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We present VOGUE, a novel, variable order hidden Markov model with state durations, that
combines two separate techniques for modeling complex patterns in sequential data: pattern
mining and data modeling. VOGUE relies on a variable gap sequence mining method to extract
frequent patterns with different lengths and gaps between elements. It then uses these mined
sequences to build a variable order hidden Markov model, that explicitly models the gaps. The
gaps implicitly model the order of the HMM, and they explicitly model the duration of each state.
We apply VOGUE to a variety of real sequence data taken from domains such as protein sequence

classification, web usage logs, intrusion detection, and spelling correction. We show that VOGUE
has superior classification accuracy compared to regular HMMs, higher-order HMMs, and even
special purpose HMMs like HMMER, which is a state-of-the-art method for protein classification.
The VOGUE implementation and the datasets used in this paper are available as open-source at:
www.cs.rpi.edu/~zaki/software/VOGUE.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database applications—
Data Mining; I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pattern Recognition]: Models;
G.3 [Probability and Statistics]: —Markov processes

General Terms: Algorithms

Additional Key Words and Phrases: Hidden Markov Models, Higher-order HMM, HMM with
Duration, Sequence Mining and Modeling, Variable-order HMM

1. INTRODUCTION

Many real world applications, such as those in bioinformatics, web accesses, and
text mining, encompass sequential or temporal data with long and short range
dependencies. Techniques for analyzing such data can be grouped in two broad
categories: pattern mining and data modeling. Efficient methods have been pro-
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posed for sequence pattern mining in both data mining [Srikant and Agrawal 1996;
Mannila et al. 1995; Zaki 2001; Pei et al. 2001] and bioinformatics [Gusfield 1997;
Jensen et al. 2006]. For sequence data modeling, Hidden Markov Models (HMMs)
[Rabiner 1989] have been widely employed in a broad range of applications such
as speech recognition, web usage analysis, and biological sequence analysis [Durbin
et al. 1998; Felzenszwalb et al. 2003; Pitkow and Pirolli 1999].

A simple, or first-order, Markov model is a stochastic process where each state
depends only on the previous state. In regular Markov models, each state emits
only one symbol, and only the transition probabilities have to be estimated. A first-
order hidden Markov model, on the other hand has “hidden” states, i.e., it may
emit more than one symbol, according to the state-dependent output probabili-
ties, which become additional parameters that have to be estimated. Due to their
very nature first-order (hidden) Markov models may not suitably capture longer
range sequential dependencies. For such problems, higher-order and variable-order
Markov models [Pitkow and Pirolli 1999; Saul and Jordan 1999; Deshpande and
Karypis 2001; Ron et al. 1996; Buhlmann and Wyner 1999] and HMMs [du Preez
1998; Schwardt and Du Preez 2000; Galassi et al. 2007; Law and C.Chan 1996;
Wang et al. 2006] have been proposed. However, building an m-order HMM re-
quires estimation of the joint probabilities of the previous m states. Furthermore,
not all of the previous m states may be predictive of the current state. Hence, the
training process is extremely expensive and suffers from local optima. As a result,
higher-order models may suffer from high state-space complexity, reduced coverage,
and sometimes even low prediction accuracy [Deshpande and Karypis 2001].

To address these limitations, we introduce a new approach to temporal/sequential
data analysis that combines temporal pattern mining and data modeling. The ratio-
nale behind our approach is that many real-world sequences are difficult to directly
model via HMMs due to the complex embedded dependencies. Instead we first
extract these frequent sequential patterns via sequence mining, and then use those
to construct the HMM. We introduce a new variable order HMM called VOGUE
(Variable Order and Gapped HMM for Unstructured Elements) to discover and
interpret long and short range temporal locality and dependencies in the analyzed
data 1. The first step of our method uses a new sequence mining algorithm, called
Variable-Gap Sequence miner (VGS), to mine variable-length frequent patterns,
that may contain different gaps between the elements. The second step of our tech-
nique uses the mined variable-gap sequences to automatically build the variable-
order VOGUE HMM, i.e., the topology of the model is learned directly from the
mined sequences. In fact, VOGUE models multiple higher order HMMs via a single
variable-order model with explicit duration.

In this paper we apply VOGUE on several real datasets. The first application
is for a problem in biological sequence analysis, namely, multi-class protein classi-
fication. Given a database of protein sequences, the goal is to build a statistical
model that can determine whether a query protein belongs to a given family (class)
or not. Statistical models for proteins, such as profiles, position-specific scoring
matrices, and hidden Markov models [Eddy 1998] have been developed to find ho-
mologs. However, in most biological sequences, interesting patterns repeat (either

1A preliminary version of this work appeared in [Bouqata et al. 2006]

ACM Journal Name, Vol. X, No. X, XX 2009.



· 3

within the same sequence or across sequences) and may be separated by variable
length gaps. Therefore a method like VOGUE that specifically takes these kind
of patterns into consideration can be very effective. We show experimentally that
VOGUE outperforms HMMER [Eddy 1998], a HMM model specifically designed
for protein sequences.

We also apply VOGUE to the problems of web usage mining, where the task
is to distinguish the affiliation of the users, i.e., to find out whether users come
from an academic (edu) or a commercial or other domain. We also looked at the
problem of masquerading within intrusion detection. Given user command logs at
a terminal we look at the task of identifying the user. Finally, we look at spelling
correction. Given a dataset of commonly misspelt words along with their context,
we determine whether the usage is correct or incorrect. It is important to keep in
mind that the real purpose of using an HMM based approach like VOGUE is to
model the data, i.e., to build a generative model. VOGUE can also be used as a
discriminative model, but this mode is used mainly for comparison against other
HMM methods.

2. RELATED WORK

A recent book [Dong and Pei 2007] provides a very good introduction to the issues
that span sequence mining and modeling. Here we briefly review the most relevant
research.

2.1 Sequence Mining

Sequence mining helps to discover frequent sequential patterns across time or po-
sitions in a given data set. Most of the methods in bioinformatics are designed
to mine consecutive subsequences, such as those that rely on suffix trees [Gus-
field 1997]. Within data mining, the problem of mining sequential patterns was
introduced in [Agrawal and Srikant 1995]. The same authors then extended the
approach to include constraints like max/min gaps, and taxonomies in [Srikant and
Agrawal 1996]. Other sequence mining methods have also been proposed, such as
SPADE [Zaki 2001], which was later extended to cSPADE [Zaki 2000] to consider
constraints like max/min gaps and sliding windows. GenPresixSpan [Antunes and
Oliveira 2003] is another algorithm based on PrefixSpan [Pei et al. 2001] that con-
siders gap-constraints. More recent works on gapped sequence mining appear in [Li
and Wang 2008; Zhu and Wu 2007]. Regular expressions and other constraints
have been studied in [Garofalakis et al. 2002; Zhang et al. 2005]. An approach in
which even large gaps between frequent patterns can be bridged was proposed in
[Szymanski and Zhang 2004] in the so-called Recursive Data Mining (RDM) ap-
proach. The system was used initially for intrusion detection and more recently
for text mining and role detection [Chaoji et al. 2008]. In contrast to all of these
approaches, we explicitly mine the variable gap sequences while keeping track of all
the intermediate symbols (in the gaps), their frequencies, and the gap frequency
distributions. This analysis of the gap is used, later on, for building the VOGUE
state model.
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2.2 Markov Models and HMMs

Markov models and HMMs have been proposed to model longer range dependen-
cies. However, such models suffer from high state-space complexity, since a k-th
order Markov model/HMM, with alphabet Σ, can potentially have |Σ|k states. Es-
timating the joint probabilities of each k-th order state is also difficult. Below we
briefly review the state-of-the-art approaches for these methods.

2.2.1 Markov Models. The all-k-order Markov model was proposed in [Pitkow
and Pirolli 1999], where one has to maintain a Markov model of order j (where
the current state depends on the j previous states) for all 1 ≤ j ≤ k. Three post-
pruning techniques based on frequency, transition probability, and error thresholds,
were proposed in [Deshpande and Karypis 2001] to improve the prediction accuracy
and coverage, and to lower the state complexity of the all k-order Markov model.
Another approach, called WMo, combines the mining of sequences with a Markov
predictor for web prefetching [Nanopoulos et al. 2003]. It also maintains various
Markov models up to length k, but was shown to be a generalization of the above
approaches. The main limitations of all the above methods is that multiple models
still have to be maintained, and these methods do not explicitly model gaps.

In [Saul and Jordan 1999], mixed order Markov models were proposed. However,
they rely on Expectation Maximization (EM) algorithms that are prone to local
optima. Furthermore, their approach depends on a mixture of bigrams over k con-
secutive previous states, whereas VOGUE automatically ignores irrelevant states.
Probabilistic Suffix Automata and Prediction Suffix Trees (PST), proposed in [Ron
et al. 1996], are both variable memory Markov models. To learn the PST, their
algorithm grows the suffix tree starting from a root node. New nodes are added
to the tree if the sample supports the string labeled with that node. The Variable
Length Markov Chains (VLMC) approach [Buhlmann and Wyner 1999] also uses
a tree context, and focuses on minimizing the number of states via an information-
theoretic approach. Unlike VOGUE, neither PST nor VLMC explicitly handle
gaps, and in any case they are not hidden.

