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Abstract

The first decade of the century witnessed a proliferation of devices with sensing and
communication capabilities in the possession of the average individual. Examples
range from camera phones and wireless GPS units to sensor-equipped, networked
fitness devices and entertainment platforms (such as Wii). Social networking plat-
forms emerged, such as Twitter, that allow sharing information in real time. The
unprecedented deployment scale of such sensors and connectivity options usher
in an era of novel data-driven applications that rely on inputs collected by net-
works of humans or measured by sensors acting on their behalf. These applications
will impact domains as diverse as health, transportation, energy, disaster recov-
ery, intelligence, and warfare. This paper surveys the important opportunities in
human-centric sensing, identifies challenges brought about by such opportunities,
and describes emerging solutions to these challenges.

1. Introduction

Our work is motivated by the recent surge in sensing applications characterized by
distributed collection of data by either self-selected or recruited participants for the
purpose of sharing local conditions, increasing global awareness of issues of interest,
computing community statistics, or mapping physical and social phenomena. This
type of applications has recently been called participatory , opportunistic, or human-
centric sensing [1]. Examples of early applications include CarTel [2], BikeNet [3],
MMM2 [4], and ImageScape [5], among others.

A confluence of technology trends has precipitated the advent of such sensing
applications, where the focus of sensing processes is more personal or social [6]. The
first set of technology trends has to do with the proliferation of a wide variety of
sensors in the possession of the average individual. The second set of trends lies in
the proliferation of options for ubiquitous and real-time data sharing, as exempli-
fied in the ubiquity of smart phones with network connectivity and the increasing
popularity of social networking sites (e.g., Twitter) for information publishing.

On the sensor front, RFID tags, smart residential power meters (with a wire-
less interface), camera cell-phones, in-vehicle GPS devices, accelerometer-enhanced
entertainment platforms (e.g., Wii-fit), and activity monitoring sportsware (e.g.,
the Nike+iPod system) have all reached mature market penetration, offering un-
precedented opportunities for data collection. Major industry initiatives, such as
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HealthVault, automate collection of and access to information. A significant num-
ber of vendors announced wearable health and biometric monitoring sensors since
2008 that automatically upload user data to HealthVault.

On the social and networking fronts, the ubiquitous proliferation of cell-phones
and social network cites offers ample opportunities for real-time data sharing. Mod-
ern cell phones are equipped with a non-trivial collection of sensors, in addition to
Bluetooth, WiFi, 4G, and near-field communication options that turn the device
into a portal for connecting physical world instrumentation to the Internet. Ve-
hicular Internet access, offered in some new car models (e.g., Chrysler’s Uconnect
Web, and BMW’s ConnectDrive) enables new applications that exploit network
connectivity to export sensory information on the move. For example, services such
as OnStar have long since exported on-board diagnostics (OBD-II) measurements
to offer remote access to a large number of vehicle sensors and gauges.

The availability of sensing devices, Internet connectivity options, and social fo-
rums for information sharing open up an important new category of distributed
applications in energy, health, environmental, and military domains that rely on
individual and community sensing. New research challenges emerge from the in-
volvement of human populations in a sensory data collection and decision-making
loop. They include incentives, recruitment, privacy, trust, data accuracy, system
modeling, and interpretation of social sensing dynamics. This paper categorizes
human-centric sensing applications, surveys the aforementioned challenges, and dis-
cusses emerging solutions.

2. Dimensions of Human-centric Sensing

In traditional sensor networks, the emphasis has been on unattended and au-
tonomous system operation, with the run-time role of humans limited to being
end-consumers of information products (using information products from the sen-
sor network to make decisions and take actions). By contrast, the distinguishing
aspect of human-centric sensing systems is a larger involvement of humans along
other points in the data-to-decision path. This path generally consists of sensing
(i.e., acquisition of sensor measurements by observing a target of interest), and
information processing (e.g., extracting relevant information and metadata from
sensor measurements, and fusing and analyzing such information from multiple
sources to derive knowledge that forms the basis of decisions and actions). Human
involvement is particularly useful in sensing various processes in complex personal,
social, and urban spaces where traditional embedded sensor networks suffer from
gaps in spatiotemporal coverage, limitations in making complex inferences, inability
to adapt to dynamic and cluttered spaces, and aesthetic and ergonomic problems.
By taking advantage of people who already live, work, and travel in these spaces,
and their adaptability and intelligence, human-centric sensing makes it feasible to
get information that otherwise is not possible. While human-centric sensing systems
are quite diverse, one can classify them in terms of the extent and role of human
participation, which falls under one or more of the following categories:

• Humans as targets of sensing: Perhaps the most obvious form of human-
centric sensing is one where the humans are the target of sensing. While
such sensing systems have existed for a long time, particularly in the security
domain, the advent of more pervasively deployed sensor technologies have
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resulted in an exponentially increased interest in applications which have as
their goal the sensing of human activities, behaviors, and patterns at scales
ranging from individuals (often oneself) to larger groups and communities. In
this paper, we shall focus on examples of applications where individuals are
a knowing and willing target of sensing (e.g., longitudinal health monitoring)
as opposed to ones where human involvement is not voluntary and perhaps
even adversarial (such as tracking enemy dismounts in a battlefield).

• Humans as sensor operators: A second role for humans is to participate
in community sensing campaigns, either via explicit recruitment or implic-
itly by downloading a sensing application. Such campaigns typically exploit
sensors that individuals own (such as cameras) to collect and share raw mea-
surement data and media streams. The advent of powerful consumer-grade
mobile smartphones equipped with embedded or wirelessly connected sensors
has suddenly enabled billions of individuals to collect geo-tagged sensor mea-
surements and media streams about their immediate spaces, such as an image
or a sound clip or a temperature reading. Other objects besides smartphones
that are associated with humans, such as the vehicles they operate, may also
embed sensors collecting measurements. Not only does such sensing naturally
provide sensor coverage where interesting processes are happening, but also
the human expertise in intelligently operating the sensor is useful in gath-
ering higher quality measurements (e.g., capturing high quality images in a
cluttered space with poor lighting).

