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Abstract—Social networks consist of various communities
that host members sharing common characteristics. Often some
members of one community are also members of other com-
munities. Such shared membership of different communities
leads to overlapping communities. Detecting such overlapping
communities is a challenging and computationally intensive
problem. In this paper, we investigate the usability of high
performance computing in the area of social networks and
community detection. We present highly scalable variants
of a community detection algorithm called Speaker-listener
Label Propagation Algorithm (SLPA). We show that despite
of irregular data dependencies in the computation, parallel
computing paradigms can significantly speed up the detection
of overlapping communities of social networks which is com-
putationally expensive. We show by experiments, how various
parallel computing architectures can be utilized to analyze
large social network data on both shared memory machines
and distributed memory machines, such as IBM Blue Gene.

Keywords-Social Networks; Community; Speedup; Message
Passing Interface (MPI)

I. INTRODUCTION

Social network analysis is a fast evolving field and social
scientists are analyzing social behaviors from various facets.
Social scientists loosely define community as a group of
individuals sharing certain common characteristics [1]. They
have been able to separate socially active agents into differ-
ent groups based on certain characteristics. Yet, these social
groups or communities overlap and social agents show up in
various communities. Such social agents form overlapping
communities and play roles in multiple social groups. These
overlapping communities are very important due to the fact
that they are powerful means of information dissemination.
Advertising agencies, companies finding target markets,
competitors looking for tipping points, social and political
activists etc., are keen to find such overlapping communities
to target them. Identifying and targeting such communities
can lead to information cascades through which an opinion
held by a minority of members may become the opinion of
the community majority.

Most of the clustering algorithms have strong data de-
pendencies, which poses a challenge to parallelization of
such algorithms. Data sharing in parallel clustering algo-
rithms can become a bottleneck. On the other hand, data
synchronization can also reduce the performance of paral-
lel algorithms in multiprocessor systems. Researchers have

investigated shared-nothing, master–slave, and data replica-
tion techniques, which have their merits and drawbacks.
Increasing data size is also an issue when parallelizing
clustering algorithm. In our MPI based approach, we use
minimal synchronization and no data replication. Every
processor reads into memory only its own chunk of data.
Every processor sends and receives data asynchronously.
Processors ensure that their send and receive requests have
completed before posting more such requests. In our pro-
posed parallel algorithms, the increasing data size does not
limit performance of the overall system. Moreover, results
show that with increasing data size, the speedups of our
parallel algorithms increase.

The rest of the paper is organized as follows. Section II
provides an overview of relevant research. Section III de-
scribes parallel linear time overlapping community detection
algorithm with message passing. We use MPI on Blue
Gene parallel machine and evaluate speedup and efficiency
of our approach on up to 1,204 processors. Section IV
discusses multithreaded community detection on shared-
memory multiprocessor that utilizes busy-waiting and im-
plicit synchronization to ensure correct execution. We de-
scribe data partitioning and node rearrangement done to
improve performance. We also discuss the speedup and effi-
ciency accomplished by our approach. Finally, in Section V,
we provide some final remarks and conclusions and briefly
describe future work.

II. RELATED WORK

Researchers interested in clustering and social network
community detection have designed and investigated differ-
ent algorithms of various complexities. The clique percola-
tion technique [2] finds communities in a fully connected
network by finding adjacent cliques in the graph. The k-
means clustering algorithm [3] partitions a population in
k clusters. Every node in a graph is assigned to cluster
with the closest mean. In [4], an iterative scan technique is
employed. In such an approach, nodes are iteratively added
or removed in order to improve a density function. The
algorithm is implemented using shared-nothing architectural
approach. The approach spreads data on all the computers
in a distributed setup and uses master–slave architecture
for clustering. In such an approach, the master may easily
become a bottleneck as the number of processors and the
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data size increases. Label propagation based community
detection algorithms, such as LPA [5], COPRA [6] and
SLPA [7], are based on the idea of simulating the propa-
gation of labels in the network, where node ids can be used
as labels. Nodes store, propagate and rank labels in each
step. When the algorithm stops, nodes with the same highest
probability label form a community. In this paper, we use
SLPA as the basis for our parallelization.