2.2.2 HMMs. One of the first approaches was to extend HMMs to second-
order [Kriouile et al. 1990]. They extended the Viterbi and Baum-Welch algo-
rithms [Durbin et al. 1998] that are used for state prediction and training, to di-
rectly handle second-order models. Higher-order HMMs for a fixed length k ≥ 2,
were considered in [du Preez 1998]. The approach first converts the fixed-order
HMM to an equivalent first-order HMM, and then uses an incremental method to
train the higher-order HMM from lower order models. Another fixed-order HMM
was proposed in [Law and C.Chan 1996] in the context of language modeling via
n-grams (for a fixed n). Unlike the fixed-order approaches, VOGUE is variable or-
der, and it uses a more effective and efficient approach of frequent sequence mining
to extract the dependencies. Mixed order HMMs were proposed in [Schwardt and
Du Preez 2000], where a prediction suffix tree is incorporated in the training of the
HMM. The use of the suffix tree implies that only consecutive subsequences are con-
sidered in the modeling, and further, the method still relies on an EM method for
training. In contrast, VOGUE is better able to capture the variable dependencies,
with gaps, via sequence mining.
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In more recent work, the Episode Generating HMMs (EGH) [Laxman et al. 2005]
are especially relevant. Their main goal was to develop a generative model for each
frequent episode (or sequence) in the data. To achieve this aim, they first mine
frequent sequences from the data. However, they mine only non-overlapping se-
quences, and further they do not explicitly handle gaps as we do in VOGUE. In
the second step, they build a specific HMM for a specific sequence, i.e., there are
as many EGHs as there are mined sequences. In contrast to this, VOGUE is a
single variable-order HMM incorporating all the frequent sequences. The variable-
length HMM approach (VLHMM) [Wang et al. 2006] is built upon variable memory
Markov chains [Ron et al. 1996; Buhlmann and Wyner 1999]; it uses a prediction
prefix tree to store the context, and relies on an EM method for training. More-
over, it requires the number of states as input from the user. It does not use
any form of pattern mining, as in VOGUE, to learn the model. Another recent
approach combines motif discovery with HMM learning (called HPHMM) [Galassi
et al. 2007]. They use a profile HMM [Eddy 1998] to learn the motifs (via local string
alignment), and then combine them into a (two-level) Hierarchical HMM [Fine
et al. 1998]. Unlike the general purpose variable-order HMM architecture used in
VOGUE, HPHMM uses the restricted class of left-to-right models. Their motif
discovery method is based on a pairwise comparison among all input sequences,
whereas VOGUE directly mines frequent sequences over the entire set of input se-
quences. Finally, HPHMM does model the gap length via a separate HMM, but it
does not model the gap symbols, i.e., it emits a random symbol in a gap state. In
contrast, VOGUE simultaneously models all non-consecutive patterns, as well as
gap symbols and duration statistics.

3. VOGUE: VARIABLE ORDER AND GAPPED HMM

As noted above, building higher order HMMs is not easy, since we have to estimate
the joint probabilities of the previous k states in a k-order HMM. Also, not all of
the previous k states may be predictive of the current state. Moreover, the training
process is extremely expensive and suffers from local optima due to the use of an EM
(also known as Baum-Welch) algorithm for training the model. VOGUE addresses
these limitations. It first uses the VGS algorithm to mine variable-gap frequent
sequences that can have g other symbols between any two elements; g varies from
0 to a maximum gap (maxgap). These sequences are then used as the estimates of
the joint probabilities for the states used to seed the model.

Consider a simple example to illustrate our main idea. Let the alphabet be
Σ = {A, · · · , K} and the sequence be S = ABACBDAEFBGHAIJKB. We
can observe that AB is a subsequence that repeats frequently (4 times), but with
variable length gaps in-between. BA is also frequent (3 times), again with gaps of
variable lengths. A first-order Markov model will fail to capture any patterns since
no symbol depends purely on the previous symbol; a first order HMM will also
have trouble modeling this sequence. We could try higher order Markov models
and HMMs, but they will model many irrelevant parts of the input sequence. More
importantly, no fixed-order model for k ≥ 1 can learn this sequence, since none of
them will detect the variable repeating pattern between A and B (or vice versa).
This is easy to see, since for any fixed sliding window of size k, no k-letter word (or
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k-gram) ever repeats! In contrast our VGS mining algorithm is able to extract both
AB, and BA as frequent subsequences, and it will also record how many times a
given gap length is seen, as well as the frequency of the symbols seen in those gaps.
This knowledge of gaps plays a crucial role in VOGUE, and distinguishes it from
all previous approaches which either do not consider gaps or allow only fixed gaps.
VOGUE models gaps via gap states between elements of a sequence. The gap state
has a notion of state duration which is executed according to the distribution of
lengths of the gaps and the intervening symbols.

The training and testing of VOGUE consists of three main steps: (i) pattern
mining via a novel Variable-Gap Sequence (VGS) mining algorithm, (ii) data
modeling using a novel Variable-Order HMM, and (iii) interpretation of new
data via a modified Viterbi method [Durbin et al. 1998], called Variable-Gap Viterbi
(VG-Viterbi), to model the most probable path through a VOGUE model. Details
of these steps appear below.

3.1 Mining Variable Gap Sequences

Let Σ = {v1, v2, · · · , vm} be the alphabet of m distinct symbols. A sequence is an
ordered list of symbols, and is written as S = v1v2 · · · vq, where vi ∈ Σ. A sequence
of length k is also called a k-sequence. For example, BAC is a 3-sequence. A
sequence S = s1 · · · sn is a subsequence of another sequence R = r1 · · · rm, denoted
as S ⊆ R, if there exist integers i1 < i2 < · · · < in such that sj = rij

for all sj . For
example the sequence BAD is a subsequence of ABEACD. If S ⊆ R, we also say
that R contains S.

Given a database D of sequences and a sequence S = s1 · · · sn, the absolute
support or frequency of S in D is defined as the total number of occurrences of S
across all sequences in D. Note that this definition allows for multiple occurrences
of S in the same sequence. Given a user-specified threshold called the minimum
support (denoted minsup), we say that a sequence is frequent if it occurs at least
minsup times. We use the maximum gap threshold maxgap to limit the maximum
gap allowed between any two elements of a k-sequence. We use the notation Fk to
denote the set of all frequent k-sequences satisfying the maxgap constraint between
any two elements.

3.1.1 Variable-Gap Sequence Mining Algorithm (VGS).
VGS is based on cSPADE[Zaki 2000; 2001], a method for constrained sequence
mining. Whereas cSPADE essentially ignores the length of and symbol distribu-
tions in gaps, VGS is specially designed to extract such patterns within one or more
sequences. Note that whereas other methods can also mine gapped sequences [An-
tunes and Oliveira 2003; Zaki 2000], the key difference is that during mining VGS
explicitly keeps track of all the intermediate symbols, their frequency, and the gap
frequency distributions, which are then used by VOGUE.

VGS takes as input the maximum gap allowed (maxgap), the maximum se-
quence length (k), and the minimum frequency threshold (minsup). VGS mines all
sequences having up to k elements, with a gap of at most maxgap length between
any two elements, such that the sequence occurs at least minsup times in the data.
An example is shown in Table I. Let S = ACBDAHCBADFGAIEB be an input
sequence over the alphabet Σ = {A, · · · , I}, and let maxgap = 2, minsup = 2 and
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S = ACBDAHCBADFGAIEB

A B C D E F G H I

frequency 4 3 2 2 1 1 1 1 1

subsequence freq g = 0 g = 1 g = 2 gap symbols

AB 3 0 1 2 C(2), E, H, I

AC 2 1 1 0 H

AD 2 1 0 1 B, C

BA 2 1 1 0 D

BD 2 1 1 0 A

CA 2 0 1 1 B(2), D

CB 2 2 0 0 -

CD 2 0 1 1 A, B(2)

DA 2 1 0 1 F, G

Table I. VGS: Subsequences of Length 1 and 2, and Gap Information

k = 2. VGS first mines the frequent subsequences of length 1, as shown. Those
symbols that are frequent are extended to consider sequences of length 2. For ex-
ample, AB is a frequent sequence with frequency freq = 3, since it occurs once
with gap of length 1 (ACB) and twice with a gap of length 2 (AHCB and AIEB).
Thus, the gap length distribution of AB is 0, 1, 2 as shown under columns g = 0,
g = 1, and g = 2, respectively. VGS also records the symbol distribution in the
gaps for each frequent sequence. For AB, VGS will record gap symbol frequencies
as C(2), E(1), H(1), I(1), based on the three occurrences. Since k = 2, VGS would
stop after mining sequences of length 2. Otherwise, VGS would continue mining
sequences of length k ≥ 3, until all sequences with k elements have been mined.

