Proc. Workshop on Challenges in Compiling for Scaleable Parallel Systems at the
8th IEEE Symposium on Parallel and Distributing Processing, October 26, 1996

Tiling for Parallel Execution — Optimizing Node Cache Performance

Wesley K. Kaplow and Boleslaw K. Szymanski

{kaploww,szymansk} Qcs.rpi.edu
Department of Computer Science
Rensselaer Polytechnic Institute, Troy, N.Y. 12180-3590, USA

ABSTRACT

Tiling has been used by parallelizing compilers to define fine-grain parallel
tasks and to optimize cache performance. In this paper we present a novel
compile-time technique, called miss-driven cache simulation, for determining
tile size that achieves the highest cache hit-rate. The widening disparity be-
tween the processor’s peak instruction rate and the main memory access time
in modern processor makes this kind of optimization increasingly important
for overall program efficiency.

Our technique identifies potential cache misses through compile-time anal-
ysis of a loop nest and then processes them on an architecturally accurate
cache model. Processing only a small portion of the memory reference trace of
a program yields simulation speeds in the millions memory references per sec-
ond on workstations, with statistics of misses per reference and inter-reference
interference counts gathered at the same time.

We discuss the results of applying this method to guide loop tiling for such
commonly used computational kernels as matrix multiplication and Jacobi
iteration for various cache parameters.

Keywords: Cache, Performance Estimation, Loop Optimization, Tiling.

1 Introduction

Optimization of inter-processor communication, especially for message-passing ar-
chitectures, have been the traditional focus of automatic parallelizing compilers.
However, relatively less attention has been given to the computational performance
of each processing node. The importance of the latter has been increasing because
current processors achieve high performance only when instructions and data are
supplied at a sufficient rate, placing increasing importance on efficient use of cache
memory. In many parallel programs, an estimate of the total number of cache lines
accessed by the program is essential for predicting the run-time performance [3].
Consequently, compile-time optimizations that improve memory reference locality
are relevant to parallelizing compilers.

In scientific programs the various loop nests operating on multi-dimensional ar-
rays are the prime candidates for improvement via compilation optimization. The
goal of these optimizations is to change loop nest characteristics to improve memory
reference locality. One optimization of this kind, called tiling or blocking, trans-
forms a loop nest so that arrays are processed in blocks fitting into the cache, thus
eliminating cache capacity misses and reducing cache line interference.

Tiling introduces an additional loop level for each dimension of the arrays that
are to be tiled. Its key parameters are the optimal values for the ranges of the
added loops, which are dependent on the body of the tiled loop nest and the cache
design of the target processor.

1.1 Review of Tiling for Improving Memory Reference Locality

Loop tiling is an optimization technique that has come full circle in its application.
Originally explored as a technique to improve the virtual memory performance [1]
of uniprocessors, the technique has also been applied to explore fine-grained paral-
lelism exposed by loop skewing and wavefront transformations [11,12] for parallel
machines.

Designers of modern multi-processor machines have focused on architectures
with the high-speed interconnection of moderate number of fast uniprocessors. The
technological improvements both in silicon technology and architectural features
have increased the processor speed measured in number of instructions executed
per second. However, the access rate of main memory has not kept pace because
silicon technology improvements have been mainly used to increase capacity and
not speed of memory chips (e.g.,use of DRAM and not SRAM for main memory).
Cache memory has been used to ease this disparity by placing a relatively small, but
high-speed associative memory between the processor and main memory. However,
the effectiveness of a processor’s data cache® is dependent on the data access pattern
generated during program execution.

Compilation methods for improving cache performance through modification
of a program’s memory reference pattern have been the subject of several recent
papers [4,8]. Tiling is such a method applicable to loop nests. It requires that the
loops are restructured to create the blocked iteration scheme with carefully selected
tile sizes. In [8] the authors show that changing tile size can significantly affect
the program performance and that the optimum tile size is dependent on both the
cache organization and program characteristics.

