30

40
50

60

70

80
90

100

0 50 100 150 200 250 300 350 400
number of nodes

co
st

 (k
B

yt
es

)

Gaian Topology

Hypercube CAN Topology

Fig. 2 Select cost, varying the number of nodes

Fig. 2 shows that in networks with less than 250 nodes, the
hypercube topology has a lower cost that the GaianDB
topology. In networks with more than 250 nodes, the
GaianDB topology has a lower cost.

Fig. 3 shows that when logical table data is present on less
than 4 in 10 nodes (LTx = 0.4) then a hypercube topology is
cheapest, due to being able to target a small subset of the total
number of nodes. When LTx is more than 0.4, the GaianDB
query is cheapest, as the hypercube CAN imposes an overhead
of sending a separate message to each node.

Select cost varying logical table proportion

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2
Logical Table Proportion (LTx)

co
st

 (k
B

yt
es

)

Gaian Topology

Hypercube CAN Topology

Fig. 3 Select cost, varying the proportion of logical tables

IV. CONCLUSIONS
These initial results suggest that networks with more nodes

favour a random preferential attachment topology (i.e.
GaianDB), but where a Logical Table is sparsely present in
the network, a Hypercube CAN topology is cheaper.

We intend to expand and validate these Coarse Grained
query cost model to include join and aggregate queries,
alternative network topologies, such as that identified in [5]
and to include the cost of network maintenance.

V. ACKNOWLEDGEMENT
Research was sponsored by US Army Research Laboratory

and the UK Ministry of Defence and was accomplished under
Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the US Army
Research Laboratory, the U.S. Government, the UK Ministry
of Defense, or the UK Government. The US and UK
Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright notation hereon

REFERENCES
[1] G Bent, P Dantressangle, D Vyvyan, A Mowshowitz, V Mitsou, “A

Dynamic Distributed Federated Database”, “Proc. 2nd Ann. Conf.
International Technology Alliance” 2008.

[2] G. Bent, P. Dantressangle, P. Stone, D. Vyvyan, A. Mowshowitz,
“Experimental Evaluation of the Performance and Scalability of a
Dynamic Distributed Federated Database”, “Proc. 3rd Ann. Conf.
International Technology Alliance” 2009.

[3] M. Newman, S Strogratz, D Watts “Random graphs with arbitrary
degree distributions and their applications” Physical Review E, Volume
64, 2001.

[4] P. Fraigniaud, P. Gauron, “D2B: a de Bruijn Based Content-Addressable
Network”, 2006.

[5] Z Wang, E Bulut, B K Szymanski, G Bent, A Mowshowitz, P Stone,
“An Energy Efficient Dynamic Location Server Hierarchy for Mobile
Ad Hoc Networks”, 2010