• Humans as data sources: Humans regularly act as data sources themselves,
acquiring and disseminating information on their own, without the aid of sens-
ing devices. Indeed, humans are versatile and unique sources of information
about processes and relationships that exist in their spaces. In the defense and
security arena there is a long history of information gathered via HUMINT
(HUMan INTelligence) as opposed to electronic sensors. In social, behavioral,
and medical sciences, Ecological Momentary Assessments (EMAs) of human
subjects are commonly used to acquire information that is hard to get from
physical sensor sources. In this paper, we focus on emerging social sensing
and information dissemination that arises thanks to our ubiquitous Internet
connectivity, coupled with the increasing popularity of social networks and
media services, such as Facebook, YouTube, and Twitter that offier scalable
tools for human-sourced information dissemination. These developments have
motivated research that aims at a deeper understading of the emergent ag-
gregate behavior of such self-organized social sensing systems and networks.

Note that, these different roles that a human can play in sensing are in general
not mutually exclusive. For example, human-assisted sensor measurement (where
humans are operators of sensors) may have as its target a physical process, such
as mapping pollution, or a human such as monitoring state of health. It should
also be noted that the above human roles with respect to sensing are orthogonal
to roles that humans (and machines) may play with respect to data processing . We
view data processing challenges as cross-cutting issues. Data processing may have
different purposes such as data modeling, privacy enforcement, security, and trust
management.
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There as several examples of human participation in data processing, down-
stream from sensing. For example, humans may be involved in annotating sen-
sor data, where information features are extracted and annotated with metadata
describing the context. These tasks are often difficult to do algorithmically and
autonomously at the sensor, particularly for complex phenomena and rich sensor
data types. At the same time, raw sensor measurements are usually too noisy and
not semantically rich enough to disseminate unprocessed further downstream along
the data-to-decision path. Human participation and assistance can simplify them
considerably. For instance, having an individual who captured an image with a
smartphone camera to also classify, triage, and tag the image with information
identifying the scene can aid subsequent analysis of that image. This results in a
significantly more useful and efficient sensing system than one where all the raw im-
ages captured were blindly sent to further up the stack. Crowd-sourcing platforms
such as Amazon Turk can be leveraged to engage a large number of human partic-
ipants in processing raw sensor data [7]. Besides annotation, humans may play a
crucial role in data analysis and fusion, analyzing and fusing data from diverse sen-
sors and other sources, and extracting semantically rich and actionable inferences.
In some cases, sensor-sourced information has imperfections, such as information
gaps, errors, uncertainty, bias, obfuscation, and willful falsification, making auto-
mated inference hard. In other cases, such as natural language and images, the
sensory information may be too complex for current machine learning algorithms.
Human analysts can alleviate these shortcomings by bringing knowledge about the
social, political, economic, and cultural context in which the sensory information
was obtained to assess its overall trustworthiness, and derive useful knowledge de-
spite the imperfections.

Finally, in addition to where in the data-to-decision pipeline the human par-
ticipation occurs, another dimension of human-centric sensing is the nature and
purpose of human participation. The nature of participation can span a range of
possibilities that include voluntary, opportunistic, incentivized, directed, and orga-
nized, while the purpose may include collecting sensory information for self-analysis,
a top-down directed sensing campaign for a director’s purpose, or bottom-up data
collection that emerges naturally from the participants’ cause.

In the sections below, we focus on the roles humans play in sensing. We first
explore applications where data are collected about individuals for self-analysis.
We then describe humans as sensor operators in coordinated community sensing
applications, where a community of self-interested or incentivized parties join a
sensing compaign or an otherwise coordinated effort to collect information. Finally,
we cover humans as information sources, and explore human-centric sensing that
emerges naturally, for example, when communities propagate information for a
shared cause in social spaces such as Twitter. Cross-cutting concerns are introduced
where appropriate in the above sections.

3. Humans as Targets of Sensing

In this section, we focus on a category of human-centric sensing where an individual
collects sensory information about themselves for their own use. Owing their inspi-
ration to “lifelogging” applications (capturing and archiving memories of one’s life
in the form of a continuous time-series of data [8]) these sensing systems provide
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individuals with information about their activity, health, and lifestyle, and enable
them to introspect about the choices they made, analyze their consequences, and
take actions. A good example of such an application is the PEIR system [9] that
enables individuals with mobile phones to learn the impact of their transportation
choices on the environment due to vehicular emissions, as well as the exposure they
get to environmental pollution. In addition to letting individuals introspect about
their data, the PEIR system lets them selectively share it with others, and compare
it against group statistics.

While the sensors providing data for such applications may be embedded in the
spaces we live in, more common is to use sensors that are always carried on one’s
person, either built into one’s mobile phone or in separate wearable sensors. For
example, measurement traces from accelerometers, gyros, and GPS embedded in the
mobile phones can be used to obtain a geo-stamped time series of one’s activity and
transportation state (such walking, running, sitting, sleeping, biking, and driving),
and make inferences such as computing one’s physical energy expenditure. Separate
sensors, embedded in personal and social spaces, are often necessary for a variety
of reasons. Proper placement of sensors on the body may not be possible in some
cases with a mobile phone that is carried in the pocket or held in the hand. Sensing
modalities such as an ECG and SPO2 sensors are not typically embedded in mobile
phones. Size and battery life optimization considerations might further dictate the
choice and location of sensors. Finally, other items of frequent personal use, such
an individual’s car, may be instrumeted and wirelessly connected (e.g., to a mobile
phone) for real-time retrieval of sensory information over a sensor area network, or
may log the data in a local memory for later retrieval when connected to a personal
computer. At the back end, these applications typically use software running on the
user’s mobile phone or personal computer, or increasingly more commonly as a cloud
service, for archiving, visualization, analysis, and sharing of the sensory information
with social contacts. While human-centric sensing, as a tool for capturing and
reflecting on one’s life, is becoming increasingly commonplace, several technical
challenges present hurdles to wide adoption, some of which we discuss here.