The focus of this paper is the on a novel compile-time method for accurately
determining cache performance characteristics to guide tile size selection process.

1.2 Cache Performance Techniques

Two broad categories of methods to determine cache performance can be identified.
The first group, which we call ezecution-driven, includes methods that are accurate,
but time-consuming. The second category, referred to as symbolic, consist of meth-

¢Instruction cache effectiveness is not discussed here.

ods that rely on compile time analysis of a program and therefore are less accurate
but suitable for inclusion in a compiler. The symbolic methods includes mainly
analytic approaches, with the recent addition of compile-time simulation [7].

The execution-driven methods measure the run-time of a compiled program to
determine the effect of optimization choices, e.g., tile size selection. The method
presented in [5,6] involves capturing memory load and store addresses during execu-
tion and processing them via a cache simulation model to determine the miss-rate
of a range of parameters. However, such methods involve program execution and
therefore are not suitable for embedding within a compilation system.

The symbolic methods include analytic approximations [8,3,2] which estimate
the number of cache lines that would be loaded given a semantic analysis of the
loop’s structure. Their accuracy is limited by the difficulty in accounting for such
cache attributes as the line-replacement algorithm, set-associativity, and virtual to
physical address mapping. Moreover, these methods cannot accurately link cache
miss counts and types with source program components.

In [7], we introduced a novel method called compile-time cache performance
analysis. It uses the parse tree of a program to generate a trace of memory accesses
that the compiled program would generate if executed on a target. This trace is
then fed to an architecturally accurate cache model. The speed of this method is
limited by the fact that it is a simulator. However, since we are only interested
in the memory addresses generated during loop execution, the computation in the
loop nest may be bypassed.

The contribution of this paper is a novel miss-driven cache simulation model
in which events are potential cache misses. This model leads to a significantly
faster simulation than the ones which processes all array accesses [7]. A cache miss
causes an entire line to be read into the cache, so while processing it the simulator
can predict what is the next set of indices for the same data structure reference
that will access the data beyond the cache line just loaded. Consequently, the
simulation bypasses many iterations of the loop nest. An interesting effect of such a
miss-driven simulation is that the speed with which program execution is simulated
is proportional to the cache miss rate of the simulated loop nest. The simulation’s
capability to associate cache misses with the source program elements causing them,
as well as its ability to model details of cache organization make this approach a
valuable compile-time optimization tool.

We discuss the results of applying this method to guide loop tiling for such
commonly used computational kernels as matrix multiplication, and Jacobi iteration
for such cache parameters as L, the number of bytes per line of the cache, K, the
number of lines per set, and IV, the number of sets in the cache.

The rest of this paper is structured as follows. The miss-driven cache simulation
method and its algorithms are described in Section 2. Section 3 shows results for
both the performance of the simulation method in terms of statistics collected and
memory references generated per second, as well as results of using the simulations
to guide the tile size determination for loop tiling. Finally, Section 4 contains
conclusions and the focus of our continuing research.

2 Miss-Driven Cache Simulation
2.1 Preliminary Definitions

A symbolic reference is a source program item which during execution will generate
memory reference. For array elements nested in a loop and subscripted with loop
index variables, one symbolic reference will correspond to many memory references,
each with different values of the index variables. The reference identifier describes
each memory reference in source program terms by augmenting the symbolic ref-
erence with the set of loop index values associated with the memory reference.
Reference identifiers arranged according to their execution order form the symbolic
trace in the same way as the memory references form the program trace. The entire
symbolic trace can be generated sequentially, or the simulation can trace only those
reference identifiers that represent memory references that may change the state of
the cache.

The parser of a source language can be extended to produce an expression that
can be used to generate the symbolic trace (see [7]).

