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Abstract— Service composition in sensor networks combines
elementary services with a specific functionality to create a
service with higher level functionality. The previous efforts in
automating composition were sending full information about all
services across the entire sensor network, creating a security risk
and imposing significant communication overhead. Furthermore,
learning based composition or error detection methods do not
consider global information, leading to inefficiencies in the gener-
ated composition graphs. In this paper, we propose a probabilistic
context-free grammar (PCFG) based modeling technique to con-
struct service compositions. The successful compositions created
for the given application are treated as statements belonging to
an efficient composition PCFG of this application. The given set
of such compositions is used to derive this PCFG automatically.
Future composition could be then easily constructed with the
help of such PCFG. We present our methodology for achieving
such modeling and provide examples of its use to demonstrate
its advantage over previous work. We also evaluate the resulting
improvements in performance of compositions and in the costs
of their creation.
Index Terms— sensor networks; service composition; PCFGs;

I. INTRODUCTION

Service oriented architecture (SOA) for wireless sensor

networks (WSN) have recently been proposed as a means to

abstract the sensor network as a set of services (programs

integrated within sensor nodes) that provide a certain func-

tionality. In this context, the task of service composition is to

efficiently combine a set of services so that a more complex

functionality can be realized. In our initial work for SOA for

WSN [1], we showed how to represent a composition as a

graph of connection of services and how to automatically

combine services in an efficient way. While such an automated

scheme improves energy efficiency of the solution, during

composition creation this scheme suffers from communication

overhead and a security problem because metadata about

services are sent between all potential services. Since the

metada may include mission critical information, in domains

such as military applications, the user may not want such

information to be moved around freely. Manual connection of

services by the user is a possible solution to this problem that

has been followed in the literature. However, such a method

becomes error-prone with the increasing composition size.
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In this work, we are addressing the discussed above prob-

lems of security, high overhead and performance involved in

service composition in sensor networks. To be able to create

high performance service compositions with low overhead, we

propose to use probabilistic context free grammars (PCFGs)

to learn the composition schemes in a sensor network.

Informally, PCFGs are regular context free grammars in

which production rules are assigned probabilities reflecting

their usage frequency. We assume that the efficient initial

compositions of services are available, for example by creating

compositions, evaluating their performance and collecting the

most efficient one. They are used to create a PCFG such that

each initial efficient composition for the given network is a

sentence belonging to the language defined by this grammar.

We also provide a method on how to generate a string rep-

resenting a service composition. Each PCFG constructed via

our method is specific to a single sensor network instance with

predefined set of elementary services and possible information

flows between them. In such a PCFG, a production rule with

high probability assigned to it represents a highly efficient

subcomposition step. The hidden assumption here is that the

frequently used service combinations appear in the intial set

of efficient compositions for a reason, because they are more

advantageous than the alternatives. Hence, the constructed

PCFG defines a language for efficient service compositions.

The contributions of the paper can be summarized as:

• A PCFG and its corresponding language to represent

efficient service compositions as strings in this language,

• A methodology for generating a PCFG from previous

compositions,

• A method for finding frequently used subcomposition

patterns in PCFG sentences, improving efficiency of the

service design,

• A method to utilize the PCFGs for creating efficient

compositions and reducing the commmunication and

computational overhead of this process.

The rest of the paper is organized as follows. Next, we

provide background on the notion of service composition and

explain the language for describing a service composition

as a string, which basically is a way to represent a service

composition graph. We continue with a background on PCFGs

and our utilized method of PCFG construction in [2]. Then,

in Section III,we discuss the basics of our methodology. We

provide a way of finding subcompositions while constructing

a PCFG. We also explain why generating PCFGs is a better

solution than just statistically inferring the service connection

probabilities, or simply examining one level service usage
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sequences. We also discuss how a composition is created

from the constructed PCFG as the system runs. In Section

IV, we compare the PCFG-based composition methodology

to our previously presented automated composition technique

[1] in terms of performance, as well as the previously exam-

ined modeling/learning techniques for this application domain.

Next, we talk about previous work on service composition

learning techniques in Section V. We finalize the paper with

our conclusions and future work in Section VI.