(a) The Energy Challenge

The applications described above seek to use the smartphone either as a sens-
ing device, or as a communication gateway for wearable wireless sensors. However,
modern smartphones are designed primarily as devices for sporadic use of personal
communication, mobile applications, and web services, and not for continual sens-
ing. Sensors such as light sensors, accelerometers, gyros, and magnetic compass were
incorporated primarily for the purposes of offering richer user interfaces, such as
display adaptation to screen orientation and lighting condition, and gesture based
control. As human-centric sensing applications have begun to use these sensors to
make continual measurements and inferences about the user’s context, the limita-
tions of the platform in terms of battery life become evident. Even seemingly simple
modalities such as the accelerometer turn out to be quite energy constrained be-
cause of the high sampling rates needed for inferring physical context and the lack
of architectural support in the I/O subsystems for handling sensor data streams.
Complex modalities such as the GPS and imager are even more energy hungry, as
are the wireless radios needed for the phone to communicate with wearable sensors.
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The end result is that smart phones which may last for a day or two when used in
their intended role as personal communication and computing devices, barely last
for 3-4 hours when used for continual sensing.

In the short term, the key to at least partially meeting this energy challenge lies
in smarter selection, activation, duty cycling, and sampling of the energy-hungry
sensors such as GPS [10], while making use of information such as the current
contextual state, model of expected behavior, and external constraints. Although
measurements from multiple sensors may contribute to inferring a contextual vari-
able of interest such as location, the sensitivity of the inference to the sensors may
vary over time, and can be exploited algorithmically to selectively shutdown or
lower the sampling rate of sensors. An example is the SensLoc system described
in [11] that actively controls a GPS receiver, a WiFi scanner, and an accelerometer,
and fuses their measurements to detect commonly visited places and commonly
traversed paths. Additionally, prior knowledge of a road map or building layout
may be used to constrain possible evolution of future location, and thus further
limit the sensor samples needed [12].

In the long run, however, the smartphone platform architecture may need to
evolve to support more energy efficient sampling of sensors. For example, dedicated
hardware that can deposit sensor data samples to the main memory and perform
simple processing on the data without waking up the main processor can signif-
icantly reduce the energy overhead [13]. Wearable sensors, used external to the
smartphones, suffer from their own energy challenge, primarily due to their small
size and weight that severely limits the battery size. This is particularly true for
sensors designed for high rate sensing modalities, such as an ECG signal, where
there is little opportunity to duty cycle naively. Instead, compute intensive local
processing that would predict the occurrence of an event of interest, and special-
ized circuits that would detect their start at an early stage, may be used to activate
and shutdown the sensors smartly. Additionally, a major source of power consump-
tion in wearable sensors for physiological signals is the analog frontend that is
used to amplify and filter the tiny signals, and, worse, these circuits are hard to
duty cycle because of long time constants associated with the filters. More opti-
mized analog-to-digital pathways together with the use of emerging compressive
and event-driven sampling mechanisms, instead of the conventional Nyquist sam-
pling, would be crucial to meeting the energy challenge. The issue of energy-efficient
sensing on cell-phones has been the topic of several recent publications [14, 15, 16].

(b) Challenge of Inferring Rich Context

The utility of human-centered sensing applications comes from their ability to
make inferences about individuals’ contexts can be made for purposes such as per-
sonal awareness, individual behavior adaptation, personal health management, and
population-level studies. For example, prior research [17] shows how the sensory
data available on a typical smartphone can be algorithmically processed and fused
to make complex inferences about one’s mobility pattern and transportation modes.
However, experience with the first generation of such applications on mobile plat-
forms has exposed both systemic and algorithmic limitations in making complex in-
ferences about physical, physiological, behavioral, social, environmental, and other
contexts that the applications demand. The mobile platform hardware and system
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software typically do not perform any inferences on the measurements, and instead
expose raw data or provide hooks for simple notifications and accuracy control.
With little system support for processing raw sensor measurements and deriving
higher-level inferences, each application is custom developed leading to a higher
development effort as well as run-time inefficiencies and performance problems.

The challenge of making the smartphone into an effective platform for human-
centered sensing would require solving several problems. The system software must
provide semantically rich interfaces for applications to express interest in complex
patterns of sensory observables, and permit composition of high-level context in-
ferences from primitive operations. Energy-scalable lightweight machine learning
algorithms than can be embedded on resource-constrained platforms are needed,
along with robust and reusable primitives for rich context inferences based on them.
Compact and easy to train personalized models of user behavior and preferences
that tailor the inference algorithms to specific individuals are essential for improved
performance [18]. Additional complications come from the wide variations in the
way users hold and carry their smartphones, and addressing them would require
both algorithms that are robust to such variations as well as learning and adapting
to specific usage patters of a user.