The miss-driven cache simulation method processes only the reference identifiers
representing potential cache misses. Each time a reference identifier is processed,
the simulation determines its effect on the state of the cache model and determines
the next candidate miss event. This is achieved by determining the smallest refer-
ence identifier, following lexicographically the current one, that is associated with
a memory location beyond the content of the cache line holding the current event’s
memory reference. Such a reference identifier is called the predicted event. Fig-
ure 1 shows an example of the cache miss iteration space for a symbolic reference
A[I,2 = J — 1]. The event simulation processes only the locations indicated by a
circle. Out of a total of 77 memory references, only 18 are processed, a potential
simulation speedup of over four times. The actual speedup depends on the specifics
of the array subscripts in the simulated reference identifiers and the cache line size
used.

@) B——H | O B—3
B—| 5O i ——3| 10
BH——iH | O B —E—3
B HO B ——3| H0 =]
B—H | O B ——m |0
B—i——a| HO i—3
B |0 B — A |0 =]
B——| HO B ——3
o) —i—H | O 3—3
B—3| HO B—3—3| Ha
BH——iH | O B —E—3

Fig. 1: Example Iteration Space for A[l,2 % J — 1]

A predicted event remains valid if and only if the content of the corresponding

cache line does not change between event creation and processing. To enforce this
condition, each line of the simulated cache has a guard that indicates if the event is
still valid. This guard must only be checked during a cache miss, since this is the
only time a cache line can be replaced.

2.2 Simulation Algorithm

The miss-driven simulation algorithm uses an event list and stores the lastly pro-
cessed event in a so-called global clock. There are four main phases to the simulation
described in the following subsections.

2.2.1 Creating the Annotated Parse Tree

The first phase creates a standard parse tree and symbol table that are used to
determine the initial reference identifiers for the event list, as well as the loop
variable limits and base and dimension information for each array. Figure 2 shows
an example of the input program.

1 A.range[1] = A.range[2] = B.rangel[l] = B.range[2] = 2048
2 A.base = 10

3 B.base = 200000

4 for k =1, 1024

5 for i = 2, 266; j = 2, 2566
6 Alk,i]=B[k+1,i]+B[i-1,j-1]+B[i+1,j]+B[i,j+1]
6 end

7 for r = 1, 266; s = 1, 256

8 Blr,s]=A[r,s]

end

Fig. 2: Sample Simulation Source File

The simulation source language is similar to most imperative programming lan-
guages. First, the bounds of each array used must be defined (line 1) which is
necessary for calculating the memory offset address for a given reference identifier.
Since we are interested in the real (in this case virtual) address of memory refer-
ence, we must also define the base address of each array (lines 2 and 3) which is
added to the array offset address to form the memory location passed to the cache
model. The rest of the source code follows the syntax of common loop structured
languages.

Standard compiler techniques are used to produce a parse tree, shown in Figure 3
for the code example in Figure 2. Not shown is the symbol table that captures the
array range and base information. This tree is the key data structure that is used
to create the initial reference identifiers corresponding to symbolic references in the
leafs of the parse tree. The tree is also used in other algorithms such as the finding
the total number of program memory references at the end of a simulation.

i [m n, max] j [m n, max]
) Loop [r| Loop [Assignment]
[k, i] [kii,il 3 2
1 k [mn, max]
Loop |A[|,J] B[i+1,j] Bli.j+1] B[i+1,]] Bli,j-1]
[K]
r [m n, max] s [m n, max]
2 Loop 1 | Loop m
[k, r] [k, r,s] 1 2

B[r,s] Alr,s]

Fig. 3: Example Annotated Parse Tree

2.2.2 Creating the Initial Events and Supporting Data Structures

There are several data structures that must be created and maintained during the
simulation such as: initial reference identifiers, next candidate information, loop
range data, initial data addresses, ordered event list.

Information from the parse tree is used by the function that computes the next
potential cache miss. This includes the NextCand object (Section 2.3), current
loop boundaries, and guarded cache model information.

2.2.3 Main Simulation Loop

Figure 4 shows the data flow of the main simulation loop. The basic simulation
cycle has the following steps: (i) get the next event, (ii) access the guarded cache
model, (iii) perform miss processing, if necessary.