Following the explosive growth of online social com-
munities, recently the parallel approaches to community
detection has been investigated. A parallel clustering algo-
rithm is suggested in [8], which is a parallelized version of
DBSCAN [9]. In [10], the authors coded their community
detection algorithm based on propinquity using a vertex-
oriented Bulk Synchronous Parallel (BSP) model to enable
large scale parallelization. In [11], the authors implemented
community detection algorithm on massively multithreaded
Cray XMT and ran on it networks with over 100 million
nodes and over a billion edges. Yet, we are not aware of
parallelization efforts for overlapping community detection
algorithms considered in this paper.

III. PARALLEL LINEAR TIME COMMUNITY DETECTION
WITH MESSAGE PASSING

The SLPA [7] is a sequential linear time algorithm for
detecting overlapping communities. SLPA iterates over list
of nodes in the network. Each node i randomly picks one
of its neighbors ni and the neighbor then selects randomly
a label l from its list of labels and sends it to the requesting
node. Node i then updates its local list of labels with l.
This process is repeated for all the nodes in the network.
Once it is completed, the list of nodes is shuffled and the
same processing repeats again for all nodes. After t iterations
of shuffling and processing label propagation, every node
in the network has label list of length t, as every node
receives one label in each iteration. After all iterations are
completed, post processing is carried out on the list of labels
and communities are extracted. We refer interested readers
to full paper [7] for more details on SLPA.

It is obvious that the sequence of iterations executed in
SLPA algorithm makes the algorithm sequential and it is
important for the list of labels updated in one iteration to be
reflected in the subsequent iterations. Therefore, the nodes
cannot be processed completely independent of each other.
Each node is a neighbor of some other nodes, therefore, if
the lists of labels of its neighbors are updated, it will receive
a label randomly picked from the updated list of labels.

A. Parallel SLPA with Message Passing

In MPI based parallelized SLPA, we split the network
into p partitions of nodes to be processed on p processors.
Each processor gets its allocation of nodes that are flagged
as ‘local’ and recreates network induced by local node
by creating duplicates of nodes that are allocated to other

processors but have an edge whose other node is the local
one. These duplicated nodes are flagged as ‘nonlocal’. After
building a local network, each processor runs modified
SLPA. At the end of each j iteration where j ≤ t in SLPA
each processor p sends label lists of its local nodes to all
other processors, so that they can update their duplicated
nonlocal nodes. Also p updates its local duplicates of nodes
with list of labels that it received from other processors.

Algorithm 1 shows our parallel SLPA algorithm. It runs
on every processor p. The numProcs is the total number
of processors on which the algorithm is executed, myRank
is the MPIRank of the processor, InputF ile is the social
network input file. We use Zoltan partitioning library [12] to
create load balanced partitions in parallel. In Algorithm 1, n
is the total number of objects in a local network on a given
processor whereas Labelsi is the list of labels contained by
node i. This parallel version of SLPA does not change its
complexity, therefore the algorithm remains linear in time.

Algorithm 1 : Parallel SLPA
myPartition← CreateZoltanPartition(InputF ile)
CreateLocalNetwork(myPartition)

for j = 0 to j < t do
for i = 0 to i < n do

if i = myNode then
l← label from randomly picked neighbor
Labelsi ← l
SendBuffer[]← i
SendBuffer[]← l

end if
end for
for p = 0 to p < numProcs do

if p 6= myRank then
Send SendBuffer to p

end if
end for
Receive Labelsi from all p ≤ numProcs
Update Labeli ∀i < n
Reshuffle list of Nodes in Local Network
SendBuffer[]← NULL

end for
print Most frequent labels to ouputfile

At the end of each run, we calculate the total execution
time and also the time spent in MPI communication. We
calculated speedup using formula shown in (1), efficiency
according to (2).

Speedup =
T1

Tn
(1)

where Speedup is the actual speedup calculated according
to equation 1 and p is the number of cores.

Efficiency =
Speedup

p
(2)



After all processors have exchanged labels and the main
label exchange execution has finished, every processor finds
out the most frequent label in the label list of each node
that it processed. These labels represent communities and are
written to an output file. From all the output files produced
by the processors, unique labels are extracted. They are
representing the detected overlapping communities.