II. BACKGROUND

A. Service Composition in Sensor Networks

Service oriented architecture for sensor networks view any

application in a sensor network as a collection of component

services assembled in a data flow graph that describes the

composite service. In [1], we have proposed a service model

for sensor networks, in which each service is defined by the

set of inputs (information) on which this service operates,

the set of outputs that it produces, the function that maps

these inputs to outputs, as well as the metadata that provides

the properties of the service (metadata can contain virtually

anything, e.g. cost of activating the service, such as delay,

energy needed, security level, and sensor specific properties,

such as its location, precision, and reliability).

Based on this model, the service graph can be defined as

the set of vertices representing the services, and the set of

directed edges between the vertices representing the possible

information flows between those services. To fulfill the re-

quirements of the desired service, the service selection process

is used to choose the subset of possible input providers (other

ends of the incoming edges in the service graph) that ensures

the correctness of the composition. The service composition

problem, as defined in our study however, is the choice of the

services (vertices in a service graph) and information flows

(edges in a service graph) so that a user request can be

produced by this composed service with the lowest cost. In

the heuristics proposed in [1], (namely top-down and bottom-

up approaches), the cost estimates are used at each level of the

algorithm. Therefore, to satisfy its inputs, a service chooses

a subset of its possible input providers based on estimates of

their costs.

B. Describing Service Compositions as Strings

As aforementioned, we define service composition as a

data flow graph where the directed edges represent the input

being provided from the service at the start of the edge to

the service at the end of the edge. To describe a service

composition as a string, we place service names within the

parentheses to represent the services used as input providers.

Hence, the following grammar for the language to desribe

service compositions can be used, assuming that there are n

elementary services defined in the given sensor network:

<composition> → <service name>(<composition list>) |

<service name>

<composition list> → <composition> |

<composition>,<composition list>

<service name> → service1 | service2 | ... | servicen

Hence, each node in the data flow graph is represented in

the string by its name followed by the list, enclosed within

parentheses, of nodes in the subgraph rooted in it. In the

above graph grammar, we have just four tokens: left and

right parantheses which encapsulate the set of services used

by a service whose name preceeds the matching parantheses,

commas to separate compositions, and service names. Such a

grammar of course can only represent service compositions

which are acyclic (i.e. the composition string is finite).
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Fig. 1: An Example to Illustrate the Service Composition

Language

To give an example, we use the application from [3] which

requires the composite Camera service. In Figure 1, the

services LOBR (with indices to distinguish them) give a

measurement (LOBR stands for Line of Bearing Report) of

the acoustic sensor’s distance from a source of sound regarded

as an event. Later, these measurements from three acoustic

sensors are sent to the LOBR2LOCR service which uses

triangulation to detect the location of the event (LOCR stands

for Location Report), and sends this information to the camera

sensor (another service), which then starts monitoring the

event. The LOBR services require no input, so they use the

“<composition> → <service name>” rule of the language

given above for their composition. However, LOBR2LOCR

uses services LOBR1, LOBR2 and LOBR3, hence its com-

position is like a function call, which starts with the service’s

own name (LOBR2LOCR) and is followed by the set of



services (with their corresponding composition strings) that

are used to satisfy its inputs. Finally, the service Camera uses

composite LOBR2LOCR service, so its composition string

contains both LOBR2LOCR and its composition subgraph.

A simple parser can extract the links from the given

composition. Furthermore, as mentioned in the introduction,

our methodology uses the strings of the previously run com-

positions to encompass in the PCFG the rules of combining

services efficiently. Thus, the constructed grammar can be

used to either create efficient compositions automatically, or

to check the validity of the compositions for correctness and

efficiency.

C. Probabilistic Context Free Grammars (PCFG)

A probabilistic context free grammar consists of five parts:

(i) a list of terminal symbols, St, that can be present in a

sentence generated by this grammar, (ii) a list of nonterminal

symbols, Snt, each representing a set of strings of nontermi-

nal or terminal symbols, (iii) Start nonterminal from which

generation of every sentence of this grammar starts, (iv) set

of rules (R) which define precisely what strings a nonterminal

can produce, and (v) probabilities of using rules (Pr) to define

how frequently a rule is to be used when generating a string

from the corresponding nonterminal.