¢ Insert Next [_> NextCand Global Clock
Event Event

I[1,1,1,1,10,1, 2, 1, 4] [Next Cand] }\
Miss Processing
Wi h
2 Simulation Loop iss ySache

Data

Probe

ll, 1,1,1,10,1, 33, 1, 3] [Next Cand]]‘;
2

ll, 1,1,1,10, 1, 34, 1, 2] [Next (hnd]]"
2

l[L 1,1,1,33, 1,2, 1, 1] [Next Cand]]v~

|[1, 1,1,1,33, 1,2, 1, 5] [Next Cand] I./
¥
l[1‘ 1,1,2,1,1,1,1, 1] [Next Cand]].’
v
|[1,1‘ 1,2,1,1,1, 1, 2] [Next Cand]]4/

Guarded Cache Model

Sorted Event List

Fig. 4: Event List and Guarded Cache Model

The event list object is a priority queue of events ordered by the lexicographical
order of values of loop indexes in reference identifiers of events. In our implementa-
tion this is done via an ordered heap. Each event on the event list is guarded by the
corresponding cache line in the guarded cache model. A pointer from each event to
its guarded cache line is also necessary so that during event processing, the guard
can be modified or removed as needed.

The guarded cache object is a conventional model of a cache that can be initial-
ized to support various different cache configurations to accurately model different
machine architectures. The current parameters include the associativity, K, the
number of sets, N, and the line size, L. For multi-way caches (K > 1) the model
implements the least-recently-used (LRU) algorithm for determining which cache
line to replace.

Figure 5 shows the main event loop code for the simulation. In each cycle,
the minimum event from the event list is the next reference identifier to process
as by definition of event list all preceding reference identifiers have already been
processed. The event is taken off the event list and its cache line guard is removed.
Finally, the global clock is set to this event.

The reference identifier for this event is then used both as an input to the cache
model, and to the NextCand :: getnext procedure that predicts the next candidate
miss for the relevant symbolic reference. The getnext procedure, described later,
requires the array offset of the previous event to compute the next candidate event,
hence this information is stored in the event structure.

The cache model is accessed and the action of the cache is recorded, including
the cache line that was accessed and the type of access (hit or miss). The current
event is updated to contain the reference identifier of the predicted candidate miss
using the getnext procedure. The event is then set to be guarded by the saved
cache line, and the cache line is set to guard the event. The updated event is then
placed back on the event list.

If the action of the cache was a hit, or if the action was a miss and the accessed
cache line did not have an active guard, then no further processing is required.
However, if the action was a miss and the accessed cache line was guarding an
event, then that event is no longer valid because it refers to a cache line replaced by
the currently processed miss. The guarded event is rolled back to the first reference
identifier with the symbolic reference corresponding to the replaced cache line that is
larger than the global clock. The procedure Event :: nextlex performs the required
index update for the affected event.

The nextlex procedure updates the reference identifier of the affected event and
the address for this event is then calculated (for subsequent use when this event
is processed). Finally, the event is re-inserted into the event list and marked as
unguarded. The simulation cycle then repeats.

2.8 Next Miss Candidate Prediction Algorithm

The prediction of the candidate cache misses for a symbolic reference is made by
the NextCand algorithm.

The NeztCand algorithm relies on a data structure that is dependent on the
syntax and semantics of an array reference. There is one data object per sym-
bolic reference in the source program which contains the coefficients necessary to
characterize each affine subscript.