4. Humans as Sensor Operators: Collection Campaigns

The next class of human-centric sensing applications we discuss are those where in-
dividuals (who operate sensors) contribute sensor measurements about themselves
or about the spaces they visit as part of a larger-scale effort to collect data about
a population or a geographical area. The effort is coordinated explicitly, for exam-
ple through active participant recruitment, or implicity, for example by making a
new application available on a cell-phone app-store where users can download it,
thereby implicitly joining a sensing campaign. This is the most common human
sensing model, featuring participatory and opportunistic sensing, where humans
are used as sensor operators. Under this umbrella also fall applications such as:
monitoring spread of a disease in a community; human subject research conducted
by medical and social scientists on groups of individuals; documenting the state of
the physical infrastructure in an area such as the quality of the roads [19] or level of
pollution in a city [9], or the state of garbage cans on a campus [20]; and, monitoring
spread of an invasive plant or animal species in an ecosystem. These applications,
which have been termed “sensing campaigns” in the literature, can range in sophis-
tication. At the one extreme are applications which involve simply collecting sensor
measurements that are stamped with the time and location, and presenting them
to end users who may do further analysis manually or with the assistance of visual
analytics tools. At the other extreme are sophisticated applications that use the
collected spatiotemporal data to compute aggregate statistics and models to assist
users in identifying patterns and make predictions. These applications share several
important challenges as discussed below.

(a) Participant Recruitment Challenge

Developers of a sensor data collection campaign face the challenge of identifying
the appropriate set of individuals who would collect the data, for example, using
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their mobile phones. In most cases, the participation by individuals is voluntary,
although there may be applications where an organization may have its employees
be the data contributors as part of their jobs. The problem lies in identifying what
subset of individuals who are interested and meet the basic requirements of being
data contributors (i.e., have the right type of sensors and reside in the geographical
area where the data collection is to be done in a window of time) is actually selected
to contribute. A possible solution would be for the application to simply accept data
contributors from whichever individuals decide to do so in response to an open call.
Given problems such as self-selection bias in such a bottom-up approach, usually
more appropriate is a top-down approach where the set of actual contributors is
actively shaped to have appropriate characteristics to prevent statistical bias in the
data collection. Additionally, cost and resource constraints may also place a limit
on the number of participants, for example when the participants are paid or if
there are opportunity costs associated with the time they would spend collecting
the data. This “participant recruitment” problem has similarities to traditional em-
ployee recruitment and to sensor selection in traditional sensor networks, but needs
to consider sensing needs of the data collection campaign and diverse attributes
associated with the participants. Moreover, it is not a one-time selection process
but an on-going one that requires methods to keep the participants engaged.

The difficulty in participant recruitment [20] comes from the human element.
On the one hand, it is the human element that makes data collection campaigns
so powerful. The intelligence, mobility and flexibility of participants is leveraged in
making difficult measurements and rich inferences that may not be possible with
unattended sensors. On the other hand, the human element introduces complicating
factors. Potential participants may have different motivations, availability, diligence,
skill, timeliness, phone capabilities, and privacy constraints that would affect the
amount and quality of data they collect. Moreover, participants’ availability and
the quality of data they contribute during the actual campaign may differ from
what was predicted at the time of initial recruitment, and may also vary over time
due to distractions, boredom, and other human factors. This presents the need to
rate contributions so as to assign reputation to participants, which may be used to
modify the set of participants during a campaign, to modify the incentives offered
to them, and to assess their suitability as participant in future campaigns.

Initially, the authors and organizers of a campaign provide requirements on
spatiotemporal coverage and extent, sensing modalities, and budget constraints.
Additionally, the recruitment process may have available to it the participants’
profiles, where they are modeled in terms of their capabilities (e.g. the type of
phone and sensors they possess), availability (when and where can they collect
data), reputation (their experience and prior performance in data collection), and
cost (the incentives they would need or the opportunity cost of their participation).
Using data collected during the campaign, the recruitment is adapted to evolving
campaign needs and actual data collection performance of the participants, and the
participant profiles are updated as well.

(b) Challenge of Learning Context-annotated Mobility Profiles

Perhaps the most crucial metric in recruiting is a participant’s availability. It
would be futile to select a participant whose mobility patterns do not intersect in
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both space and time with the regions of space and the intervals of time that the
campaign is being conducted in. Formally, given mobility profiles of potential par-
ticipants, one needs to find a subset of participants that would maximize coverage
in space and time while keeping the cost of running the campaign within budget.
In reality, the problem is even more complex since just because a participant is at
a place and time where data needs to be collected does not mean that the partici-
pant is actually in a position to do so. For example, a participant may be in a fast
moving vehicle, precluding certain types of data collection. To accommodate this,
the mobility profiles of participants need to be annotated with contextual informa-
tion, such as transportation modality and activity state, which have an effect on
participants’ ability to make sensor measurement. For reasons of practical system
implementation, the context-annotated mobility profiles need to be both compact
and in a form that can be effectively queried by the recruitment algorithms to select
participants. One approach, proposed in [21], is to maintain a participant’s proba-
bility of occupancy in a spatial grid as a function of the time of the day, day of the
week, and holidays. An alternative approach might be to represent mobility profile
in terms of a graph composed of important places and routes that a participant
visits. Run-time traces of time-stamped locations annotated with transportation
modality [17] and other context, captured by a background sensing service run-
ning on a participant’s mobile phone, can be checked for consistency against the
participant’s mobility profile, and the profile updated in case of a mismatch.

(c) Data Quality and Participant Performance Challenge

There may be significant differences between the data collection performance
of different participants, and the performance of a participant may vary over time
across different campaigns or even during the course of the same campaign. Desir-
able for this would be a metric that may be used to measure and track participation
and expertise of individuals for adapting the set of participants and adjust feedback
and incentives [22]. One way recent literature proposed to realize this is using “track
record” or a reputation system, similar to those used in e-commerce (e.g., e-Bay).
Its use has also been proposed in traditional sensor networks to monitor sensor
quality. Such an approach, for example, was used in [20] where a watchdog entity
observes the quantity, quality, and utility of participants’ sensor data contributions.
The watchdog compares against known ground truth, predictions from models, and
with measurements from other participants. For complex sensing modalities, such
as imagery, watchdog’s task may be algorithmically quite complex, and may require
human assist. The watchdog can consider factors such as data quality, relevance,
and timeliness along with participant follow-through and responsiveness. The repu-
tation metric is maintained as a Beta distribution for each participant, and consists
of two parameters alpha and beta, where the former captures the number of good
quality data contributions made by that participant as observed by the watchdog
and the latter captures the number of poor quality ones. Reputation metrics based
on Beta distribution compactly capture the stochastic uncertainty, and also allow
for aging (i.e., give heavier weight to more recent performance of a participant).
The system can set initial values of the reputation metric by assessing partici-
pants’ performance on calibration tasks. Reputation-based approaches however do
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not offer a complete solution, and fail to detect more complex forms of participant
misbehaviors such as collusions and sudden changes.