Let’s provide a simple PCFG based on the example from

Figure 1. For disambiguation, we are representing nonter-

minals with uppercase letters and terminals with lowercase

letters. For our purposes, let’s assume the camera service can

be composed in two ways: “camera ( lobr2locr1 ( lobr1 , lobr2
, lobr3))” with 0.8 probability, and “camera ( lobr2locr1 (

lobr4 , lobr5 , lobr6))” with 0.2 probability. Then a PCFG

corresponding to such a case can be provided as below:

Start → camera( LOBR2LOCR ) (1.0)

LOBR2LOCR → lobr2locr1( lobr1 , lobr2 , lobr3 ) (0.8) |

lobr2locr1( lobr4 , lobr5 , lobr6 ) (0.2)

In the above grammar, Start and LOBR2LOCR are nontermi-

nals, the numbers in parentheses are the usage probabilities of

the rules that they follow, and finally, ‘lobr2locr1’, ‘lobr1’ . . .

‘lobr6’, ‘camera’, ‘(’, ‘)’ and ‘,’ are terminal symbols.

In our previous work [2], we have presented an efficient and

fast PCFG construction algorithm that takes as input the set

of sentences that are generated by the unknown grammar and

constructs the most likely concise grammar with the matching

rule probabilities. We have utilized this scheme for event

recognition in sensor networks.

The construction method consists of two parts: (i) Sample

Incorporation, and (ii) Application of Operators. The first part

constructs the initial grammar capable of generating sentences

from the training data (D) and only such sentences. In the

second step, two operators, merge and chunk, are applied to

the initial grammar to generalize it and make it shorter. The

grammar at each step of operator application is evaluated by

its Bayesian a posteriori probability, and the search for where

to apply an operator to the current grammar is guided by this

probability. The details are described in [2].

III. MODELING SERVICE COMPOSITION AS A PCFG

In this section, we provide the details of how the PCFG

can encapsulate service composition information and patterns

specific to a sensor network instance with predefined set

of services integrated on the sensors. Based on the way to

describe service compositions as strings (Section II-B), we

describe how a PCFG that describes a language for the efficient

compositions can be constructed from a set of strings repre-

senting previous compositions. We also decribe how frequent

subcompositions (or composition alternatives) can be inferred

during the PCFG construction and how to use them to improve

the service composition construction.

Although there is a lack of previous efforts on learning the

service compositions in sensor networks or web applications,

a similar problem of learning in component based systems

has been widely studied in recognizing the causes for system

errors. The most relevant paper on error detection that also

utilizes PCFGs, was written by Kiciman et al. [4]. It presents

a system called Pinpoint that detects faults in the application

layer of internet services. The detection algorithm constantly

monitors software component interactions. The training stage

of the system provides Pinpoint with steady-state behavior

of the system while in the run-time, faults are recognized

due to behavior that is too divergent from the general case.

The first of the two main methods used in Pinpoint is the

weighted graph that models the frequency of the component

(service) interactions in the system (each component is a

vertex in the weighted graph). The second method uses PCFGs

to model order in which other services are used. Hence, every

service is a nonterminal that points to an ordered set of other

services. In this section, we also give a simple example of

advantages resulting from our methodology compared to [4].

This is to show that globally available composition information

for the system allows for generation of PCFGs with better

composition capabilities.

We finalize the section with the method of regenerating

service compositions according to the availability of services

during the application lifetime, and what advantages such

regeneration provides compared to our previous efforts on

automated composition [1].

A. Finding Subcomposition Patterns via PCFG Inference

In our previous work [2], we have adopted the usage of

a chunk operator as a means of shortening the constructed

grammar. This operator basically looks for frequently appear-

ing patterns in the grammar and replaces them with a new

nonterminal, which in turn generates this pattern. In this paper,

we are using similar methodology to find subcomposition

patterns which are used frequently, so in practice, it would

be advantageous to encapsulate them as black-box services.

A subcomposition is a subset of the connections and ser-

vices that are utilized for a composition. Furthermore, we

assume that any subcomposition describes how an intermediate

service is composed down to the source services (i.e. services

that do not require any input from other services) and is

complete (i.e. all inputs and outputs are satisfied). This is
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Fig. 2: Finding Subcompositions via PCFG Inference

the main difference of the frequent subcomposition inference

from graph mining. We do not find a frequent subgraph of

the previously seen composition graphs, but rather we find

a frequent composition scheme of one of the services used

in previously seen composition graphs (down to services that

do not require any input from other services to execute). The

example in Figure 2a shows two types of frequent structures

that have been marked in two composition schemes for the

service A.1. Elevating a subgraph as a subcomposition depends

on its usage frequency.