From this information, it is possible to determine the values of the prod array.
The values of this array represent the number of memory locations that are moved

FEvent x Eptr,gEptr
RefVector GlobalClock
while —done {
Eptr = EventList.top()GlobalClock = *Eptr
if Eptr— > getguard() = GUARDED
CacheModel.setguard(Eptr— > getway(), Eptr— > getset(), NULL)
CacheRec probe
int address = Eptr— > address
int action = CacheModel.Probe(address, probe)
Eptr— > address = Eptr— > getnext(xEptr,

Eptr— > min, Eptr— > maz, address — Eptr— > base, cachelinesize)
CacheModel.setguard(probe.getway(), probe— > getset(), Eptr)
Eptr— > setway(probe.getway())

Eptr— > setset(probe.getset())
Eptr— > setguard(GUARDED)
EventList.insert(Eptr)
if action = MISS {

gEptr = probe.getguard()

if gEptr—-NULL {

gEptr— > setquard(-GUARDED)

Eptr— > nextlex(GlobalClock)

gEptr— > setway(probe.getway())

gEptr— > setset(probe.getset())

EventList.insert(gEptr)

Fig. 5: Miss-Driven Cache Simulation

for each increment of each respective index. This information is used to calculate
the offset of address of an array reference. It is also used in the NextCand :: getnext
function to determine the set of index variables for this symbolic reference that will
result in memory reference beyond the current cache line (this set defines the next
candidate miss for this reference).

Omitted here, due to length constraints, is the detailed description of the getnext
routine. The essence of the algorithm is illustrated in Figure 6 in which the starting
index variables are [I = 5,J = 3]. First, based on the stored address, the offset
inside of the current cache line is determined. Next, starting from the innermost
towards the outermost index variable (defined by array I) the minimum increment,
inc, to move outside the cache line is determined by dividing the number of bytes
needed by the prod of the current index. This is then used to create provisional
values for the next reference’s index set, prov. In this case of upper box in Figure 6,
the provisional reference does not exceed the maximum loop ranges, so the address
for this reference is calculated for use in the next call and the provisional value is

the new current (predicted) reference identifier.

The situation is a bit different in the example in the lower box. Here, the
increment causes prov to move outside of the valid index space. The algorithm
then increments the next higher index variable, and the lower index is reset to its
minimum value. The algorithm determines that it must move further because we
have not moved outside of the cache line. A new increment is determined for the
lower index and applied to create a new provisional value. This is again checked
against the maximum ranges, and the provisional is made the new current index
set, and finally the address is calculated.

123 456 7 8 910111213 [(155 03 [ge 1
ols =32 - |0 Hle' address = 224 ’
for I =1, N offset = 224982 = 0

for =1 N N i | HO i | HQO inc:3[2:55:317]
1,2%3-1 | prov = [1=5, J=
. 1 e ! done? = 7 <= 7
< 19 | curr = prov
oy =9 Rl 3 new address = 256
1 =1 [} { ‘ 1\
; curr = [1=5, J=7] Ex. 2
a1 = s2 ©] H address = 256
prof z] o= of fset = 256982 = 0
prod[J] =8 ™~ — |0 i | O inc = 32/8 = 4
© ‘ H3 } prov = [1=5, J=11]
mno=[1, 1] M= "~ | done? = 11 <= 7
mx = [11, 7 o |0 mie; prov = [1=6,J=1]
) ;) done? (260-256) >= 32
-] O H Q) | ine = ceil((32:4y/8) = 5
= e prov = [1=6,J=5]
done? 5 <=7
curr = prov
new address = 292

Fig. 6: Next Candidate Miss Examples

2.4 Next Lexicographical Reference Algorithm

When a cache line is replaced due to a cache miss, the event guarded by the cache
line is no longer valid. In this case we must roll back the affected event. Since all
reference identifiers before the global clock have been processed, we need the least
set of values for the indices of the affected event’s symbolic reference that follow
the global clock. The algorithm in Figure 7 performs this function.

The algorithm works by copying all of the index information from the outermost
loop towards the innermost loop as long at the symbolic reference corresponding to
the global clock and to the affected reference identifier are the same. Once the loop
nests are different, the remaining indices in the affected reference identifier are set
to the minimum for each index respectively.