B. Performance Evaluation of the MPI Based Approach

We performed runs on a hyper threaded Linux system
operating on a Silicon Mechanics Rackform nServ A422.v3
machine (GANXIS.nest.rpi.edu). Processing power was pro-
vided by 64 cores organized as four AMD OpteronTM 6272
(2.1 GHz, 16-core, G34, 16 MB L3 Cache) central process-
ing units operating over a shared 512 GB of Random Access
Memory (RAM) (32 x 16 GB DDR3-1600 ECC Registered
2R DIMMs) running at 1600 MT/s Max. We also performed
runs on IBM Blue Gene/Q stationed at The Computational
Center for Nanotechnology Innovations facility at RPI, Troy,
NY. Runs with number of processors varying between 1
and 32 were conducted on GANXIS whereas all runs with
64 processors and above were performed on Blue Gene/Q
system. We used network with 1,087,562 nodes and average
degree of 2.84, so the number of edges was over 3 million.
We implemented the algorithm in C++ using MPI for
parallelism.

Fig. 1 shows how running time varies with increasing
processors. Clearly, the total running time decreases as we
engage more and more processors to analyze the network.
The total running time includes the time spent on commu-
nication between processors and time spent on execution of
the algorithm itself. As we can see, increasing number of
processors initially affects the execution time significantly
but as more and more processors are added, the impact of
increased number of processors declines. This is because
as we increase the number of processors, each processor
gets a smaller chunk of data to process. The running time
increases on 64 processors compared to that time on 32
processors because of a change in system architecture.
For 64 processors, we switch from GANXIS machine to
Blue Gene. Trends in execution on both architectures are
similar as execution time decreases with increasing number
of processors. The GANXIS machine is a shared memory
machine with 512 GB of RAM and the individual processors
of GANXIS are more powerful than those of Blue Gene/Q.
We used Zoltan partitioning software [12] to partition graph
in a way that balances the load of processors. Yet, as shown
in Algorithm 1, for the large number of processors (512 or
more) even small imperfections of partitioning negatively
impact speedup. If we look at the computation time trend
in Fig. 2, which shows time spent on running the actual
algorithm by excluding the communication time, we can
see that we spent even less time in actual computation than
indicated on the previous plot.

Figure 1. Total running time taken for detecting communities in the
network.

Figure 2. Actual computation time taken for detecting communities in the
network.

Figure 3. Time spent on communication during community detection in
the network.

We can see from Fig. 3 that as we increase the number
of processors, the time spent on communication initially
increases, even though it is still very small. The increase
is specially noticeable on GANXIS (1–16 processors). In
communication time plot, just like execution time plot, the
line trend changes as we switch to Blue Gene. On GANXIS
machine, there is a significant increase in communication
time with increasing number of processors (the exception is
the case of 32 processors resulting from Zoltan improved
partitioning) whereas the communication time is decreasing
in case of Blue Gene. The sharp decline in communication
time on 64 processors upwards as compared to 2–32 pro-
cessors is caused by the high bandwidth torus network that
is in place for communication among processors in Blue
Gene/Q. The plots also show how efficient the Blue Gene
communication backbone is as compared to a hyper threaded
multi-core processor system in which the bandwidth is
limited by the bus architecture.

Fig. 4 shows the speedup achieved by increasing the
number of processors. Higher speed up is obtained by



Figure 4. Speedup achieved with increasing number of processors.

Figure 5. Speedup achieved with increasing number of processors based
on computation time.

Blue Gene with increasing processors in the range 64–512
processors thanks to high bandwidth network. The speedup
comes down for 1024 processors because with such a high
number of processors, they do not get enough data to
process compared to the communication between processors
lowering the efficiency of parallel execution. Fig. 5, shows
speedup calculated based on the actual computation time
(excluding communication time). As expected, we see higher
speedup when only the actual computation time is taken into
consideration.