VGS uses the vertical database format [Zaki 2001], where an id-list is kept for
each item in the dataset. Each entry in the id-list is a (sid, eid) pair, where sid
identifies the sequence id in the data set and eid defines the position in this sequence
at which the item appears. With the vertical idlists, computing the frequent items
F1 is straightforward. We simply note all the occurrences of an item within each
sequence as well as across sequences. We next test for the frequency of the candidate
2-sequences by joining the id-lists of pairs of items. A new occurrence is noted if
the difference between the eid of the two items is less than the allowed maxgap.
For each frequent 2-sequence, we then count the occurrences for each value of the
gap length g between its elements, with g ∈ {0, · · · , maxgap}, where g = 0 means
that there is no gap. Longer sequences are obtained via a depth-first search and
id-list joins as in SPADE [Zaki 2001], with the key difference being that we record
the gaps between elements of the sequence. For example, for a 3-sequence XY Z,
we have to note the values of the gaps between both XY and Y Z. In this manner
VGS computes all frequent sequences up to a maximum length k with variable gaps
between elements.

3.2 The Basic VOGUE Model

VOGUE uses the mined sequences to build a variable order/gap HMM. The main
idea here is to model each non-gap symbol in the mined sequences as a state that
emits only that symbol and to add intermediate gap states between any two non-
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gap states. The gap states will capture the distribution of the gap symbols and
length. Let F be the set of frequent subsequences mined by VGS, and let k be the
maximum length of any sequence. For clarity of exposition, we will first illustrate
the working of VOGUE using mined sequences of length k = 2, and later we will
extend the model for any value of k ≥ 2. Let F1 and F2 be the sets of all frequent
sequences of length 1 and 2, respectively, so that F = F1 ∪ F2. Thus, each mined
sequence si ∈ F2 is of the form S : v1v2, where v1, v2 ∈ Σ. Let Γ = {v1|v1v2 ∈ F2}
be the set of all the distinct symbols in the first positions, and Θ = {v2|v1v2 ∈ F2}
be the set of all the distinct symbols in the second positions of all sequences in F2.
The basic VOGUE model is specified by the 6-tuple λ = {Σ, Q, B, A,∆, π} where
each component is defined below.

3.2.1 Alphabet (Σ). The alphabet for VOGUE is given as:

Σ = {v1, · · · vM}

where |Σ| = M is the alphabet size. The alphabet must be specified upfront, or
alternately VOGUE simply uses the set of symbols that occur at least once in the
training data, obtained as a result of the first iteration of VGS, as shown in Table I.
For the example sequence S shown in the table, we have nine distinct symbols, thus
M = 9 (note that in this case, we retain all symbols, not just the frequent ones).

3.2.2 Set of States (Q). The set of states in VOGUE is given as:

Q = {q1, · · · , qN},

where:

|Q| = N = N1 + G + N2 + 1

Here, N1 = |Γ| and N2 = |Θ| are the number of distinct symbols in the first and
second positions, respectively. Each frequent sequence vavb ∈ F2 having a gap
g ≥ 1 requires a gap state to model the gap between va and vb. G thus gives the
number of gap states required. Finally the 1 corresponds to an extra gap state,
called universal gap, that acts as the default state when no other state satisfies an
input sequence. For convenience, let the partition of Q be:

Q = Qs
1 ∪ Qg ∪ Qs

2 ∪ Qu

where the first N1 states belong to Qs
1, the next G states belong to Qg, the following

N2 states belong to Qs
2 and the universal gap state belongs to Qu. We call members

of Qs
i the symbol states (i = 1, 2), and members of Qg, the gap states.

For our example S from Table I we have N1 = 4, since there are four distinct
starting symbols in F2 (namely, A, B, C, D). We also have four ending symbols,
giving N2 = 4. The number of gap states is the number of sequences of length 2
with at least one occurrence with gap g ≥ 1. Thus G = 8, since CB is the only
sequence that has all consecutive (g = 0) occurrences. With one universal gap state
our model yields N = 4 +8 + 4 +1 = 17 states. As shown in the VOGUE HMM in
Figure 1, we have Qs

1 = {q1, · · · , q4}, Qs
2 = {q13, · · · , q16}, Qg = {q5, · · · , q12}, and

Qu = {q17}.
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3.2.3 Symbol Emission Probabilities (B). The emission probability matrix is
given as:

B = {b(qi, vm) = P (vm|qi), 1 ≤ i ≤ N and 1 ≤ m ≤ M}

where P (vm|qi) is the probability of emitting symbol vm in state qi. This probability
differs depending on whether qi is a gap state or not. We assume that each first
symbol state qi ∈ Qs

1 outputs only a unique symbol. Likewise, each second symbol
state in Qs

2 also emits only a unique symbol. We will say that a symbol state
qi ∈ Qs

1 or qi ∈ Qs
2, emits the unique symbol vi ∈ Σ. The gap states (qi ∈ Qg ∪Qu)

may output different symbols depending on the symbols observed in those gaps.
Note that since there is one gap state for each vavb ∈ F2, we will use the notation
qab to denote the gap state between va and vb. Since there is a chance that some
symbols that do not occur in the training data may in fact be present in the testing
data, we assign a very small probability of emission of such a symbol in the gap
states.

3.2.3.1 Symbol States. The emission probability for symbol states, qi ∈ Qs
1 or

qi ∈ Qs
2, is given as follows:

b(qi, vm) =

{

1, if vm = vi

0, otherwise

3.2.3.2 Gap States. If qab is in Qg, its emission probability depends on the
symbol distribution established by VGS. Let Σab be the set of symbols that were
observed by VGS in the gap between va and vb for any vavb ∈ F2. Let freqab(vm)
denote the frequency of observing the symbol vm between va and vb. For the gap
state qab the emission probabilities are given as:

b(qab, vm) =

(

freqab(vm)
∑

vj∈Σab
freqab(vj)

)

× σ +
1

M
× (1 − σ)

where σ acts as a smoothing parameter to handle the case when vm is a previously
unseen symbol in the training phase. For instance we typically set σ = 0.99, so
that the second term (1−σ

M
= 0.01

M
) essentially serves as a pseudo-count to make the

probability of unseen symbols non-zero.

3.2.3.3 Universal Gap. For the universal gap qN we have:

b(qN , vm) =

(

freq(vm)
∑

vm∈Σ freq(vm)

)

× σ +
1

M
× (1 − σ)

where freq(vm) is simply the frequency of symbol vm established by VGS. In other
words, vm is emitted with probability proportional to its frequency in the training
data. σ (set to 0.99) is the smoothing parameter as described above.

In our running example from Table I, for the symbol vm = C and the gap state
q5 between the states that emit A and B, we have the frequency of C as 2 out of
the total number (5) of symbols seen in the gaps. Thus C’s emission probability
is 2

5 × 0.99 + 0.01
9 = 0.397. The complete set of symbol emission probabilities for

topology in Figure 1 is shown in Table II.
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A B C D E F G H I

First q1 1.000
Symbol q2 1.000
States q3 1.000

Qs
1 q4 1.000

q5 0.001 0.001 0.397 0.001 0.199 0.001 0.001 0.199 0.199
q6 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.991 0.001
q7 0.001 0.496 0.496 0.001 0.001 0.001 0.001 0.001 0.001

Gap q8 0.001 0.001 0.001 0.991 0.001 0.001 0.001 0.001 0.001
States q9 0.991 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Qg q10 0.001 0.661 0.001 0.331 0.001 0.001 0.001 0.001 0.001
q11 0.331 0.661 0.001 0.001 0.001 0.001 0.001 0.001 0.001
q12 0.001 0.001 0.001 0.001 0.001 0.496 0.496 0.001 0.001

Second q13 1.000
Symbol q14 1.000
States q15 1.000

Qs
2 q16 1.000

Qu q17 0.249 0.187 0.125 0.125 0.063 0.063 0.063 0.063 0.063

Table II. Symbol Emission Probability Matrix (B)

3.2.4 Transition Probability Matrix (A). The transition probability matrix be-
tween the states:

A = {a(qi, qj)|1 ≤ i, j ≤ N}

where:

a(qi, qj) = P (qt+1 = qj |q
t = qi)

gives the probability of moving from state qi to qj (where t is the current position
in the sequence). The probabilities depend on the types of states involved in the
transitions. The basic intuition is to allow transitions from the first symbol states
to either the gap states or the second symbol states. A transition of a second
symbol state can go back to either one of the first symbol states or to the universal
gap state. Finally, a transition from the universal gap state can go to any of the
starting states or the intermediate gap states. We discuss these cases below.