2.5 Statistics
2.5.1 Total Number of References

Although we know exactly the number of events processed, we do not know how
many references we executed in total because each event represents a varying num-
ber of references.

The number of actual references is determined by summing the number of ex-
ecutions for each symbolic reference. To determines this number, the algorithm
compares the reference identifier with the global clock. This comparison detects

Event :: nextlex(RefVector& after)
{

istack = thislive,afterlive
thislive = this— > treeptr— > getlive()
afterlive = after.treeptr— > getlive()
int minlen = thislen = this— > last
afterlen = min(afterlen, minlen)
for(int ;i < minlen;i+ +)
if thislive[i] = afterlive[i]) curr[i] = after.curr[i]
else for(intr = i;7 < thislen — 1;7 + +){
curr[r] = min.curr|r]
break

}

if thislen = afterlen & r = thislen& * this < after {
last() + +
normalize(min, maz)

}
}

Fig. 7: Next Lexicographical Reference Algorithm

whether or not the symbolic reference was executed in the last iteration of the loop
nest. This is done by moving down the parse tree and comparing the statement
selectors of the global clock and the desired reference. There are two cases:

1. The reference identifier is no greater lexicographically than the global clock.
Here, the symbolic reference must have executed as many times as its enclosing
loops, up to the point that the global clock and the reference identifier are the
same, and for the full range of all of the loops between the symbolic reference and
the above point.

2. The reference identifier is larger than the global clock. In this case the symbolic
reference has been executed as many times as the loops it shares with the global
clock.

2.5.2 Cache Statistics

The unique feature of the presented simulation method is its ability to associate
gathered cache miss statistics with the symbolic references. The statistics currently
gathered are:

Total Cache Miss Rate. This is the total count of all miss accesses to the cache.

Per Symbolic Reference Miss Rate. The number of times an event with this
symbolic reference causes a miss.

Per Reference Interference. The number of times a symbolic reference inter-
fered with another.

10

Per Array Intrinsic Miss Rate. The number of times a memory reference to
an array causes a miss but does not displace a cache line containing elements
from an array in the program.

Per Array Cache Interference Rate. This includes both self-interference and
cross-interference. Each cache line in the guarded cache model is tagged with
the array to which this line belongs. During a miss the tag value is compared
with the identity of the array accessed by the event’s reference.

Figure 8 shows a sample output of the event simulation. The numbers to the
right of each symbolic reference indicate the number of times this reference interfered
with the other symbolic references. Figure 9 shows an example graph of miss rate
components for various tile sizes.

Cache Parameters: K=1L=4N-=5
Num. of Refs.: 40208 Num. of Misses: 27958 Misses per event: 0.931933
Misses per ref.: 0.695334 Intrinsic Miss rate:0.000795862
Interference Data:
ABC
A 0 2040 0
B 2013 23873 0
co000
Group Self Interference rate: 0.593738 Inter-Group Interference rate: 0.100801
i.range = 2,127; j.range = 2,127
(2042) 7.30381 A[i,j]1 [# 01 00000
(5937) 21.2354 B[i,j-1]1 [# 1] 0 0 O 3894 0
(7979) 28.5392 B[i-1,j] [# 2] 0 6000 0 0 1979
(7979) 28.5392 B[i+1,j] [# 3] 0 0 7979 0 0
(4021) 14.3823 B[i,j+1] [# 4] 0 0 0 2042 0

Fig. 8: Cache Statistics and Annotated Source Listing

Blocked Transpose K =1, L =4,N=9

06 - Miss Rate o—
Instrinsic Rate ~+--
Self-Interference -
Cross-Interferecne -

Rate

0 50 100 150 200 250
Block Size

Fig. 9: Example Graph of Miss Rate Components

11

3 Results

In this section we present some preliminary results of the compile-time miss-driven
simulation method. The results are intended to demonstrate that the method can
quickly generate the cache performance statistics required to select the tile size
at compile-time. They also show that the additional fidelity of this method, as
compared to analytical techniques, provides valuable insight for the selection of
optimum tile sizes.