In the previous section, we have described how a composi-

tion scheme can be represented as a parenthesized string. In

such a language, a subcomposition consists of all the services

(hence further subcompositions too) within two matching

parentheses. Such a subcomposition describes how the service

name preceding the matching parentheses is composed by a

set of other services. During the PCFG inference from the

set of compositions, we check for the frequency of each

subcomposition and compare it to a threshold before assigning

to it a nonterminal representing a new black-box service. This

threshold is application specific, and depends on the size of

the training data. Figure 2b shows an example of such a

replacement, where the example from Figure 2a is presented

as a PCFG. The numbers in the brackets show how many times

the composition has been used. The subcomposition shown in

Figure 2a is assigned the chunk nonterminal (Ch C.2), which

can later be advertised in the system as a black-box service.

Once the subcompositions are found, the probabilities of

alternative subcompositions can be found by merge operator

[2] in PCFG inference. Merge operator combines the rules

of two nonterminals into a new nonterminal, and replaces

the occurrences of both these nonterminals with the newly

Compositions
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Probabilities are 0.66 and 0.33 respectively
furthermore, the merge nonterminal can also
be presented as a black-box service

Fig. 3: Subcomposition Example

constructed nonterminal. During the PCFG construction, this

operator combines only nonterminals that are the subcompo-

sitions of the same service. Consider the example in Figure 3.

In this case, two frequent subcompositions for the service C.2

are combined into a new nonterminal, which can be provided

later to the end-user as a single black-box service.

The advantage of the process of finding subcompositions

and the alternatives for such subcompositions are two-fold.

First, the efficiency of composing services improves. Being

able to detect efficient compositions from previous requests

for services (hence never directly composing them) saves

processing time [1]. Second, the service space is reduced

because certain elementary services which are used only in

frequent subcompositions can be removed.

B. Advantage of the PCFG-based Service Composition

An example in Figure 4 illustrates why training a PCFG on

service compositions yields better results than the weighted

interactions of Kiciman et al. [4]. In the figure, rectangles

represent services and the circles represent the sensor nodes

while the links between the circles represent the logical com-

munication connections. In the example, the service C1 uses

two types of services to receive its required inputs: an instance

of A, and an instance of B, each indexed to distinguish

between their different instances. In this sample network, if A1

and B1, or A2 and B2 are chosen together, then their data flows

meet at two nodes (Node 5 and Node 6, respectively), causing

congestion. Hence, the efficient compositions use either A1

and B2, or A2 and B1 together to provide the inputs to C1.

PCFG will store and utilize this pattern. However, approach

similar to [4] that stores the edge weights will assign equal

usage probabilities to A1, A2, B1 and B2. Consequently, the

usage of pair (A1, B2) has the same probability (0.25) as of
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Fig. 4: An Example to Present the Advantage of the

PCFG-based Service Composition over Edge

Weights in [4]

pair (A2, B2) even though the latter causes the congestion,

while the former does not.

The remedy proposed by Kiciman [4], is to use the list of

other components that are called by a component. Although

this remedy works for the given example, it fails with minimal

extension of the example shown in Figure 5 where services

A2 and B1 are able to utilize the services D1 or D2 and E1

or E2, respectively. Since the call paths are only examined at

a local level, the remedy will choose a composition with A2

using E1 and B1 using D2 at the same time (hence causing

a congestion at Node 9, since their data flow routes intersect

there). However, we train PCFGs from entire compositions,

so our method knows that in no efficient composition E1 and

D2 have ever been used together.

In the previous subsection, we have presented how the chunk

and merge operators help with the discovery of subcomposi-

tions and the alternatives for a frequent subcomposition. It

can easily be argued that such a process will suffer from the

same myopic problem of creating suboptimal compositions

from which the edge weights and call paths methodology

discussed above suffer. We hereby present that this problem

can be avoided by using an entropy-based scheme for applying

these operators. Please note that the chunk operator as given

in this paper finds only the frequent subcompositions, hence

has no generalizing effect, and will not create suboptimal

compositions. However, doing the merge may cause such an

effect, hence should be used with great care.