3.2.4.1 Transitions from First States. Any first symbol state qi ∈ Qs
1 may tran-

sition only to either a second symbol state qj ∈ Qs
2 (modeling a gap of g = 0)

or to a gap state qj ∈ Qg (modeling a gap of g ∈ [1, maxgap]). Note that the
symbol states Qs

1 and Qs
2 only emit one distinct symbol as described above, so we

can associate each state qi with the corresponding symbol it emits, say vi ∈ Σ.
Let vavb ∈ F2 be a frequent 2-sequence uncovered by VGS. Let freq(va, vb) denote
the total frequency of the sequence, and let freq(va, vb, g) denote the number of
occurrences of va followed by vb after a gap length of g, with g ∈ [1, maxgap], i.e.,

freq(va, vb) =
maxgap
∑

g=0
freq(va, vb, g). The transition probabilities from qi ∈ Qs

1 are
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then given as:

a(qi, qj) =















freq(vi,vj ,0)
P

vivb∈F2
freq(vi,vb)

, if qj ∈ Qs
2

P

g>0 freq(vi,vj ,g)
P

vivb∈F2
freq(vi,vb)

, if qj ∈ Qg

0, otherwise

3.2.4.2 Transitions from Gap States. Any gap state qab ∈ Qg may transition
only to the second symbol state qb ∈ Qs

2. For qi = qab ∈ Qg we have:

a(qi, qj) =

{

1, if qj = qb ∈ Qs
2

0, otherwise

3.2.4.3 Transitions from Second States. A second symbol state qi ∈ Qs
2 may

transition only to either first symbol state qj ∈ Qs
1 (modeling a gap of g = 0), or

to the universal gap state qN (modeling other gaps). For qi ∈ Qs
2 we thus have:

a(qi, qj) =















σ ×

P

qb∈Qs
2

freq(vj ,vb)
P

vavb∈F2
freq(va,vb)

, if qj ∈ Qs
1

1 − σ, if qj = qN ∈ Qu

0, otherwise

Here σ = 0.99 acts as the smoothing parameter, but this time for state transitions,
so that there is a small probability (1−σ = 1−0.99 = 0.01) of transitioning to Qu.
Transitions back to first states are independent of second symbol state qi. In fact,
these transitions are the same as the initialization probabilities described below.
They allow the model to loop back after modeling a frequent sequence mined by
VGS. We assign an empirically chosen value of 1% to the transition from the second
states Qs

2 to the universal gap state qN . Furthermore, to satisfy
∑N

j=1 a(qi, qj) = 1,
we assign the remaining 99% to the transition to the first states Qs

1.

3.2.4.4 Transitions from Universal Gap. The universal gap state can only tran-
sition to the first states or to itself. For qi = qN we have:

a(qi, qj) =











σ ×

P

qb∈Qs
2

freq(vj ,vb)
P

vavb∈F2
freq(va,vb)

, if qj ∈ Qs
1

1 − σ, if qj = qN

0, otherwise

Here σ = 0.99 weighs the probability of transitioning to a first symbol state, whereas
1 − σ = 0.01 weighs the probability of self transition. These values were chosen
empirically. Table III shows transitions between states and their probabilities in
VOGUE for our running example in Table I (see Figure 1 for the model topology).

3.2.5 State Duration Probabilities (∆). Each state’s duration is considered ex-
plicitly within that state. Here, we treat the duration as the number of symbols to
emit from that state. The probability of generating a given number of symbols is
given by the state duration probability matrix:

∆ = {∆(qi, d)|d ∈ [1, maxgap]},

where d gives the duration, which ranges from 1 to maxgap.
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First Symbol Gap States (Qg) Second Symbol Qu

States (Qs
1) States (Qs

2)
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17

q1 0.43 0.14 0.14 0.14 0.14
q2 0.33 0.33 0.33
q3 0.25 0.25 0.25 0.25
q4 0.50 0.50
q5 1.00
q6 1.00
q7 1.00
q8 1.00
q9 1.00
q10 1.00
q11 1.00
q12 1.00
q13 0.36 0.31 0.21 0.10 0.01
q14 0.36 0.31 0.21 0.10 0.01
q15 0.36 0.31 0.21 0.10 0.01
q16 0.36 0.31 0.21 0.10 0.01
q17 0.36 0.31 0.21 0.10 0.01

Table III. State Transition Probability Matrix (A)
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For a symbol state, qi ∈ Qs
j , the duration is always 1, i.e., we always emit one

symbol. For gap states, let qi = qab be the gap state between the state qa ∈ Qs
1

and the state qb ∈ Qs
2 corresponding to the sequence vavb ∈ F2. The duration

probability for qi will then be proportional to the frequency of observing a given
gap length value for that sequence. Putting the two cases together, we have

∆(qi, d) =











freq(va,vb,d)
P

g>0 freq(va,vb,g) , qi = qab ∈ Qg

1, qi ∈ Qs
1 ∪ Qs

2 and d = 1
0, otherwise

For the gap states, the idea is to model the “gap duration”, which corresponds
to the number of gap symbols emitted from that state, which is proportional to
the probability of that gap value for that gap state. For instance, in our running
example, for the gap state g4 between the states that emit A and B, we have
∆(g4, 2) = 2

3 = 0.67, since we twice observe a gap of 2, out of three occurrences.
The gap duration probabilities for our running example are shown in Table IV.

q5 q6 q7 q8 q9 q10 q11 q12 Other qi

d=1 0.33 1.0 1.0 1.0 0.5 0.5 1.0

d=2 0.67 1.0 0.5 0.5 1.0 1.0

Table IV. State Duration Probabilities (∆)

3.2.6 Initial State Probabilities (π). The probability of being in state qi initially
is given by π = {π(i) = P (qi|t = 0), 1 ≤ i ≤ N}, where:

π(i) =















σ ×

P

qj∈Qs
2

freq(vi,vj)
P

vavb∈F2
freq(va,vb)

, ifqi ∈ Qs
1

1 − σ, if qi = qN ∈ Qu

0, otherwise

We use a small value (1 − σ = 1 − 0.99 = 0.01) for the universal gap state as
opposed to the states in Qs

1 to accentuate the patterns retained by VGS while still
providing a possibility for gaps after and before them. Note that the empirical
value of σ = 0.99 used in the transition and emission probabilities works essentially
like pseudo-counts [Durbin et al. 1998] to allow for symbols that are unseen in the
training data set or to allow the model to transition to less likely states.

4. THE GENERAL VOGUE MODEL

We now generalize the basic VOGUE model to handle frequent k-sequences, with
k ≥ 2. Let F be the set of all frequent subsequences mined by VGS, and let k be
the maximum length of any sequence. Let F (j) be the set of subsequences in F of
length at least j, and let a l-sequence be denoted as v1v2 · · · , vl. Let Γ(j) be the set
of symbols in the jth position across all the subsequences in F (j), then Γ(k) is then
the set of different last symbols across all subsequences in F . The VOGUE model
is specified by the 6-tuple λ = {Σ, Q, A, B,∆, π}, as before. These components are
described below.
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Let Ni =| Γ(i) |, i = 1, · · · , k denote the number of distinct symbols in position i
over all the sequences. Thus, N1 is the number of distinct first symbols and Nk is
the number of distinct last symbols. Let Gi (for i < k) be the number of distinct
pairs of symbols in positions i and i + 1 across all sequences in F (i + 1). This
corresponds to the number of gap states required between states at positions i and
i + 1.

4.1 Alphabet (Σ)

The alphabet Σ = {v1, · · · vM} is the number of different symbols seen in the
training set.

4.2 Set of States (Q)

For the general VOGUE model, the set of states is given as Q = {q1, · · · , qN},
where N +1 = N1 +G1 + · · ·+Ni−1 +Gi−1 + · · ·+Nk +1. Here qN is the universal
gap state, as before. We assume further that the states are partitioned into the
“symbol” and “gap” states in the given order. That is, the first N1 states are the
first symbols states, the next G1 states are the gap states between the first and
second symbol states, the next N2 states are the second symbol states and so on.
Let Qs

i denote the set of i-th symbol states, i.e., those at position i, given by Γ(i),
with Ni = |Γ(i)|. Let Qg

i denote the i-th gap states, i.e., those between the i-th
and (i + 1)-th symbol states.

4.3 Symbol Emission Matrix (B)

A symbol state qi ∈ Qs
j , can emit only one symbol vi ∈ Γ(j). The emission

probability from qi is then given as:

b(qi, vm) =

{

1, if vm = vi

0, otherwise

Let the gap state qi ∈ Qg
j be the gap state between the states qa ∈ Qs

j and
qb ∈ Qs

j+1, which we denote as qi = qab. Across all the sequences in F (j + 1), let
freqab(vm, j, j + 1) denote the total frequency of observing the symbol vm between
va and vb at positions j and j + 1 respectively. The emission probabilities from
qi ∈ Qg

j , are given as:

b(qab, vm) =

(

freqab(vm, j, j + 1)
∑

vc
freqab(vc, j, j + 1)

)

× σ +
1 − σ

M

For qi = qN , the universal gap state, we have:

b(qN , vm) =

(

freq(vm)
∑

vm∈Σ freq(vm)

)

× σ +
1 − σ

M

where freq(vm) is simply the frequency of symbol vm as mined by VGS.