IV. MULTITHREADED SLPA WITH BUSY-WAITING AND
IMPLICIT SYNCHRONIZATION

In the multithreaded SLPA we adopt a busy-waiting
synchronization approach. Each thread performs label propa-
gation on a subset of nodes assigned to this particular thread.
This requires that the original network be partitioned into
subnetworks with one subnetwork to be assigned to each
thread. Although partitioning can be done in several different
ways depending on the objective that we are trying to reach,
in this case the best partitioning will be the one that makes
every thread spend the same amount of time processing each
node. Label propagation for any node consists of forming
a list of labels by selecting a label from every neighbor
of this node and then selecting a single label from this
list to become a new label for this node. In other words,
the ideal partitioning would guarantee that at every step of
the label propagation phase each thread deals with a node
that has exactly the same number of neighbors as nodes
that are being processed by other threads. Thus the ideal
partitioning would partition the network in such a way that

a sequence of nodes for every thread consists of nodes
with the same number of neighbors across all the threads.
Such partitioning is illustrated in Fig. 6. T1, T2, ..., Tp are p
threads that execute SLPA concurrently. As indicated by the
arrows, time flows from top to bottom. Each thread has its
subset of nodes ni1, ni2, ..., nik of size k where i is the
thread number, and node neighbors m1,m2, ...,mk . A box
corresponds to one iteration. There are t iterations in total.
Dashed lines denote points of synchronization between the
threads.

In practice, this ideal partitioning will loose its perfection
due to variations in thread start-up times as well as due
to uncertainty associated with thread scheduling. In other
words, in order for this ideal scheme to work perfectly, hard
synchronization of threads after processing every node is
necessary. Such synchronization would be both detrimental
to the performance and unnecessary in real-life applications.

Instead of trying to achieve an ideal partitioning we can
employ a much simpler approach by giving all the threads
the same number of neighbors that are examined in one
iteration of the label propagation phase. It requires providing
each thread with such a subset of nodes that the sum of
all indegrees is equal to the sum of all indegrees of nodes
assigned to every other thread. In this case for every iteration
of the label propagation phase every thread will examine
the same overall number of neighbors for all nodes that are
assigned to this particular thread. Therefore, every thread
will be performing, roughly, the same amount of work per
iteration. Moreover, synchronization then is only necessary
after each iteration to make sure that no thread is ahead of
any other thread by more than one iteration. Fig. 7 illustrates
such partitioning. As before, T1, T2, ..., Tp are p threads that
execute SLPA concurrently. As shown by the arrows, time
flows from top to bottom. However each thread now has its
subset of nodes ni1, ni2, ..., niki

of size ki where i is the
thread number. In other words, threads are allowed to have
different number of nodes that each of them processes, as
long as the total number of node neighbors M =

∑ki

i=1 mi

is the same across all the threads. A box still corresponds
to one iteration. There are t iterations in total. Dashed lines
denote points of synchronization between the threads.

We can employ yet an even simpler approach of just
splitting nodes equally between the threads in such a way
that every thread gets the same (or nearly the same) number
of nodes. It is important to understand that this approach is
based on the premise that the network has small variation
of local average of node degrees across all possible subsets
of nodes of equal size. If this condition is met, then, as
in the previous case, every thread performs approximately
the same amount of work per iteration. Our experiments
show that for many real-world networks this condition holds,
and we accepted this simple partitioning scheme for our
multithreaded SLPA implementation.

Given the choice of the partitioning methods described



Figure 6. Ideal partitioning of the network for multithreaded SLPA.

Figure 7. A better practical partitioning of the network for multithreaded SLPA.

above, each of the threads running concurrently is processing
all the nodes in its subset of nodes at every iteration of the
algorithm. Before each iteration, the whole subset of nodes
processed by a particular thread needs to be shuffled in order
to make sure that the label propagation process is not biased
by any particular order of processing nodes. Moreover, to
guarantee the correctness of the algorithm, it is necessary to
ensure that no thread is more than one iteration ahead of any
other thread. The latter condition places certain restriction
on the way threads are synchronized. More specifically, if a
particular thread is running faster than the others (whatever
the reasons for this might be) it has to eventually pause
to allow other threads to catch up (i.e. to arrive at a
synchronization point no later than one iteration behind this
thread). This synchronization constraint limits the degree of
concurrency of this multithreaded solution.

It is important to understand the importance of partition-
ing the network nodes into subsets to be processed by the
threads in respect to the distribution of edges across different
network segments. In our implementation we use a very
simple method of forming subsets of nodes for individual
threads. First, a subset for the first thread is formed. Nodes
are read sequentially from an input file. As soon as a new
node is encountered it is added to the subset of nodes
processed by the first thread. After the subset of nodes for
the first thread has been filled, a subset of nodes for the
second thread is formed, and so on. Although simple and
natural, this approach works well on networks with high
locality of edges. For such networks if the input file is sorted
in the order of node numbers, nodes are more likely to have
edges to other nodes that are assigned to the same thread.
This leads to partitioning where only a small fraction (few



percent) of nodes processed by each thread have neighbors
processed by other threads.