(d) Sparse Sampling and Generalization Challenge

Once data is collected, a data consumer may want to compute useful local
features or statistics from measurements. For example, traffic patterns monitored in
a city may produce statistics that help local drivers avoid congestion areas [2]. Bike
route data collected by biking enthusiasts may help them understand conditions
on these routes [3]. Hiker encounters may be recorded on mountain trails to help
locate missing hikers on those trails [23].

More complex applications may aim at creating viable generalizations from data,
where data collected in some locations may help create prediction models that are
generalizable and can affect human decision-making elsewhere. For example, shar-
ing data collected by smart energy meters installed in some households, together
with relevant context, can lead to a better understanding of energy consumption
in contemporary homes and best practices that increase energy efficiency elsewhere
around the nation. Similarly, sharing data collected by activity sensors among fit-
ness enthusiasts can lead to lifestyle recipes that promote healthier behaviors for
multitudes of others. Also, sharing data on fuel consumption of individual vehicles
on different road types in different conditions can help build generalizable models
that predict fuel consumption of other vehicles on other roads. A common feature
across these applications is the existence of a generaliazable model of the studied
system or phenomenon, that can be infered or “trained” using limited available
data, but that can ultimately be used to predict outcomes in a much broader con-
text [24]. Recent work has addressed the challenge of building good models and
statistics from sparse human measurements [25, 26, 27].

Consider applications that attempt to learn from collected observations and gen-
eralize by building models of system behavior where some components, interactions,
processes, or constraints are not well-understood. For example, predicting the fuel
consumption of a vehicle depends not only on fixed factors such as weight, frontal
area, and engine type, but also on variables such as vehicle speed, acceleration, con-
gestion patterns, and idle time, which are hard to predict accurately in advance.
Building first principle models from scratch is not always practical, as too many
parameters are involved. In contrast, using regression to estimate model coefficients
is challenging because reliable estimation suffers the curse of dimensionality. The
state space grows exponentially in the number of parameters, making sampling of
that space sparse. As the number of parameters increases, estimated models become
less reliable.

Recent work to address the above dilemma focused on modeling techniques
that combine estimation-theory and data mining techniques to enable modeling
complex socio-physical systems reliably at multiple degrees of abstraction. A reliable
model is the one that remains sufficiently accurate over the whole input range.
The general idea [28] is to jointly (i) partition sparse, high-dimensional data into
subspaces within which reliable linear models apply and (ii) determine the best
model for each partition using standard regression tools. Importantly, the modeling
technique must uncover the inherent generalization hierarchy across such subspaces.
For instance, in the example of predicting fuel efficiency of cars on different roads
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(as a function of car and road parameters), it should tell how best to categorize
cars for purposes of building fuel prediction models in each category. Categorization
could be by car class, make, model, manufacturer, year, or other attributes. These
categories have a hierarchical structure. For example, one may build prediction
models for cars by make, model and year (e.g., Ford Taurus 2005, Toyota Celica
2000). One may also aggregate these over years or over car models to generate
prediction models for larger categories (e.g., all Ford Taurus cars, or all Toyotas
of 2000). Such generalizations help when there is not enough data on each type of
car to build a reliable model for that type alone. They are also good for predicting
performance of a car from performance of others (in the same generalized category).
Hence, finding accurate generalizations is an interesting problem in human-centric
sensing systems where sampling is sparse and the number of parameters is large.

An interesting question is to analyze the trade-off between modeling accuracy
and cost of data collection. Normally, more accurate models involve more input
parameters, which makes them more expensive. By judiciously replacing a com-
plex general model with a tree of simpler specialized models for different sub-cases
(branches), one can do better both in terms of accuracy and cost; specialization may
increase accuracy, while at the same time reducing the number of model paramaters
needed in each special case at hand, hence reducing cost. The main challenge in
achieving such an improved trade-off lies in appropriately defining the special cases
and the simpler models that apply in each case.

(e) The Privacy Challenge

Privacy becomes a broad concern when a sensing system has multiple users
and when data can be exposed to unauthorized parties. For example, vehicular
and smart highway applications that collect and utilize traffic measurements from
a variety of distributed vehicle-mounted sensors could compute real-time traffic
conditions, but only if individuals shared private data on their speed and loca-
tion. Adequate architectural and algorithmic privacy solutions should be designed
into such data collection systems from the start. These solutions should encourage
privacy-preserving information sharing. Several special characteristics of human-
centric sensing systems make general (encryption-based) privacy solutions inade-
quate, as described below.

1. Spatio-temporal affinity: Data in human-centric sensing systems originate at
a physical time and location. Privacy mechanisms must protect the data since its
origination time. These mechanisms must therefore be integrated with the physical
context in which the data originate and address physical attacks in that context. For
example, wireless fingerprinting techniques can disclose certain information (e.g.,
location) about a transmitter even without decoding the content of messages [29].
In turn, the pattern of transmissions from identified sensors may disclose some-
thing about the activity monitored. For example, in a smart appartment complex,
identifying the electronic footprint of a bathroom light sensor can allow others to
detect a neighbor’s washing habits. There is a tradeoff between effort spent on hid-
ing this pattern and the privacy achieved. In a recent study that explored privacy
mechanisms for data with spatio-temporal affinity, it was shown that an outdoors
eavesdropper could fingerprint different wireless devices inside a smart home and
identify distinct transmitters. It could then correlate their transmission patterns
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to general knowledge of human behavior (e.g., typical patterns of use of different
rooms and household items), and identify semantics of different tranmitters. Finally,
it could use the pattern of tranmissions together with infered semantics to recog-
nize activities of daily living, all without access to the actual data transmitted. It
was shown that the eavesdropping attack was surprizingly robust unless significant
resources were invested into privacy mechanisms (e.g., a very large number of spu-
rious messages were sent). Efficient combinations of different privacy mechanisms
that achieve a better cost-privacy trade-off remain a subject of current research.