4.4 Transition Matrix (A)

There are four main cases to consider for the transitions between states. The symbol
states in Qs

i may transition to (i) gap states Qg
i , or (ii) directly to the symbol states

at position i+1, namely Qs
i+1 for i ∈ [1, k−1], or (iii) to the universal gap state qN
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(to start a fresh cycle through the model). A gap state in Qg
i may only transition

to the symbol state Qs
i+1, for 1 ≤ i < k. The universal gap state may transition to

any of the first symbol states Qs
1 or to itself.

Let qi ∈ Qs
p be a p-th symbol state. Let freqp(vi) denote the frequency of

observing the symbol vi at position p across all sequences in F (p). Let freqp(vi, vj)
denote the total frequency of observing the symbol vi at position p and vj at
position p + 1 across all sequences in F (p + 1). Further, let freqp(vi, vj , g) denote
the frequency for a given gap value g. Then, transition probabilities for a symbol
state qi ∈ Qs

p are:

a(qi, qj) =























freqp(vi,vj ,0)
freqp(vi)

, if qj ∈ Qs
p+1

P

g>0 freqp(vi,vj ,g)

freqp(vi)
, if qj ∈ Qg

p

1 −
freq(vi,vj)
freqp(vi)

, if qj = qN

0, otherwise

A gap state qi = qab ∈ Qg
p, may transition only to a symbol state qj ∈ Qg

p+1 at
position p + 1:

a(qi, qj) =

{

1, if qj = qb ∈ Qg
p+1

0, otherwise

Finally, the universal gap state qN may transition to itself or to any of the first
states Qs

1:

a(qN , qj) =











σ ×
freq1(vj)

P

vb∈Σ freq1(vb)
, if qj ∈ Qs

1

1 − σ, if qj = qN

0, otherwise

As before we set σ = 0.99.

4.5 State Duration Probabilities (∆)

As before, for symbol states the duration is always d = 1. For the gap state qi ∈ Qg
p,

assuming that qi = qab, i.e., it lies between the symbol va ∈ Qs
p and vb ∈ Qs

p+1, we
have:

∆(qi, d) =











freq(va,vb,d)
P

g>0 freq(va,vb,g) , qi = qab ∈ Qg
p

1, qi ∈ Qs
j and d = 1

0, otherwise

5. DECODING: FINDING THE BEST STATE SEQUENCE

After extracting the patterns and modeling the data, the model is ready to be used
to find for the given newly observed sequence the best matching state sequence in
the model. This problem is referred to in HMMs [Rabiner 1989] as the decoding
problem. This problem is difficult to solve even though there are several possible
ways of solving it. One possible solution is to choose individually the most likely
states for each position in the test sequence. However, while this approach maximize
the states that will explain the observation sequence, it may yield an infeasible
sequence of the states, for instance, if some of the transitions needed to generate
the model sequence have zero probabilities for the corresponding model states. The
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best matching state sequence can be found using the dynamic programming based
Viterbi algorithm [Durbin et al. 1998].

Due to VOGUE’s unique structure, we modified the Viterbi algorithm to handle
the notion of duration in the states. We call this new algorithm Variable-Gap
Viterbi (VG-Viterbi). Given a test sequence O = o1o2 · · · oT , VG-Viterbi finds
the sequence of states from the model λ, as well as the state durations, whose
traversal generate the sequence that best matches the observed sequence. That is,
VG-Viterbi finds a sequence of states q∗ = {q∗1 , q∗2 , · · · , q∗T } from the model λ such
that:

q∗ = arg max
q

P (O, q|λ)

Let δt(j) be the highest probability path that produces the subsequence Ot =
o1o2 · · · ot and terminates in state j at position t:

δt(j) = max
q1···qt−1

P(o1, · · · , ot, q1, · · · , qt−1, qt = qj | λ)

Assuming that each state has a corresponding duration, we can rewrite the above
expression as:

δt(j) = max
d1,··· ,dr

P( o1, · · · , od1
, q1 = · · · = qd1

,

od1+1, · · · , od1+d2
, qd1+1 = · · · = qd1+d2

,
...

od1+···+dr−1+1, · · · , od1+···+dr
= ot,

qd1+···+dr−1+1 = · · · = qd1+···+dr
= qt = qj | λ)

In other words, we are assuming that the first d1 symbols o1, · · · , od1
are being

emitted from a single state, say s1, with a duration of d1. The next d2 symbols are
emitted from state s2 with a duration of d2, and so on. Finally, the last dr symbols
are emitted from state sr with duration dr. The probability is taken to be the
maximum over all such values of state durations, d1, · · · , dr. We can rewrite the
above expression purely in terms of the states si and their durations di, as follows:

δt(j) = max
s1···sr ,d1,··· ,dr

P(o1, · · · , ot, s1, · · · , sr−1, sr = qj | λ)

Separating out the state sr−1, which we assume is the state qi, with i 6= j, we get:

δt(j) = max
s1 · · · sr,

d1, · · · , dr

P(o1, · · · , ot, s1, · · · , sr−2, sr = qj | sr−1 = qi, λ) · P(sr−1 = qi | λ)

Further separating out the symbols from the last state sr, we get:

δt(j) = max
s1 · · · sr,

d1, · · · , dr

P(o1, · · · , ot−dr , s1, · · · , sr−2 | ot−dr+1, · · · , ot, sr−1 = qi, sr = qj , λ) ·

P(ot−dr+1, · · · , ot | sr−1 = qi, sr = qj , λ) ·
P(sr = qj | sr−1 = qi, λ) ·
P(sr−1 = qi | λ)

Using the Markovian assumption that each state depends only on the previous
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state, we can finally rewrite the above equation as:

δt(j) = max
s1 · · · sr,

d1, · · · , dr

P(o1, · · · , ot−dr , s1, · · · , sr−2, sr−1 = qi | ot−dr+1, · · · , ot, sr = qj , λ) ·

P(ot−dr+1, · · · , ot | sr−1 = qi, sr = qj , λ) ·
P(sr = qj | sr−1 = qi, λ)

Assuming that the duration distribution of a state is independent of the observa-
tions of that state, and writing dr as d, we get the following recursive relationship:

δt(j) = max
d<min(t,maxgap)

i6=j

δt−d(i) · a(qi, qj) · ∆(qj , d) ·

t
∏

s=t−d+1

b(qj , os) (1)

In other words, the probability of being in state qj at position t, is given as the
product of the probability of being in state qi at position t − d, transitioning from
qi to qj , probability of the duration d in state qj , and emitting the d symbols
ot−d+1, · · · , ot in state qj . The maximum is taken over all values of duration d.
Using Equation 1 VG-Viterbi computes the probability of observing the sequence
O given the model λ, by computing δT (j) over all states qj in a recursive manner.
At each step it also remembers the state that gives the maximum value to obtain
the final sequence of states q∗.

Given a model with N states, and a sequence O of length T , the Viterbi algorithm
takes O(N2T ) [Durbin et al. 1998] time to find the optimal state sequence. This is
obviously expensive when the number of states is large and the observation sequence
is very long. For VG-Viterbi, we have the extra search over the state durations,
which gives a complexity of O(N2 ·maxgap · T ). The most effective way to reduce
the complexity is to exploit the inherent sparseness of the VOGUE models. For
example, consider the state transition probability matrix A, given in Table III. By
design, the matrix is very sparse, with allowed transitions from Qs

1 to either Qs
2 or

Qg, from Qg to Qs
2, from Qs

2 to Qs
1 or Qu, and from Qu to Qs

1 or Qu.
Considering that many of the transitions in VOGUE are non-existent (a(qi, qj) =

0), we optimized the recursion in Equation 1 to search over only the non-zero
transitions. For example, for the basic VOGUE model built using k = 2 length
sequences, we can then obtain the complexity as follows: Given the set of frequent
sequences mined by VGS, let F1 denote the frequent symbols, and let F2 denote
the frequent 2-sequences. First, note that |Qs

1| ≤ |F1| ≪ M and |Qs
2| ≤ |F1| ≪ M ,

since the frequent symbols are generally much smaller than M , the total number
of symbols in the alphabet. Second, note that |Qg| = |F2| ≤ |F1|

2 ≪ M2. Using
the sparseness of the model to our advantage, we can reduce the number of states
to search over when computing δt(j):

—If qj ∈ Qs
1, then search only over qi ∈ Qs

2 or qi = qN .

—If qj ∈ Qs
2, then search only over qi ∈ Qs

1 ∪ Qg.

—If qj ∈ Qg, then search only over qi ∈ Qs
1.

—If qj = qN , then search only over qi ∈ Qs
2 or qi = qN .

Since |Qs
1| ≈ |Qs

2| ≈ M ≪ |Qg| ≪ M2, in the worst case we search over O(|Qg|)
states in the cases above. Thus the complexity of VG-Viterbi is O(|Qg| · N · T ·
maxgap) ≪ O(N2 · T · maxgap). The practical effect of exploiting the sparseness
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is in the much reduced decoding time as opposed to a search over the full set of
states at each step.