Suppose we have found n subcompositions for the same ser-

vice S, which have frequencies f1 . . . fn, and the sum of these

frequencies is
∑n

i=1
fi = fsum. When we combine all these
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Fig. 5: An Example to Present the Advantage of the

PCFG-based Service Composition over Call Paths

in [4]

alternative subcompositions into a single new subcomposition

nonterminal (by the merge operator), the probability for each

subcomposition in this nonterminal (i.e., the corresponding

rule probability) becomes pi = fi
fsum

. In this setting, the

total probability of a subcomposition being used in place of

another subcomposition (i.e. the probability of generalized

usage) is “
∑n

i=1
[(Probability of generating a case where i

was used) × (Probability of using subcomposition other than

i)]”=
∑n

i=1
pi(1 − pi) =

∑n

i=1
pi − p2i = 1 −

∑n

i=1
p2i . This

value is the total probability that the PCFG-based service

composition may use subcomposition j 6= i when in reality i

would be used if no generalization had occurred. We want such

generalization to have as low probability as possible, hence∑n

i=1
p2i to be as large as possible. This gives us a bound

on which frequent subcompositions are more desirable, and

which merges are more beneficial to hold generalization prob-

abilities low while giving the advantage of providing black-

box services to the end-user. Basically, we want to find very

frequent subcompositions, but we also want subcomposition

alternatives where one dominates the others in terms of usage

frequency (which increases the value of
∑n

i=1
p2i ). We evaluate

such an approach in Section IV.

C. Utilization of PCFGs to Generate Compositions

Once a PCFG is constructed from previous composition

examples, the next step is to utilize it to generate compositions.



Possible Compositions

A.1 (B.1,C.2(D.3,E.3)) - Probability of 0.4

A.1 (B.1,C.2(D.4,E.5)) - Probability of 0.35

A.1 (B.1,C.2(D.5,E.4)) - Probability of 0.25

PCFG for Composing A.1

Start     s_A.1 ( s_B.1 , C.2 )  (1.0)

C.2     s_C.2 ( s_D.3 , s_E.3 )  (0.4)  |

s_C.2 ( s_D.4 , s_E.5 )  (0.35)  |

s_C.2 ( s_D.5 , s_E.4 )  (0.25)

Available nodes: 1,2,4,5

Available services: A.1 , C.2 , D.4 , E.4 , D.5 , E.5

Available terminals: s_A.1 , s_C.2 , s_D.4 , s_E.4 , s_D.5 , s_E.5

Composition Generation via the PCFG

Start

s_A.1 ( s_B.1 , C.2 )

s_C.2 ( s_D.3 , s_E.3 ) s_C.2 ( s_D.4 , s_E.5 ) s_C.2 ( s_D.5 , s_E.4 )

Composition Failure due to Missing Terminals Chosen Composition due to 0.35 Probability Composition Succeeds but not Chosen due to Low Probability

Fig. 6: An Example on How to Generate a Composition via the PCFGs Given the Set of Available Services

For this purpose, we propose the usage of a centralized scheme

where the PCFG is held at a centralized decision maker,

where the list of available services are also kept. The service

name together with the id of a sensor node on which it

resides constitute a unique terminal symbol for our PCFG. We

furthermore assume that the high probability rules represent

the fact that certain composition schemes have been preferred

over others, hence denote a more efficient composition. We

leave the PCFGs where rules are labeled with performance

values for future work.

The creation of a composition essentially involves gen-

erating a sentence from the PCFG, where the productions

with higher probability are kept, and the productions with

unavailable services are directly eliminated. In Figure 6, we

give an example on how the composition is generated at the

centralized decision maker. In this example, there are five

nodes and five basic services (A, B, C, D and E). We denote

an instance of a service at a specific node with a dot, e.g. D.5

means an instance of service D residing on node 5. Each such

instance is made into a terminal in the presented grammar

with the ‘s ’ in front of it, to distinguish between terminals

and nonterminals. As it can be seen, although the composition

with probability 0.4 is more desirable (due to previous usage

frequency, also represented in the grammar), we cannot create

it since node 3 and all of the services on it are unavailable, and

the creation of such composition from the grammar with the

related terminals cannot complete. Instead, the composition

with 0.35 probability is selected. Please note that nodes need

to exchange messages to update the list of available nodes,

as described in [1]. The benefit of using the PCFGs here

are three-fold. First, we already have the probabilities of

use of each service in the past that represent the preference

for using them currently. Second, the exchange of messages

between services with low preferences can be eliminated.

Finally, metadata information can be limited to indication if

a node is available; we do not need all input/output lists

since we already know the links between services. This is

a significant reduction compared to an input/output matching

based automated composition method, hence improvement of

both communication overhead and security of composition

construction.