3.1 Simulation Performance

Event-Driven Simulation Performance (Sun UltraSparc-1)
T

9e+06 T T T T

8e+06 - Mat. Mul.

7e+06 |- A 4
,"+/
o 6e+06 A m]
2 o Y
] . .
o) - R
P 5e+06 - i
5 -
8 > e
8 e B
§ 4e+06 ,,*/ a 7
s .
3
@

3e+06 |-

2e+06

[RE—————

1e+06 [

0 10 20 30 50 60 70 80

40
Block Size
Fig. 10: Reference Simulation Rate for Matrix Multiplication

Figure 10 shows the performance of our simulation method on two different loop
nests: matrix multiplication and Jacobi Iteration. The performance is plotted
against block size for the different loop nests and cache parameters, and represents
the number of references simulated per second. These numbers compare favorably
to real target execution in terms of instructions per seconds because execution of
real code on a target includes also execution of loop control statements and calcu-
lations of the array offsets and values. The worst performance was achieved with
small tile sizes because of the high miss-rate experienced.

As described in Section 2.3, the cache prediction is based on reference self-spatial
locality and therefore the performance is proportional to the simulated cache line
size. However, the performance is also inversely proportional to the miss-rate, as the
larger miss-rate generally implies more cache interferences and therefore generates
more event roll-backs due to invalidated events. This accounts for the dip (block
size = 20) in the matrix multiplication case with L =8 N =4, K = 4.

On a Sun UltraSparc-1, the generation of the matrix multiplication tile size
graph takes approximately 1 second in the current implementation. The current
simulation code is written in C++ and its object-oriented design is intended for
ease of implementation and adaptation and not performance. Changes to the code,

12

such as making some of the simple variables public in outside of their class have
already yielded significant performance improvements.

3.2 Compile-time selection of Tile Sizes

The accuracy and speed of the cache model can be used to quickly determine and
optimal tile size for a problem. The left graph in Figure 11 presents the cache
performance for various tile sizes for two different matrix multiply problem sizes.
As shown, for the same cache architecture and algorithm the tile size can depend
on small changes in problem size (as shown in [8]). The right graph in Figure 11
gives miss-rates for matrix-multiply on a 32K cache for three different cache orga-
nizations. The graphs show that there is a significant dependence on the structure
of the cache, and that cache performance analysis methods that rely on the total
number of cache lines may yield inaccurate results.

Matrix Multiply Associativity = 4, Lines Size = 64, Lines = 128 Matrix Multiply With Different Cache Architectures

0.025

K=1,1=6,N=11Miss Rate +—
K , N =9 Miss Rate —+-- -
0.14 - ,L=3,N=12 Miss Rate -8 - 1

0.015 |- N =293 Miss Rate <+—
N = 300 Miss Rate - o1} ¢ 1

Miss Rate
Miss Rate

0.08 |- 4
0.06 [s B
0005 har'y 1

=y et 002 Eege |
RE——

20 40 60 80 100 120 20 40 60 80 100 120 140 160 180
Block Size Block Size

Fig. 11: Matrix Multiplication for various 32K Cache Architectures

Figure 12 shows another example of a loop nest, adapted from [10] and repre-
senting a typical stencil computations. As with the matrix-multiplication, we can
see from Figure 13 that optimum tile size for the same size cache depends on the
cache’s structure.

1 double A[N,N], B[N,N]. C[N,N]

2 for ii =1, N,T

3 for jj =1, N,T

4 for i = i, min(ii+T,N)

5 for j = 1, min(jj+T,N)

6 Ali,jl=A[i+1,j1+B[i,j]1+B[1,j+1]+C[j,i]+C[],i+1]
7 end

8 end

9 end

10 end

11

Fig. 12: Tiled Stencil Code

13

Tiled Stencil Computation
0.24 T T T

022}
02 ! |
018 |t g

016 | |i

Miss Rate

0.14 |

0.1

0.08

100 120 140 160

0.06

80
Tile Size

Fig. 13: Results for Tiled Stencil Kernel for Various Cache Parameters

Figures 14 and 14 show the correlation between the simulated performance of the
tiled matrix transpose and the real target performance, demonstrating the fidelity
of the cache statistics in predicting the real program performance.