6. EXPERIMENTAL RESULTS AND ANALYSIS

VOGUE was implemented in Python, and all experiments were done on a 2.8Ghz
quad-core Intel Xeon MacPro, with 4GB 800MHz memory, and 500GB disk, run-
ning Mac OS X 10.5.6. The VOGUE implementation and the datasets used in this
paper are available as open-source at: www.cs.rpi.edu/~zaki/software/VOGUE.

6.1 Datasets

We tested the VOGUE model on a variety of datasets, including biological se-
quences, web usage logs, intrusion commands and spelling. We discuss details of
these datasets below; Table V shows the number of training and testing instances
in each class for the various datasets. It also shows the average sequence length per
class.

PROSITE F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Training #Seq 34 169 64 43 97 74 113 87 16 22

Avg. Len 814.1 311.9 371.1 684.3 250.0 252.1 120.4 959.5 341.9 511.1

Testing #Seq 11 56 21 14 32 24 37 28 5 7

Avg. Len 749.5 572.1 318.1 699.4 386.0 266.5 407.9 870.6 180.8 405.3

SCOP F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Training #Seq 6 6 6 6 6 6 6 6 6 6

Avg. Len 182.2 153.2 103.3 52.2 57.3 78.0 68.7 276.5 177.0 125.7

Testing #Seq 4 4 4 4 4 4 4 4 4 4

Avg. Len 135.8 152.0 81.0 61.3 60.3 86.8 89.8 270.8 177.0 122.8

CSLOGS edu oth

Training #Seq 3577 12598

Avg. Len 5.8 6.9

Testing #Seq 1190 4197

Avg. Len 7.7 8.7

Intrusion User0 User1 User2 User3 User4 User5 User6 User7 User8

Training #Seq 423 367 568 364 685 411 1280 1006 1194

Avg. Len 14.0 35.9 26.3 36.2 39.1 51.7 24.9 10.5 29.7

Testing #Seq 139 121 187 120 226 135 605 333 396

Avg. Len 13.7 46.9 8.9 21.5 40.5 91.8 19.7 11.1 37.0

Spelling Incorrect Correct

Training #Seq 986 1204

Avg. Len 24.5 27.9

Testing #Seq 327 400

Avg. Len 25.5 26.5

Table V. Dataset Characteristics: Number of training and testing instances per class, and the
average length of the training and testing sequences.

6.1.1 Biological Sequence Datasets: PROSITE and SCOP. In recent years, a
large amount of work in biological sequence analysis has focused on methods for
finding homologous proteins [Durbin et al. 1998]. Computationally, protein se-
quences are treated as long strings of characters with a finite alphabet of 20 amino
acids, namely, Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, Y }. Given a database of protein sequences, the goal is to build a statistical
model so that we can determine whether a query protein belongs to a given fam-
ily or not. We used two different biological datasets for our experiments: (i) the
PROSITE [Falquet et al. 2002] database containing families of protein sequences,
and (ii) the SCOP [Murzin et al. 1995] dataset that includes a curated classification
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of known proteins structures with the secondary structure knowledge embedded in
the dataset.

6.1.1.1 PROSITE. We used ten families from PROSITE, namely, PDOC00662,
PDOC00670, PDOC00561, PDOC00064, PDOC00154, PDOC00224, PDOC00271,
PDOC00343, PDOC00397, PDOC00443. We will refer to these families as F1,
F2, · · · , F10, respectively. The number of sequences in each family is, respectively:
N1 = 45, N2 = 225, N3 = 85, N4 = 56, N5 = 119, N6 = 99, N7 = 150, N8 = 21,
N9 = 29. The families consists of sequences of lengths ranging from 597 to 1043
amino acids. Each family is characterized by a well-defined motif. Family F1, for
example, shares the consensus motif [G] − [IV T ] − [LV AC] − [LV AC] − [IV T ] −
[D]− [DE]− [FL]− [DNST ], which has 9 components. Each component can con-
tain any of the symbols within the square brackets. For example, for the second
component, namely [IV T ], either I, V or T may be present in the sequences. We
treat each PROSITE family as a separate class. We divided the data set of each
family Fi into two subsets: the training data N i

train consists of 75% of the data,
while the testing data N i

test contains the remaining 25%. For example, N1
train = 34

and N1
test = 11. There are a total of 235 test sequences across all families. Details

on the number of sequences and average sequence length for training/test sets for
the different classes are given in Table V.

6.1.1.2 SCOP. The SCOP dataset is divided into four hierarchical levels: Class,
Fold, Superfamily and Family. For SCOP 1.61 (from 2002), the 44327 protein
domains were classified into 701 folds, resulting in an average of 64 domains per
fold. We used 10 superfamilies from the SCOP dataset, namely, family 49417,
46458, 46626, 46689, 46997, 47095, 47113, 48508, 69118, and 81296. Each family
has 10 sequences. We divided each family data set into 60% (6 sequences from each
family) for training and 40% for testing (4 from each family). Thus there are 40
test sequences across the 10 families.

6.1.2 Web Usage Logs Dataset: CSLOGS. The CSLOGS dataset consists of
web logs files collected at the CS department at RPI. User sessions are expressed as
subgraphs of the web graph, and contain complete history of the user clicks. Each
user session has a name (IP or host name), a list of edges giving source and target
pages and the time when the link was traversed. We convert the user graph into a
sequence by arranging all the visited pages in increasing order of their timestamps.

The CSLOG dataset spans 3 weeks worth of such user-session sequences. To
convert it into a classification dataset we chose to categorize each user-session into
one of two class labels: edu corresponds to users from an “edu” domain, (also
includes “ac” academic domain), while oth class corresponds to all users visiting
the CS department from any other domain. The goal of classification is to find out
if we can separate users who come from academic versus other domains from their
browsing behavior within the CS web site at RPI.

We used the first two weeks of logs as the training, and the third week’s logs as
the testing datasets, adjusted slightly so that the training set had 75%, and the
testing set had 25% of the sequences. In all the CSLOGS dataset contains 16206
unique web pages, which make up the alphabet. As shown in Table V, the training
dataset had 16175 sessions, with 3577 labeled as edu and 12598 labeled as other.
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The testing dataset had 5387 sessions, with 1190 (22.1%) having true class edu and
4197 with true class other.

6.1.3 Intrusion Detection Dataset. The intrusion detection dataset deals with
the problem of differentiating between masqueraders and the true user of a computer
terminal. The data consists of user-specific unix command sequences. We use com-
mand stream data collected from eight UNIX users from Purdue University [Lane
and Brodley 1999] over varying periods of time (USER0 and USER1 are the same
person working on different projects). User data enters the system by the monitor-
ing of UNIX shell command data [Lane and Brodley 1999], captured via the (t)csh
history file mechanism. An example session could be: ls -l; vi t1.txt; ps

-eaf; vi t2.txt; ls -a /usr/bin/*; rm -i /home/*; vi t3.txt t4.txt; ps

-ef;. Each process/command in the history data together with its arguments
is treated as a single token. However, to reduce the alphabet size, we omitted
filenames in favor of a file count as in Lane [Lane and Brodley 1999]. For ex-
ample, the user sequence given above is converted to the following set of tokens
T = {ti : 0 ≤ i < 8}, where t0= ls -l, t1= vi <1>, t2= ps -eaf, t3 = vi <1>,
t4= ls -a <1>, t5= rm -i <1>, t6= vi <2>, and t7= ps -ef. The notation
<n> gives the number of arguments (n) of a command. For instance, the command
vi t1.txt is tokenized as vi <1>, while vi t3.txt t4.txt as vi <2>.

In all there are 2354 unique commands across the users; this number thus gives
the cardinality of the set of symbols (the alphabet) for the Intrusion dataset. The
class-specific training (75%) and testing (25%) instances are given in Table V.

6.1.4 Context-sensitive Spelling Correction Dataset. We also tested our algo-
rithm on the task of correcting spelling errors that result in valid words, such as
there vs. their, I vs. me, than vs. then, and you’re vs. your [Golding and Roth
1996]. For each test, we chose the two commonly confused words and searched
for sentences in the 1-million-word Brown corpus [Kucera and Francis 1967] con-
taining either word. We removed the target word and then represented each word
by the word itself, the part-of-speech tag in the Brown corpus, and the position
relative to the target word. For example, the sentence “And then there is politics”
is translated into (word=and tag=cc pos=-2) → (word=then tag=rb pos=-1) →
(word=is tag=bez pos=+1) → (word=politics tag=nn pos=+2). The final dataset
consists of all examples from the correct and incorrect usages, which form the two
classes for the classifier. Overall 25% of the instances are used for testing, and 75%
for training. The number of test and training instances in each class are shown in
Table V. The alphabet size is 12,280, which is the number of unique words in the
corpus.