IV. EVALUATION

In this section, we demonstrate two advantages of the

PCFG-based composition. First, we will show that by chang-

ing the lower bound on the generalizing threshold (as defined

in Section III-B), the number of the composition alternatives

that are substituted in the created composition changes. More

precisely, the lower the generalizing threshold, the more likely

it is that the optimal subcomposition scheme will be replaced

with another one. From that point of view, the methods of

Edge Weights and Call Paths can be seen as generalizing

without any such threshold. We present the effect of the

value of generalizing threshold in comparison to Call Paths

methodology in which generalizing is a bit more suppressed

in general.

We also evaluate how the PCFG-based composition helps

in reducing processing during the composition creation, as

compared to an automated composition scheme from [1]. We

have already discussed how the identification of subcompo-

sition patterns creates black-box services for the end user.

We evaluate how the generalization threshold affects the faster

composition (since the lower the generalization threshold, the

more black-box services there are and the less time it takes to

compose the solution).

A. Simulation Setting

For our evaluations, we have implemented a simulation as a

simple version of the application in Figure 1. See Figure 7 for

a detailed presentation of this scenario. We have a 5x5 grid

where each 2x2 subgrid is in the range of a camera sensor,

hence covering an area of four grid rectangles. Each camera

connects to three acoustic sensors (one from each rectangle,

hence no acoustic sensor is chosen from one rectangle) to

detect the location of a potential target. There are 16 2x2

subgrids, hence 16 cameras, and each subgrid rectangle (there

are 25 of them) has three acoustic sensors (75 in total) for

cameras to choose from.



s1
s2

s3

s4
s5

s6

s7
s8

s9

c1

c9 c10

c13 c14

c3 c4

c7 c8

c11 c12

c15 c16

c1

s1

Camera 1

Acoustic Sensor 1

c5

c2

c6

c1

Camera 1’s region
with four subregions

Fig. 7: Simulation Application

Each user request in our simulation is for 2 to 4 camera

service’s composition, while the cameras have a preset prob-

ability for using each acoustic sensor in each subregion. We

have set the most likely acoustic sensor in a subregion with

probability between 0.85 and 0.95 (p1) for each camera (i.e.,

each camera separately preassigns a likelihood to each acoustic

sensor in each subregion). The other two sensors are assigned

probabilities from the remaining probability range (with total

probability of p2+p3=1-p1). We assume the processing cost for

choosing an acoustic sensor (selection process) in a subregion

to be three units for an automated composition scheme. For

the PCFG however, we take the number of symbols seen at

the first level from the START nonterminal, i.e. each black-box

service is only given a processing cost of one.

B. Results

In our simulations, we used 10 cases of the simulation

scenario given in the previous subsection. Each of these

cases contains 1000 user requests, which chooses 2-4 camera

services to compose. Later, we use the outputs of these

simulations, and generate PCFGs with our proposed method.

We changed the allowance of generalization for service’s

subcomposition to be chosen as a black-box, as given in

Section III-B. We have asserted in our experiments that each

service should occur at least 20 times in the training data to

be chosen as a parameter to the chunk or merge operator,

regardless of its generalization threshold. This threshold is

application specific, and is kept constant in the experiments

since it is not worth representing a service as a black-box

abstraction if it is barely used in the application.

A sample of the PCFG rules constructed from the output

of our simulations is presented in Figure 8. In the figure,

the START rule produces a user request from the cameras 3

(c3) and 12 (c12), i.e. u 3 12. This request uses the black-

box representations of camera services 3 and 12, which are

represented as nonterminals constructed by the merge operator

as previously demonstrated (i.e. M c3 and M c12 where M

represents the merge). Although the black-boxes include more

rules in the exact output than presented here, we have shown

the highest four, and normalized them to reach a sum of

probabilities equal to 1.0, again for presentational purposes.