Tiled Transpose Simulation vs. Real (UltraSparc-1)
0.7 T T T

06 [Simulation o— E
Target —+-- i

05 - E

Normalized Simulated Miss-Rate or Performance Degradation

0.2 L L L L L

50 100 200 250 300

1
Tile Size

Fig. 14: Performance of Tiled Matrix Transpose

4 Conclusions

We have developed and described a novel compile-time method for determining the
cache performance of loop nests to assist in the selection of optimal tile sizes that
improve dense loop performance. The miss-driven method provides accurate cache
performance thanks to the use of a real cache model instead of an analytic approx-
imation. Moreover, the cache model and miss-driven structure of the simulation

14

provides detailed information about the nature of the cache misses. Each symbolic
reference is assigned the number of times this references cause a miss, as well as
the number of times this reference displaced others in the cache. This information
can be used to direct other loop optimizations such as loop permutation, fusion,
and distribution [9]. Moreover, per reference based information is critical to whole
program cache optimization [10].

Acknowledgments

The authors would like to thank their colleagues from Rensselaer Polytechnic Institute:
Peter Tannenbaum for his help in implementing the parser and Charles Norton for help
in the C++ implementation of the simulator. This work was supported in part by Lucent
Technologies, Bell Laboratories and by NSF Grants CCR-9527151 and CCR-9216053. The
content does not necessarily reflect the position or policy of the U.S. Government.

References

1. W. Abu-Safah, D. J. Kuck, and D. H. Lawrie. Automatic program transforma-
tions for virtual memory computers. In Proceedings of the 1979 National Computer
Conference, pages 969-974, June 1979.

2. S. Carr, K. McKinley, and C W. Tseng. Compiler optimizations for improving data
locality. In ACM Architectural Support for Programming Languages and Operating
Systems, San Jose, CA, October 1994.

3. T. Fahringer. Automatic Cache Performance Prediction in a Parallelizing Compiler.
In Proceeding of AICA 1993, Lecce/Italy, September 1993.

4. D. Gannon, W. Jalby, and K. Gallivan. Strategies for Cache and Local Memory
Management by Global Program Transformation . Journal of Parallel and Dis-
tributed Computing, October 1988.

5. A. Goldberg and J. Hennessy. Performance debugging shared-memory multiproces-
sor programs with mtool. In Processings of Supercomputing 91, 1991.

6. A. Gupta, M. Martonosi, and T. Anderson. Memspy: Analyzing memory system
bottlencks in programs. Performance Analysis Review, 20(1), 1992.

7. W. K. Kaplow and B. K. Szymanski. Program optimization based on compile-time
cache performance prediction. Parallel Processing Letters, 6(1):173-184, 1996.

8. M. S. Lam, E. E. Rothberg, and M. Wolf. The Cache Performance and Optimiza-
tions of Blocked Algorithms. In Proc. ACM ASPLOS, Santa Clara, CA, pages
63-74. ACM, NY, April 1991.

9. Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality
with loop transformations. ACM Transactions on Programming Lanaguages and
Systemns, 18(4):424-453, July 1996.

10. Kathryn S. McKinley and Oliver Temam. A quantatative analysis of loop nest
locality. In ASPLOS-VII. ACM, 1996.

11. Balram Sinharoy and Boleslaw Szymanski. Finding optimum wavefront of parallel
computation. Journal of Parallel Algorithms and Applications, 2(1):5-26, 1994.

12. M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to
maximize parallelism. IEEE Trans. Parallel and Distributed Systems, 3(10):452—
471, 1991.

15