2. Streams and time-series: Data in sensor networks are usually stream oriented.
The main data type is a correlated time-series (of measurements). Correlations in
time-series data offer additional challenges in protecting privacy, as partial disclo-
sure of correlated data can divulge information about other data not shared. A
significant amount of work was recently dedicated to mechanisms and theory for
protecting privacy of correlated data streams. Of particular interest are mecha-
nisms that work in the absence of a trusted entity responsible for data cleaning.
Anonymity alone does not always work because the shared data often has enough
information to infer the anonymized source. For example, sharing GPS traces that
end up repeatedly at the same private residence may suggest the identity of the
data owner. In such cases, data perturbation could ensure that (i) privacy of origi-
nal sensor data is preserved, yet (ii) computation of accurate community statistics
remains possible from the perturned data. Recent work addressed the problem of
generating the optimal noise time series for a given data stream such that minimum
information is leaked (in an information-theoretic sense) about the original stream
data. Yet, when many such streams are shared, the accuracy of data statistics
computed over the community approach that of unperturbed data. For example,
it may be possible to compute the average percentage weight gain of a commu-
nity of individuals (as a function of time), while obfuscating each individual stream
in ways that mask both the absolute values and trends [25]. Another set of ran-
domization techniques preserve differential privacy using randomized aggregation
functions [30, 31, 32]. When an aggregate value is derived by a trustworthy entity
or the client, differential privacy is preserved if adding or removing a data item
does not significantly change the output (aggregate) probability distribution. Like
data point perturbation, differential privacy methods rely on randomization that
introduces noise to the regression model.

3. Data Fusion: Sensor fusion is a common operation. When data is collected
from multiple users, a trade-off exists between individual privacy (that favors non-
disclosure) and community-wide utility from aggregate information (that requires
data to be disclosed in some form). Recent work has shown that this trade-off can
be significantly improved by exploiting the specifics of the data fusion algorithms
themselves. It makes the observation that, for instance, an algorithm that com-
putes a public regression model (from community data) does not actually need the
individual training samples. Sharing properly computed aggegates of such samples
from each user can result in the same community model as that computed from
raw user data. Computing such aggregates, called neutral features [27], must meet
two constraints; (i)perfect modeling , which means that construction of models from
shared neutral features should produce exactly the same model as if the original
private data traces were used, and (ii) perfect neutrality , which requires that re-
construction of private user data from shared features yield the same error as if
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no additional information was available to the outside world besides the computed
community model. Neutral features were recently described that provide perfect
modeling and approach perfect nuetrality [27].

5. Humans as Data Sources: Sensing in Social Networks

In the previous section, we discussed how humans can assist in coordinated sensing
campaigns that exploit sensors they operate. Coordination may have been explicit
(by recruitment) or implicit (by downloading a shared application, designed for a
particular sensing purpose). Here, in contrast, we focus on the emergent behavior
of humans, interconnected by communication media, when they naturally act as
data sources by volunteering information they care about. While individuals may
be acting without any prior coordination and without specialized sensing applica-
tion download, the very means of information sharing the use, such as Twitter,
Facebook, or YouTube, eventually produce emergent community sensing behavior.
In these scenarios, information is generated, observed, and collected by humans,
and then propagated through a social network. Information disseminated in the
network can be treated as the output of a very sophisticated sensor [33], a human
with its high capacity to process and filter collected observations. With a variety
of software platforms, such as browsers and social network interfaces, executed on
personal hardware platforms, such as smart phones, PDAs, or plain cell phones
with cameras, humans can monitor and collect streaming data or generate status
updates to their informal social networks, businesses, and media outlets all over the
world. The aggregation of such updates creates a live, vivid model of the social and
physical environment from which those data are collected. These technologies in
the hands of willing humans can create a very broad, distributed system for collab-
orative sensing, processing and communication of information, based on the most
versatile mobile platform: the human source. The system puts to use the human ca-
pabilities that uniquely distiguish them from electronic sensors. It also comes with
the fallacies of willful falcification, human deceipt and data manipulation, that need
to be addressed.

Consider a scenario in which human-centric monitoring is triggered by human
reactions to unfolding events or observations spontaneously, unilaterally, and with-
out prior coordination. For example, a person might report local conditions to
further the cause of their favorite political belief, warn of abuses or law violations,
or just capture an event of general or humanitarian interest, such as an accident
(especially involving people who require assistance), an uncommon occurrence or
an unusual observation. In such cases, the human ability to judge (most of the time
correctly) the need for reporting the event makes social sensing a very powerful tool,
difficult to match even by the most sophisticated software applications deployed in
a sensor or a robot. Often the “sensing” is first done visually by a human, and
then some corroborating evidence (e.g., a sound clip or a video) is collected by a
human-operated device. The net effect of humans engaging in such sensing behavior
creates an emergent ad-hoc, self-organizing structure to report socially important
events. Examples include reporting illegal arrests, brutal police interventions, and
civil rights abuses.