In the rules, a camera service uses three acoustic sensors (s

START -> u_3_12 ( M_c3 , M_c12 ) (0.005)
M_c3 -> c3 ( s7 , s11 , s27 ) (0.26) |

c3 ( s7 , s22 , s27 ) (0.23) |
c3 ( s11 , s22 , s27 ) (0.21) |
c3 ( s7 , s11 , s22 ) (0.30)

M_c12 -> c12 ( s45 , s56 , s59 ) (0.31) |
c12 ( s40 , s45 , s59 ) (0.22) |
c12 ( s40 , s56 , s59 ) (0.22) |
c12 ( s40 , s45 , s56 ) (0.25)

Fig. 8: A Sample from the Constructed PCFGs

followed by the id, as shown in Figure 7); this is represented as

a string according to the composition representation language

(see Section II-B).
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Fig. 9: Generalization Results

Figure 9 presents the generalization achieved on the train-

ing data by varying the allowed generalization metric (1-

generalization threshold). This metric can be at most 1.0,

meaning there are infinitely many rules each with probability

going to 0 (e.g. 1−
∑

∞

i=1
p2i = 1). We present the results with

different generalization allowance in range [0.8, 1.0], since we

have found out that there are no possible merges until 0.83

(this can be observed from the figure since generalization is 0

until x-axis is 0.83). The y-axis in the figure represents how

many subcompositions in training data would be substituted

with an alternative one, and increases with the generalization

allowance. The method of Call-Paths [4] is the point where

the allowance is 1.0 (i.e. all generalizations are allowed, hence

every service subcomposition is a black-box). The automated

composition [1] is the one with the generalization allowance

of 0.0, hence results in the generalization of 0.

In Figure 10, we provide the results showing the compo-

sition creation processing cost improvements obtained by the

PCFG-based composition using black-box service descriptions

as a function of the generalization threshold. As mentioned

before, increased generalization threshold allow more merges

that combine more alternative service subcompositions into

a single nonterminal (black-box representation). We have

assumed that the automated subcomposition chooses one of

the three acoustic sensors for each subregion when a camera
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Fig. 10: Processing Cost Results

service is activated, hence brings a three-unit processing cost

(for each acoustic service). In contrast, when the PCFG

creates a black-box representation for this camera service,

the corresponding cost incurred is just one-unit. The figure

clearly shows that the increased generalized threshold helps

with lowering processing cost of composition. Without the

generalization (i.e., when generalization threshold is less or

equal to 0.83 and all merges are suppressed), the PCFG

method works only through its rules, and hence brings down

the cost of choosing each camera or acoustic service to one

(for acoustic services, the automated composition incurs the

cost of three-units since we assume an evaluation of selection

the best acoustic sensor among the three possible ones in

the given subregion). Furthermore, the method of Call-Paths

[4] is represented by the point where the x-axis has 1.0

allowance, hence every camera service is made into a black-

box representation of its subcomposition.

The results demonstrate that our PCFG-based composition

methodology lowers processing cost for creating compositions,

and the fine tuning of the application specific generalization

threshold can resolve a trade-off between processing cost and

composition generalization.

V. RELATED WORK IN SERVICE COMPOSITION LEARNING

As already mentioned, we are not aware of any previous

efforts on learning the service compositions in sensor networks

or web applications as an automated composition generation

method by learning from previous compositions. A similar

problem of learning in component based systems, however,

has been widely studied in systems recognizing the causes for

system errors (see surveys in [5] and [6]). We have already

discussed an important work [4], in Sections III and IV, which

we also use for evaluating our approach. We now review

similar studies within the same domain.

The authors of [7] introduce Gingko, a mechanism which

allows users to correlate causal paths (the path between

components that a message follows) with the errors that occur

within a system. Such correlation can be used to detect the

root cause of an error in the system. [8] makes use of Decision

Trees in order to detect failures in a shopping site.

Principal Component Analysis (PCA) has been utilized in

[9] to classify the frequency of component interactions in

internet services into normal and anomalous behavior. Another

significant work [10] makes use of variable length n-grams to

model call and return order between components in distributed

systems. In our opinion, such a method is not suitable for

the service model since in services composition, concurrent

services are called and return data at the same time (e.g.

multiple services providing different outputs to the same

service at the same time).

Other related error detection techniques utilize logs of the

visited internet pages [11], CPU-instructions and function-calls

[12], and messaging between components [13]. In sensor net-

works, [14] examines simple metrics on network performance.

VI. CONCLUSION

In this paper, we have presented our work on the utilization

of PCFG modeling for service composition in sensor networks.

We have discussed and demonstrated (via simulations) the

advantages of our scheme over previous service composition

efforts. We believe that other domains, such as error detection

in software, and policy-based service composition, can also

benefit from this approach. We leave these directions as future

work, along with a PCFG modeling where the rules are labeled

with performance metrics. Moreover, we plan to do a more

detailed evaluation of our methodology, especially in network-

based metrics such as communication overhead.
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