Algorithm 2 shows the label propagation phase of our
multithreaded SLPA algorithm which is executed by each
thread. First, each thread receives a subset of nodes that
it processes called ThreadNodesPartition. An array of
dependencies Used is first initialized and then filled in such
a way that it contains 1 for all threads that process at least
one neighbor of the node from ThreadNodesPartition
and 0 otherwise. This array of dependencies Used is then
transformed to a more compact representation in the form
of a dependency array D. An element of array D contains
thread number of the thread that processes some neighbor
of a node that this thread processes. Dsize is the size of
array D. If no node that belongs to the subset processed by
this thread has neighbors processed by other threads, then
array D is empty and Dsize = 0. If, for example, nodes that
belong to the subset processed by this thread have neighbors
processed by threads 1, 4, and 7, then array D has three
elements with values of 1, 4, and 7, and Dsize = 3. After
the dependency array has been filled, the execution flow
enters the main label propagation loop which is controlled by
counter t and has maxT iterations. At the beginning of every
iteration we ensure that this thread is not ahead of the threads
on which it depends by more than one iteration. If it turns out
that it is ahead, this thread has to wait for the other threads
to catch up. Then the thread performs a label propagation
step for each of the nodes it processes which results in a
new label being added to the list of labels for each of the
nodes. Finally, the iteration counter is incremented, and the
next iteration of the loop is considered.

In order to even further alleviate the synchronization
burden between the threads and minimize the sequentiality
of the threads as much as possible, another optimization
technique can be used. We note that some nodes which
belong to a set processed by a particular thread have
connection only to nodes that are processed by the same
thread (we call them internal nodes) while other nodes have
external dependencies. We say that a node has an external
dependency when at least one of its neighbors belongs to
a subset of nodes processed by some other thread. Because
of nodes with external dependencies, synchronization rules
described above must be strictly followed in order to ensure
correctness of the algorithm and meaningfulness of the
communities it outputs. However nodes with no external
dependencies can be processed within a certain iteration
independently from the nodes with external dependencies. It
should be noted that a node with no external dependencies
is not completely independent from the rest of the network
since it may well have neighbors of neighbors that are
processed by other threads.

It follows that processing of nodes with no external
dependencies has to be done within the same iteration
framework as for nodes with external dependencies but with

Algorithm 2 : Multithreaded SLPA
ThreadPartition← CreatePartition(InputF ile)
p← number of threads

for j = 1 to j < p do
Used[j]← 0

end for
for all v such that v is in ThreadNodesPartition do

for all w such that w has an edge to v do
k ← getProcessorForNode(w)
Used[k]← 1

end for
end for
Dsize← 0

for j = 1 to j < p do
if Used[j] > 0 then

D[Dsize]← j
Dsize← Dsize+ 1

end if
end for
while t < maxT do

for j = 0 to j < Dsize− 1 do
while t− t of thread D[j] > 1 do

Do nothing
end while

end for
for all v such that v is in myPartition do

l← selectLabel(v)
Add label l to labels of v

end for
t← t+ 1

end while

less restrictive relations in respect to the nodes processed by
other threads. In order to utilize the full potential of the tech-
nique described above, it is necessary to split the subset of
nodes processed by a thread into two subsets, one of which
contains only nodes with no external dependencies and the
other one contains all the remaining nodes. Then during
the label propagation phase of the SLPA nodes that have
external dependencies are processed first in each iteration.
Since we know that by the time such nodes are processed
the remaining nodes (ones with no external dependencies)
cannot influence the labels propagated to nodes processed
by other threads (due to the symmetry of the network) it
is safe to increment the iteration counter for this thread,
thus allowing other threads to continue their iterations if
they have been waiting for this thread in order to be able to
continue. Meanwhile this thread can finish processing nodes
with no external dependencies and complete the current
iteration.

This approach effectively allows a thread to report com-
pletion of the iteration to the other threads earlier than



it has in fact been completed by relying on the fact that
the work which remains to be completed can not influence
nodes processed by other threads. This approach, though
seemingly simple and intuitive, leads to noticeable improve-
ment of the efficiency of parallel execution (as described
in Section IV-A) mainly due to decreasing the sequentiality
of execution of multiple threads by signaling other threads
earlier than in the absence of such splitting.