What makes such reporting especially powerful is the ubiquity of social networks
such as Twitter, Facebook or YouTube that offer a forum for global dissemination
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of the reported data. These networks provide three technical capabilities that em-
power the human user; namely, (i) a publishing capability, (ii) a global search ca-
pability, and, perhaps most importantly (iii) a capability to subscribe to data feeds
from trusted sources. Both the theoretical analysis [34] and current and historical
evidence indicate that the reporting structure that emerges from uncoordinated
human sensing has a behavioral phase transition. Below a critical threshold on the
percentage of involved population, referred to as the tipping point , the structure
fails at significant information dissemination. Above the tipping point, however,
successful dissemination reaches the broader community.

It is both challenging and interesting to fully understand the process of infor-
mation propagation through the aforementioned structure and the influence of its
underlying social network. Such very informal social sensing has already increased
accountability of law enforcement and became the basis for supporting democrati-
zation of governments in many countries. Analysis of its impact on future society,
on human interactions, on trust in media and governments, as well within formal
and informal social structures are challenges of enormous complexity but also of
fundamental importance.

(a) Information Propagation Challenges in Social Networks

To address the challenge of understanding the emergent behavior of human-
centric sensing systems described above, such as the dissemination of opinions and
their supporting evidence, it is first necessary to understand diffusion of informa-
tion in social networks and the conditions under which the information reaches the
majority of the society involved. The current research identified three factors funda-
mental to predicting whether such information spread will be successful. They are
(i) trust among members of the social network that collects the data and distributes
opinions and their corroborating evidence, (ii) commitment of members of the social
network to the distributed opinion, and (iii) the size of the committed community.
It appears, that there is a tipping point of the fraction of the committed community
in the society above which the spread of minority opinion is rapid (logarithmic in
the size of the network, but below it is excruciatingly slow (exponential in the size
of the networks) [35]. We discuss each of these three factors below.

In general, the structure of the communication layer of a social network is one
of the primary factors in defining the degree of information spread in the negative
sense, insufficient communication layer suffocates spreads, but once it exceeds cer-
tain threshold, other factors become dominant in defining the information spread.
One of them is the social network structure. Usually, scale-free networks and small-
world networks are used in studying social networks because they seem to match
well characteristics of such networks. In scale-free networks, node degrees are dis-
tributed according to the power law, resulting in a small subset of nodes having
connections of high degrees, while most of the nodes have low connectivity. In such
networks, dynamics of many processes are independent of the number of nodes
in the network. In small-world networks, nodes are highly clustered, with short
path lengths between nodes. They are commonly found in biological, social, and
synthetic systems [36, 37], and were also identified in patterns of co-authorship of
scientific publications [38] as well as in involvement of actors in the same movies
[39]. The information spread has been found to be especially fast in small-world
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networks [40]. Dynamic networks, in which nodes and edges may appear and dis-
appear with time, are increasingly popular in the recent studies [41, 42, 43] as they
provide more realistic model of evolving communication graphs connecting a rela-
tively static set of social network members. The dynamics of connectivity of social
network members define interacting pairs of members at each time step (e.g., see
[44]) and therefore determines the range of the information spread. Moreover, the
information itself may change the opinion of the recipient, motivating him or her
to join the social network that originated the information spread.

In [45], the authors present a general model of information diffusion in dy-
namic social networks to examine how network structure, seeding strategy, and
trust among interacting participants affect the diffusion process. The model is based
on four axioms: (1) Information Loss Axiom, (2) Source Union Axiom, (3) Infor-
mation Fusion Axiom, and (4) Threshold Utility Axiom. These axioms define the
diffusion process by specifying what happens to the message as it is propagated,
how the nodes handle information they receive, and how nodes update their prop-
erties based on their interactions and the information they receive. The results of
diffusion following these for axioms demonstrate that that trust between communi-
cating individuals strongly affects the reach and impact of the diffused information.
Assessing trust between communicating members of a social network is therefore
essential to understanding information diffusion within such network. Assessment
of trust is a challenging problem, even in a small community whose members can
be provide their self-assessment of trust. The recent rise of large social networks
has created a bigger challenge: how to measure trust between members of a large
social community whose many members never meet each other in person?

(b) The Trust Assessment Challenge

In general, trust is complex and little understood dyadic relation among mem-
bers of a social network. Yet, trust is often fundamental in the very formation of
social networks. It defines each members assessment of the quality and credibil-
ity of information received and determines the range and impact of information
spread. Recent measurement of social interactions [46] show that such assessments
are greatly influence by often unconscious, social signals easily perceived in the
direct interactions, and practically totally lost in communication via email. Once
gained, trust can serve to identify influential nodes in a network and to determine
whether other nodes will believe information that they receive and whether they
will transmit it to other nodes or act on it themselves.

It has been also established that receiving information that is believed to be
true enhances the trust of the receiver in the sender. Consequently, continued in-
formation exchange between members of a community can enhance trust in their
relationships. In [47], the authors present algorithmically quantifiable measures of
trust based on communication behavior of the members of a social network with
sparse direct contacts. The basis of this approach is an assumption that trust results
in communication behavior patterns that are statistically different from communi-
cation between random members of a network. The proposed quantitative measure
of who-trusts-whom relation in the network relies on detecting statistically sig-
nificant patterns of the trust-like behavior. This measure is based on quantifiable
behavior of participants (not the textual content, as many others do) and, thus, it
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is referred to as behavioral trust. The authors developed algorithms to efficiently
compute behavioral trust and validated these measures on a Twitter network data.
They also demonstrated that this new set of behavioral measures can be used to as-
sess the existence, emergence or dissolution of trusting relationships in large social
networks.

Two types of behavioral trust were identified in a study involving Twitter data.
In a conversational trust, the basis for measuring trust is the length and balance
of conversations between two nodes. In propagation trust, the metric is based on
the percentage of tweets sent by node A that node B retweets. The conversational
trust is symmetric, but the propagation trust is not, because node A may not
trust node B, even if B retweets all tweets of A. The authors conjectured that
trust is the foundation of communities, and that it should be possible to discover
communities in the Twitter network by identifying clusters whose members trust
each other. To test this conjecture, they analyzed the tweets of 2 million nodes
Twitter network and created communities based on conversational and propagation
trust. The resulting two trust-graphs have similar structure, having roughly the
same number of communities, as well as a very similar average community size.
The trust-based communities created from conversational and propagation trust
have a similarity higher modularity [48] than could be expected for random graphs
of the same size and node degree distribution. This result confirms that the trust-
based communities capture similar relationships.