6.2 Alternative HMM Models

We compare VOGUE with three different HMMs. As a baseline, we compare with
a regular first-order HMM. On the biological sequences, we also compare against
HMMER [Eddy 1998]. Finally, we compare with kth-order HMMs on some selected
datasets.
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6.2.1 First-Order HMM. For the baseline, we used an open-source python HMM
implementation called logilab-hmm v0.5 2, which takes as input the number of
states and output symbols. It initializes the state transition matrix randomly, and
then uses Baum-Welch training [Rabiner 1989] to optimize the state transition and
symbol emission probabilities. It uses the standard Viterbi algorithm to compute
the probability of the test sequences. Baum-Welch is essentially an Expectation-
Maximization algorithm which can get stuck in local minima, starting from the
random initial probabilities. For a given number of states, we therefore train mul-
tiple (actually, three) models from different random starting transition matrices,
and we report the best results. Furthermore, since the number of states is an input
parameter, we try several values and chose the one that consistently yields better
results.

6.2.2 Higher Order HMM. We also built several k-th order HMMs, denoted as
k-HMM, for different values of k. A k-th order HMM is built by replacing each
consecutive subsequence of size k with a unique symbol. These different unique
symbols across the training and testing sets were used as observation symbols.
Then we model the resulting sequence with the baseline first-order HMM from
above.

For the order, we considered k = 2 and k = 4. Of course k = 1 is the same as the
baseline 1st order HMM. We could not run with higher order (with k > 4) HMMs
since the baseline HMM implementation ran into precision problems. As before,
we tried different values for the number of states, and report the best results. The
number of observations M for the k = 1 case was set to 20 since it is the number
of amino acids. M = 394; 17835 were the number of observations used for k = 2; 4,
respectively. These values were obtained from a count of the different new symbols
used for each value of k.

6.2.3 HMMER. HMMER [Eddy 1998], a profile HMM, is one of the state-of-
the-art approaches for biological sequence modeling and classification. To model the
data using HMMER, we first need to align the training sequences using CLUSTAL-
W 3. We then build a profile HMM using the multiple sequence alignment and
compute the scores for each test sequence using HMMER. HMMER depends heavily
on a good multiple sequence alignment. It models gaps, provided that they exist in
the alignment of all the training sequences. However, if a family of sequences has
several overlapping motifs, which may occur in different sequences, these sequences
will not be aligned correctly, and HMMER will not perform well.

6.2.4 VOGUE. We built VOGUE models with different values of minsup and
maxgap but with the constant k = 2 for the length of the mined sequences in VGS.
We then choose the parameters that give consistently good results and use them
for the comparison.

2http://www.logilab.org/project/logilab-hmm
3http://www.ebi.ac.uk/clustalw
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6.3 Evaluation and Scoring

We built models for each class using each of the competing methods, namely
VOGUE, HMM, k-th order HMM, and HMMER, using the training sequences for
each class. That is, assuming that there are c classes in a dataset, we train c HMM
models, M0, M1, · · · , Mc. For each test sequence, we score it against all of the c
models (for each class), using the Viterbi algorithm; the predicted class is the one
for which the corresponding model yields the maximum score. That is, for a test
instance seq, its class is given as arg maxi{P (seq|Mi)}.

Note that we use the log-odds score for the test sequences, defined as the ratio
of the probability of the sequence using a given model to the probability of the
sequence using the Null model. That is:

Log-Odds(seq) = log2

(

P (seq|Model)

P (seq|Null)

)

.

As noted above, P (seq|Model) is computed using the Viterbi algorithm that com-
putes the most probable path through the model. The Null model is a simple
one state HMM that emits each observation with equal probability (1/|Σ|). The
log-odds ratio measures whether the sequence is a better match to the given model
(if the score is positive) or to the null hypothesis (if the score is negative). Thus,
the higher the score the better the model.

For comparing alternative approaches, we compute the total accuracy of the clas-
sifier, as well as class specific accuracies. We show experimentally that VOGUE’s
modeling power is superior to higher-order HMMs. VOGUE also outperforms regu-
lar HMMs and HMMER [Eddy 1998], a HMM model especially designed for protein
sequences that takes into consideration insertions, deletions and substitutions be-
tween similar amino acids.

6.4 Accuracy Comparison

We now compare the classification accuracy of VOGUE with the other HMM mod-
els, on the different datasets mentioned above.

Class VOGUE HMMER HMM 2-HMM 4-HMM

F1-PDOC00662 81.82 72.73 27.27 36.36 18.18
F2-PDOC00670 80.36 73.21 71.43 50.0 41.07
F3-PDOC00561 95.24 42.86 61.9 80.95 33.33
F4-PDOC00064 85.71 85.71 85.71 85.71 64.29
F5-PDOC00154 71.88 71.88 59.38 40.62 56.25
F6-PDOC00224 87.50 100 79.17 87.5 91.67
F7-PDOC00271 89.19 100 64.86 5.41 27.03
F8-PDOC00343 89.29 96.43 71.43 96.43 100.0

F9-PDOC00397 100.0 40.0 60.0 20.00 40.00
F10-PDOC00443 100.0 85.71 85.71 42.86 71.43

Total 85.11 80.43 67.66 54.47 53.62

Table VI. Accuracy on PROSITE: bold values indicate the best results.

6.4.1 Comparison on Biological Datasets: PROSITE and SCOP.
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6.4.1.1 PROSITE Accuracy Comparison. Table VI shows the accuracy results
on the ten families from PROSITE for VOGUE, HMM, HMMER and kth-order
HMM. The class specific and total accuracy results are shown, with the best accu-
racy highlighted in bold. For VOGUE, we set the minimum support at 1, i.e., all
patterns that occur even once are used to build the model. The maximum gap is
also set to 1 for all classes, except for F5 and F6 which use a gap of 2, and F7 uses
a gap of 8. The PROSITE motifs for these classes, especially F7, contain several
gaps, necessitating a larger maximum gap value. The number of states for VOGUE
is given in Table VII, whereas the number of states in the HMMER model is given
in Table VIII.

For the basic HMM we tried N = 50, 100, 200 and found that 100 states worked
the best. We then ran the HMM three times, and recorded the best results in
the table above. We tried a similar approach to select the number of states for
higher order HMMs, namely for 2-HMM (2nd order) and 4-HMM (4th order). We
found that for 2-HMM a model with N = 5 states performed the best. It yielded
a total accuracy of 54%, whereas increasing the number of states decreased the
classification accuracy. For example for N = 10 the accuracy was 53%, for N = 20
it was 51%, for N = 50 it was 49%, and for N = 100 it was only 37%. For 4-HMM,
the models with N = 5 and N = 10 gave the same accuracy, with higher number
of states yielding worse results; we report results for N = 5.

We find that in general the higher order HMMs, 2-HMM and 4-HMM, were not
able to model the training sequences well. The best accuracy was only 54.47% for
2-HMM and 53.62% for 4-HMM, whereas for the basic 1st order HMM the accuracy
was 67.66%. HMMER did fairly well, which is not surprising, since it is specialized
to handle protein sequences. It’s overall accuracy was 80.43%. VOGUE vastly
outperforms the regular HMM. Even more interesting is that VOGUE outperforms
HMMER, with VOGUE having an accuracy of 85.11%. This is remarkable when we
consider that VOGUE is completely automatic and does not have explicit domain
knowledge embedded in the model, except what is recovered from the relationship
between the symbols in the patterns via mining.

It is worth noting that for protein sequences, since the alphabet is small (only 20
amino acids), and the sequences are long, all 400 pairs of symbols, i.e., 2-sequences,
are frequent, and as such the minimum support does not impact the number of
first and second symbol states. Both N1 and N2 remain 20 for all the values of
minimum support (across all classes); thus we kept the minimum support at 1. That
is, all classes have N1 = N2 = 20 and the number of gap states is close to ≈ 400
(G ∈ [392, 400]), as shown in Table VII. However, the models are not identical,
since the frequencies of the various 2-sequences are different, and more importantly,
the symbols that appear in the gaps and their frequencies are all different. It is
these differences, which are extracted by the VGS method and then modeled by
VOGUE, that enable us to discriminate between the classes.