An important peculiarity arises when the number of nodes
with external dependencies is only a small fraction of all the
nodes processed by the thread (few percent). In this case
it would be beneficial to add some nodes without external
dependencies to the nodes with external dependencies and
process them together before incrementing the iteration
counter. The motivation here is that nodes must be shuffled
in each partition separately from each other to preserve the
order of execution between partitions. Increasing partition
size above the number of external nodes improves shuffling
in the smaller of the two partitions.

The remaining nodes without external dependencies can
be processed after incrementing the iteration counter, as be-
fore. In order to reflect this optimization factor we introduce
an additional parameter called the splitting ratio. A value of
this parameter indicates the percentage of nodes processed
by the thread before incrementing the iteration counter. For
instance, if we say that splitting of 0.2 is used it means that
at least 20% of nodes are processed before incrementing the
iteration counter. If after initial splitting of nodes into two
subsets of nodes with external dependencies and without
external dependencies it turns out that there are too few
nodes with external dependencies to satisfy the splitting
ratio, some nodes that have no external dependencies are
added to the group of nodes with external dependencies just
to bring the splitting ratio to the desired value.

Algorithm 3 shows our multithreaded SLPA algorithm that
implements splitting of nodes processed by a thread into a
subset of nodes with external dependencies and a subset
with no external dependencies. The major difference from
Algorithm 2 is that instead of processing all the nodes before
incrementing the iteration counter, we first process a subset
of nodes that includes nodes that have neighbors processed
by other threads, then we increment the iteration counter,
and then we process the rest of the nodes.

A. Evaluation of the multithreaded approach

The GANXIS machine detailed in Section III-B was used
for all the experiments. The source code was written in
C++03 and compiled using g++ 4.6.3 (Ubuntu/Linaro 4.6.3-
1ubuntu5).

All the experiments were run with 100 iterations (the
value of maxT was set to 100) on a network with 4,350,248
nodes and 12,332,112 edges. The network is symmetrical,
i.e. if there is an edge from some node i to some node j
then there is also an edge from node j to node i.

Algorithm 3 : Multithreaded SLPA with splitting of nodes
Internal← CreateInternalPartition(InputF ile)
External← CreateExternalPartition(InputF ile)
p← number of threads

/* Unchanged code from Algorithm 2 omitted */
while t < maxT do

for j = 0 to j < Dsize− 1 do
while t− t of thread D[j] > 1 do

Do nothing
end while

end for
for all v such that v is in External do

l← selectLabel(v)
Add label l to labels of v

end for
t← t+ 1
for all v such that v is in Internal do

l← selectLabel(v)
Add label l to labels of v

end for
end while

All measurements include only time for the label prop-
agation phase since it is this stage that differs in our
multithreaded implementation from the original sequential
version. Time necessary to read an input file and construct
in-memory representation of the nodes and edges as well
any auxiliary data structures is not included in the timing.
All post-processing steps and writing an output file have also
been excluded.

Since the hardware platform that we utilized provides
64 cores, every thread in our tests executes on its dedi-
cated core. Therefore threads do not compete for central
processing unit (CPU) cores, they execute in parallel, and
we can completely ignore thread scheduling issues in our
considerations. Because of this we use terms ‘thread’ and
‘core’ interchangeably when we describe results of run-
ning the multithreaded SLPA. The number of cores in our
runs varies from 1 to 32 because there is a performance
degradation for a number of threads bigger than 32. This
performance penalty is most likely caused by the memory
banks organization of our machine. Speedup and efficiency
are calculated using (1) and (2) defined earlier. No third-
party libraries or frameworks have been used to set up
and manage threads. Our implementation relies on Pthreads
application programming interface (POSIX threads) which
has implementations across a wide range of platforms and
operating systems.

We noticed that compiler version and compilation flags
can play a crucial role not only in terms of how efficiently
the code runs but in the sole ability of code to execute in
the multithreaded mode. Unfortunately little if anything is
clearly and unambiguously stated in compiler documentation



regarding implications of using various compiler flags to
generate code for execution on multithreaded architectures.
For the most part, developers have to rely on their own
experience or common sense and experiment with different
flags to determine the proper set of options which would
make compiler generate effective code capable of flawlessly
executing multiple threads.