(c) Formation of Opinions and the Tipping Point Quantification Challenge

Opinions that dictate human attitudes and behavior arise dynamically via in-
teractions among individuals within their social networks. In the past, personal
interactions within social networks have been the major force in moving societies
towards consensus in the adoption of ideologies, traditions and attitudes [46, 49, 50].
Today, as a result of proliferation of online social networks and ubiquity of wire-
less communication, the dynamics of social influence have been made much more
complex by addition of interactions enabled by the technology. These interactions
are strongly enriched by the ability of advocates of an opinion to provide direct
evidence of their claims, such as examples of abuse of power, or demonstration of
strength of the opposition rallies. While, in the past, such evidence would not have
been available or would have been easily suppressed, today it can spread widely
and quickly via the internet, tweets or social networks. The effects of this change
have been extensively studied in prior literature [51, 52, 53]. A question of great
interest in emergent human-centric sensing is how well-supported an opinion has to
be for it to spread to the entire population. Such processes are well recognized in
sociological literature and referred to as minority influence [54].

This question is studied in [34, 35] under a model of the dynamics of compet-
ing opinions that assumes that switching an individual’s state has little overhead
(hence, a very democratic society is assumed, in which joining the opposition car-
ries no penalty). The authors adopt a two-opinion variant [55] of the Naming Game
(NG) [56, 57, 58]. The evolution of the system in this model takes place through
the usual NG dynamics, which can be summarized as follows. At each simulation
step, a randomly chosen speaker voices a random opinion from his list of opinions to
a randomly chosen neighbor, designated as a listener. If the listener possesses the
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spoken opinion in his list, both speaker and listener retain only that opinion; other-
wise the listener adds the spoken opinion to her list. The order of selecting speakers
and listeners is known to influence the dynamics [58]. In [34], authors choose the
order in which the speaker selects the listener. The NG has also been investigated
on spatially-embedded sparse random networks [59]. Unlike frequently used opin-
ion dynamics models, in NG, a node may possess many opinions simultaneously.
This is significant because it impacts the times that the network needs to reach a
consensus when starting from a uniform initial condition.

In [34], the authors study the evolution of this model starting from an initial
state where all nodes adopt a given opinion B, except for a finite fraction of nodes,
called the committed nodes, that are in state A. Such committed nodes, introduced
in [60], behave differently than normal nodes. If chosen as speakers, they speak their
committed opinion, but when acting as listeners, they ignore their input. Thus the
committed nodes never change their opinion. When the committed nodes of only
one opinion are present, their opinion is the only absorbing fixed point of the system,
and the consensus state in which all nodes eventually end up is the one in which
all nodes share the committed opinion.

The authors show that under a simple condition, the majority opinion in a
population can be rapidly reversed. This condition is related to the existence of a
tipping point in terms of the fraction of nodes in the network that are committed.
When this fraction reaches a critical value (which is about 0.0979 for the complete
graphs), there is a dramatic change in the time needed for the entire population to
adopt the committed opinion. Converting the entire community to the committed
opinion of a minority is exponential in the size of the entire population when the
fraction of the committed nodes is below the tipping point. However, above the
tipping point, the conversion time is logarithmic in the population size. Simulation
results for Erdos-Renyi random graphs showed qualitatively similar behavior. The
authors also pointed to some historical examples of such conversions that included
the suffragette movement in the early 20th century and the success of the American
civil rights movement that followed quickly the time at which the size of the African-
American adult population crossed the 10% mark.

In conclusion, the sensing in social networks is limited by the trust that the
senders of the evidence (or the information about the evidence) enjoy in their
community. Yet, the challenge is how to measure trust in large social networks,
with members interacting via communication links and not directly. How widely
such information diffuses is also strongly affected by the social community structure.
The challenge in discovery of a community structure is how to distinguish between
casual interactions and the social relations of two members of a social community.
With strongly committed nodes, once the size of the community exceeds the tipping
point of about 10%, the opinion supported by the collected evidence and associated
opinions can rapidly propagate throughout the entire community. However, we do
not know today how to make the node committed at the model and in the real-
life why some people stick to their opinion, while others are willing to adjust them
based on opinions of their neighbors. Another interesting and not fully satisfactorily
answered question is what impact media have on the opinions of the community.
Currently researched issue is the dynamics of the model when several opinions
have committed members adopting them. Close collaboration of social and political
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scientist with computer and network scientist is needed to address those questions
and challenges.

6. Conclusions

In this paper, we reviewed the technological trends that enable a new brand of
sensing applications, where humans are more intimately involved in the sensing
and data processing loop. Proliferation of sensors in common use, wide-spread de-
ployment of communication capabilities, and the advent of social networks that
enable broad information dissemination make up the technological foundations of
human-centric sensing. Several sensing scenarios were discussed ranging from those
where humans collect sensor data for personal use to those where globally directed,
self-organized, or emergent data collection and sharing takes place in a community
of interest. Several challenges remain topics of current research. Those include front-
end challenges (e.g., energy consumption), coordination challenges (e.g., campaign
recruitment), back-end challenges (e.g., modeling and prediction), and challenges
in the overall understanding of the emergent behavior of social sensing systems as
large. While a significant amount of research has already been undertaking along
those fronts, much remains unsolved. New interdisciplinary research is needed to
bring about better mechanisms and a better theoretical understanding of emerging
human-centric sensing systems in a future sensor- and media-rich world.
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