6.4.1.2 SCOP Accuracy Comparison. Table IX shows the comparison between
VOGUE, HMMER, HMM and 2-HMM, on the 10 test sequences from all the 10
SCOP families. HMM gave the best results for N = 20 states, whereas 2-HMM
was run with N = 5 states, since it gave the same results as with N = 10, 20
states. VOGUE was run with a minimum support of 1, but the maximum gap
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PROSITE F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

N1 20 20 20 20 20 20 20 20 20 20
N2 20 20 20 20 20 20 20 20 20 20
G 394 400 400 400 399 400 400 400 392 400

N 435 441 441 441 440 441 441 441 433 441

SCOP F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

N1 20 20 20 20 20 20 20 20 20 20
N2 20 20 20 20 20 20 20 20 20 20
G 400 397 398 365 275 390 252 298 380 399

N 441 438 439 406 311 431 247 439 421 440

CSLOGS edu oth

N1 124 649
N2 201 814
G 329 1819

N 655 3283

Intrusion User0 User1 User2 User3 User4 User5 User6 User7 User8

N1 95 103 112 112 183 154 232 176 281
N2 92 100 113 105 191 152 236 168 280
G 609 790 847 936 1532 1167 2169 1149 2531

N 797 994 1073 1154 1907 1474 2638 1494 3093

Spelling Incorrect Correct

N1 105 116
N2 106 124
G 785 930

N 997 1171

Table VII. VOGUE: Number of States

PROSITE F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

N 1049 391 411 897 198 312 88 1157 357 664

SCOP F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

N 195 163 142 54 59 83 69 279 177 143

Table VIII. HMMER: Number of States

was set to 30. The number of different types of states in VOGUE are shown in
Table VII. The number of states in the HMMER model is given in Table VIII.
Unlike the PROSITE dataset, which has a well defined sequence motif per family,
the SCOP dataset groups structurally similar proteins together into the families,
and there may not be a well defined sequence motif as such. For this reason, we
had to increase the max-gap to a larger value to capture longer range dependencies
in the model. Note also that due to its structural nature, the SCOP dataset is
slightly harder to model via purely sequence based methods like HMMs. The table
shows that 2-HMM fared poorly, whereas VOGUE had the the highest classification
accuracy of 77.5%. It tied for or had the best class-specific accuracy in 7 out of the
10 classes.

ACM Journal Name, Vol. X, No. X, XX 2009.



26 ·

Class VOGUE HMMER HMM 2-HMM

F1-49417 100 25 100 100

F2-46458 100 100 100 75
F3-46626 100 75 75 75
F4-46689 50 50 50 25
F5-46997 25 100 25 0
F6-47095 75 75 100 50
F7-47113 25 100 25 0
F8-48508 100 25 75 0
F9-69118 100 100 100 100

F10-81296 100 100 75 50

Total 77.5 75.0 72.5 47.5

Table IX. Accuracy on SCOP

Class VOGUE HMM

edu 67.39 61.51
oth 84.87 85.04

Total 81.01 79.84

Table X. Accuracy on CSLOGS Dataset

6.4.2 Comparison on CSLOGS dataset. On CSLOGS we compare VOGUE with
a first order HMM. Since HMMER models only protein sequences, it is not used
here. For HMM, N = 10 states worked the best, and the accuracy reported is
the best among three runs. For VOGUE, we used a minimum support of 10, and
a maximum gap of 1. Table VII shows the number of first and second symbol,
gap and total states in the VOGUE model. Table X shows the accuracy results.
Overall, VOGUE has a slightly higher accuracy than HMM. However, it is worth
noting that VOGUE is significantly better for the minority edu class (edu comprises
22.1% of the test instances), which is harder to model and classify. HMM has a
slight edge on the easier majority oth class.

Class VOGUE HMM

User0 87.05 71.22
User1 52.89 64.46

User2 77.01 72.19
User3 90.0 90.0

User4 82.30 84.51

User5 73.33 70.37
User6 59.5 55.21
User7 66.97 64.56
User8 88.38 91.41

Total 73.17 71.49

Table XI. Accuracy on Intrusion Dataset

6.4.3 Comparison on Intrusion Dataset. Table XI shows the results on the In-
trusion dataset. The best baseline HMM model used N = 20 states. VOGUE
used minimum support of 2 and maximum gap of 1. The number of different types
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of states in VOGUE are shown in Table VII. VOGUE outperformed the baseline
HMM method for 6 out of the 9 classes (users), and had a higher overall accuracy
too.

Class VOGUE HMM

Correct 78.5 78.75

Incorrect 56.27 42.51

Total 68.5 62.45

Table XII. Accuracy on Spelling Dataset

6.4.4 Comparison on Spelling Dataset. For HMM, we used N = 20, and report
the best of tree runs. For VOGUE we used minimum support of 10 and minimum
gap of 5. Table VII shows the number of different types of states in VOGUE.
VOGUE significantly outperforms HMM with an overall accuracy of 68.5%, and
moreover, it does much better on the class of more relevance, namely the incorrect
spellings, as opposed to the correct spellings.

6.5 Timing Comparison

PROSITE VOGUE HMMER HMM 2-HMM 4-HMM

Training 1.21s 38.3s 100.67s 0.76s 3.11s

Testing 2.9s 0.85s 0.51s 0.03s 1.88s

SCOP VOGUE HMMER HMM 2-HMM

Training 0.57s 0.14s 0.58s 0.05s

Testing 3.08s 0.05s 0.03s 0.02s

CSLOGS VOGUE HMM

Training 77.56s 1200.01s

Testing 0.03s 0.71s

Intrusion VOGUE HMM

Training 14.31s 64.81s

Testing 0.11s 0.12s

Spelling VOGUE HMM

Training 44.25s 25.76s

Testing 0.38s 0.69s

Table XIII. Run Times: PROSITE, SCOP, CSLOGS, Intrusion and Spelling

In Table XIII, we show the execution time for building and testing the different
HMM models on the various datasets. The training times are the average across
all classes, and the testing times give the average time per test sequence for the
viterbi algorithm. For example, for PROSITE the time reported for training is the
average time per family taken over all the ten families. The time for testing is the
average time per test sequence taken over all the 235 test sequences run against
the ten families (i.e., average over 2350 runs). The time for VOGUE includes the
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mining by VGS, and for HMMER, the alignment by CLUSTAL-W. VOGUE builds
the models much faster than HMMER (over 30 times), since the time taken by
CLUSTAL-W for multiple sequence alignment dominates the overall training time
for HMMER. On the other hand, HMMER’s testing time is more than twice as fast
as VOGUE; this is because HMMER is essentially a left-to-right model, whereas
VOGUE also models durations. The training time for the basic HMM is high since
the best model had 100 states and the Baum-Welch (or expectation-maximization)
training over a large number of states is slow. Once the model is built, the viterbi
algorithm runs very fast. Finally, the training times for 2-HMM and 4-HMM are
very low, since the model only has 5 states.

The training and testing times on the SCOP dataset are very small, since there
are only 6 sequences to train over, and 4 sequences to test over, for each of the
models. The regular HMM used only 20 states and 2-HMM only 5 states, thus
they train very quickly. On the web usage logs, even though there were only 10
states in the HMM model, the Baum-Welch training took a very long time, due
to the large number (16175; see Table V) of training sequences. VOGUE was over
15 times faster during training, and was also faster for testing. For the Intrusion
dataset the best HMM model had 20 states, but since there were large number of
training sequences (between 364 and 1280) per class, the Baum-Welch algorithm
took longer time to converge. VOGUE is over 4 times faster during model building,
since mining the 2-sequences in VGS is fairly fast. On Spelling, the HMM model
with 20 states is about 1.7 times faster than VOGUE.

Overall we conclude that as expected the training times depend on the number of
training sequences and states in the model. For HMMER, the time is dominated by
the multiple sequence alignment step. For HMM and high-order HMMs, the time
is dominated by the Baum-Welch training method. For VOGUE the main time
is spent in the VGS method. In general the VGS mining is much faster than the
alignment or Baum-Welch steps, especially when there are many training sequences.
For testing, all methods are generally very efficient.

7. CONCLUSIONS AND FUTURE WORK

VOGUE combines two separate but complementary techniques for modeling and
interpreting long range dependencies in sequential data: pattern mining and data
modeling. The use of data mining for creating a state machine results in a model
that captures the data reference locality better than a traditional HMM created
from the original (noisy) data. In addition, our approach automatically finds all
the dependencies for a given state, and these need not be of a fixed order, since the
mined patterns can be arbitrarily long. Moreover, the elements of these patterns
do not need to be consecutive, i.e., a variable length gap could exist between the
elements. This enables us to automatically model multiple higher order HMMs via
a single variable-order model that executes faster and yields much greater accuracy
then the state-of-the-art techniques. For data decoding and interpretation, we
designed an optimized Viterbi algorithm that exploits the fact that the transition
matrix between the states of our model is sparse, so there is no need to model the
transitions between all the states.

We applied VOGUE to finding homologous proteins in the given database of
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protein sequences. The goal is to build a statistical model to determine whether a
query protein belongs to a given family (class) or not. We show experimentally that
on this dataset VOGUE outperforms HMMER [Eddy 1998], a HMM model espe-
cially designed for protein sequences. Likewise VOGUE outperforms higher-order
HMMs, and the regular HMM model on other real sequence data taken from web
usage logs at the CS department at RPI, user command sequences for masquerade
and intrusion detection, and text data for spelling correction.

In the future, we plan to apply VOGUE to other interesting and challenging real
world problems. We also would like to implement and test the generalized VOGUE
model for sequences of longer length. Finally, we would like to develop alternate
variable length and variable duration HMM models, with the aim to further improve
the modeling capabilities of VOGUE.
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