For instance, when compiler runs with either -O2 or -O3
optimization flag to compile the multithreaded SLPA the
resulting binary code simply deadlocks at execution. The
reason for deadlock is exactly the optimization that compiler
performs ignoring the fact that the code is multithreaded.
This optimization leads to threads being unable to see
updates to the shared data structures performed by other
threads. In our case such shared data structure is an array
of iteration counters for all the threads. Evidently, not being
able to see the updated values of other threads’ counters
quickly leads threads to a deadlock.

Another word of caution should be offered regarding
some of the debugging and profiling compiler flags. More
specifically, compiling code with -pg flag which generates
extra code for a profiling tool gprof leads to substantial
overhead when the code is executed in a multithreaded
manner. The code seems to be executing fine but with a
speedup of less than 1. In other words, the more threads
are used the longer it takes for the code to run regardless
of the fact that each thread is executed on its own core and
therefore does not compete with other threads for CPU and
that the more threads are used the smaller is a subset of
nodes that each thread processes.

Fig. 8 shows the time it took to complete the label
propagation phase of the multithreaded SLPA for the number
of cores varying from 1 to 32. It can be seen that the time
decreases nearly linearly with the number of threads. It can
be noticed that the rate at which time decreases with the
number of cores falls for larger number of cores. This trend
is even more evident in Fig. 9 which shows speedup and
efficiency obtained for the same runs. As the number of
cores increase, the speedup grows faster but not as fast
as the number of utilized cores, so efficiency drops. Such
behavior can be attributed to several factors. First of all, as
the number of cores grow while the network (and hence the
number of nodes and edges) stays the same, each thread
gets fewer nodes and edges to process. In limit, it can cause
the overhead of creating and running threads to outweigh the
benefits of parallel execution for a sufficiently small number
of nodes. Furthermore, as the number of cores grows, the
number of neighbors of nodes with external dependencies
increases (both because each thread gets fewer nodes and
more threads to execute them). Larger number of nodes
with external dependencies, in turn, makes the thread more
dependent on other threads.

Fig. 10 shows label propagation times of the multi-
threaded version of SLPA which splits nodes into a subset

Figure 8. Label propagation time for a network with no splitting of nodes.

Figure 9. Speedup and efficiency for a network with no splitting of nodes.

Figure 10. Label propagation time for a network with splitting of nodes.

of nodes that have neighbors processed by other threads,
and a subset of nodes that do not have such neighbors. The
splitting ratio is fixed in this case at 0.2. Fig. 11 provides an
insight on the speedup and efficiency for this configuration.
The general shape of curves is similar to those in the version
with no splitting. However, it can be seen that the absolute
values are better (times are lower, speedup and efficiency
are larger) for the version with splitting of nodes. The
data collected support our expectations that minimizing the
waiting time that a thread spends in a busy-waiting loop
while other threads are catching up will make our code run
faster and more efficiently.

The benefit of splitting the nodes can further be examined
by looking at Figs. 12 and 13. For the entire range from
1 to 32 cores the version with splitting outperformed the
alternative in terms of label propagation time. The advantage
is low for 2 cores and also declines as the number of cores
increase. Both speedup and efficiency of the version with
splitting were worse with 2 cores than for a version with no
splitting, but it was better for all the other cases. Speedup
and efficiency also degrade when the number of cores is



Figure 11. Speedup and efficiency for a network with splitting of nodes.

Figure 12. Label propagation time advantage (as a difference between
running time for a version without and with splitting).

Figure 13. Speedup and efficiency advantage (as a difference between
speedup and efficiency for a version without and with splitting).

increased to more than 8. These effects are related to the
behavior of split subsets of nodes when the number of cores
increases, as described above.

V. CONCLUSION AND FUTURE WORK

In this paper, we have investigated parallel algorithms
for community detection in social networks and the use of
a super computing paradigm in social networks analysis.
We found that SLPA runs faster with increasing number of
processors. With a sufficient number of processors used, the
parallel SLPA can process social networks with millions of
nodes in seconds.

In our future work, we plan to explore a combined
approach for massive parallelism in which message passing
is used to communicate between processors but each pro-
cessor launches several threads to process network fragment
assigned to it in parallel on available cores.
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